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Abstract

Overlapping speech is known to degrade speaker diarizagidormance
with impacts on both speech activity detection, speakesteting and seg-
mentation (speaker error). While previous related work masle impor-
tant advances the problem remains largely unsolved. Thigmeeports
early work to investigate the application of non-negatianix factorisation
(NMF) to the overlap problem. NMF aims to decompose a contpssjnal
into its underlying contributory parts and is thus natyrallited to tasks of
detecting overlap and its attribution to contributing dgera. With additional
sparse constraints the algorithm is shown to be effectivaantifying over-
lapping speech and gives a relative improvement of 11% imgesf equal
error rate over a baseline approach based on conventionak@a mixture
models. Experiments with source attribution show a redatiwprovement in
the order of 40%.
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1 Introduction

Over recent years, state-of-the-art speaker diarizaistess have advanced
to the point where overlapping speech can be a dominantesofigrror [1,2]. The
occurance of overlap is typical in uncontrolled, spontarsescenarios such as that
of conference meetings which have been the focus of the NI Ranscription
evaluations since 2064

The effects of overlapping speech in a speaker diarizatmrtext are well
known and generally considered to be two-fold. Without soneans of detec-
tion, segments of overlapping speech lead to impuritiepé&aker specific models
and hence reduced segmentation performance. Furthes an@incurred since it
is then neither possible to attribute segments of oventgpppeech to their con-
tributing speakers; most systems assume that only a sipgéker is active at any
one time.

Only a small number of attempts to treat overlapping speach heen success-
ful. Two problems need to be addressed. The first involvesi#bection of over-
lapping intervals so that they can be removed from speakistezing and model
training. The second problem involves the attribution @émals of overlapping
speech to contributing speakers and naturally dependsliablezoverlap detec-
tion. There is some evidence that a solution to the first praldlone is unlikely
to be sufficient [3] and that a solution to speaker attributi® potentially more
rewarding. Otterson [4] reaches similar conclusions.

The first work to detect overlap automatically appeared i6820Boakye et
al. [5] investigated the use of multiple features for overtietection and a post-
processing step for attribution but results showed only esbémprovements in
diarization performance. This work was extended in [6] widw features and
a new pre-processing step to remove intervals of overlap frotial clustering.
Greater improvements in performance are reported andecgapkeriments confirm
the full potential. Huijbregts et al. [7] report a similar@pach whereby a model
of overlapping speech, trained on data localised aroundkspdurns, is used for
overlap detection. A similar approach to that in [4] is apglito attribution and
modest improvements in diarization performance are aelielinally we include
reference to more recent work [8] which utilises spatial aralisation features
in addition to conventional acoustic features. Our paldicinterest is in single-
microphone data, however, where localisation featureseireslevant.

Until recently our own efforts in automatic overlap detenthave been mostly
unsuccessful. Our initial efforts involved the analysisspkaker-specific Gaus-
sian mixture model (GMM) likelihoods that emerge from sperattiarization but
results were discouraging. More recent attempts with regative matrix fac-
torisation (NMF) also gave poor results but led us to consiparse coding con-
straints [9] which seems much more promising. NMF is a mategomposition
technique that can be viewed as a parts of object based desdiop and has

http://ww.itl.nist.gov/iad/mg/tests/rt/



found wide application in image processing [10]. Our mdtma stems from the

successful application of a convolutive variant of NMF (CRMwhich captures

dynamics in the time series and has been used successfidyeach denoising

applications [11]. A more recent development in this appinda the application of

sparseness constraints during matrix decomposition [9 32arseness constraint
is more appealing from a speaker attribution perspectiwelabe discussed in the

following sections.

Our approach relies upon the output of a standard diarizatystem in order
to learn bases which span a speaker-specific acoustic spaeedea is to project
segments of speech into the set of speaker spaces and halatertnine whether
there is more than a single active in additiowtach speakers are active. Thus the
approach addresses both fundamental problems of overtaptide and source
attribution. Initial results are encouraging and, while tork is at an early stage,
we believe the approach warrants greater attention.

2 CNMF with sparseness constraints

Non-negative matrix factorisation [13] is an approach fa inear decompo-

sition of a non-negative matrik € R7,,  with similar non-negative constraints

on the decomposed matricls € Ry, , andH € R

D~WH 1)

The columns ofiW can be seen as the basis vectors and the rows a$ the
basis activations or weights to recompose an estimate dfrijaal matrix. As
described in [14], the decomposition is performed itemyivusing elegant and
computationally efficient multiplicative update rules tanimise the distance be-
tween the data matrix and its approximation:

V.H) = in||D— WH|? 2
(W,H) argrvrvl}gll WH|% 2

where,||.||r is the Frobenius norm. The matrix representation of a spsiggtal
D is typically comprised of windowed magnitude spectra wiselkisfy the non-
negative constraint. The decomposition of this matrix ltesa basis vectors that
correspond to prominent spectral features. NMF, howew&s dot capture the cor-
relation between adjacent frames that are inherent in bpggoals. A convolutive
variant, referred to as convolutive NMF (CNMF) [11] adde=ss¢his shortcoming.
The decomposition in CNMF takes the form:

T

. — p—

D= Wy (3

i
o

whereP is the convolution range. The operat8rs and”" are column shift op-
erators that shifp columns of the matrix to the right and left respectively. &zl
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columns are filled with zeros. A sequence®ivectors corresponding to thé&
columns of W, can be treated as one basis dimension that captures one of the
prominent spectro-temporal patterns in the given signal.

The further application of sparse constraints [9, 12] letada sparse activa-
tion matrix H, which is a useful feature in applications where there isedre
force the decomposition onto as few bases as possible. ddus lto the following
optimisation criterion:

W,H) = in|D—-WH|%+X> Hy 4

(W, H) = argmin| 7 + z; j (4)
where H;; denotes the elements &f. In our implementation, we use the update
rule proposed in [9] for computing” and H:

_T

D'

. p—T

D H
TP
w, D

H(p) = Ho—5"— ()

wg D +\U

W, = W,0 (5)

H o= S HE) ™
p=0
where® is the Hadamard product and where the division of matricesiitormed
element-wisel is anR x N unit matrix. W and H are updated iteratively until
D converges tdD. After each update ofi’, the columns are normalised to unit
vectors. This is an essential step in sparse coding sinosutres thai? does not

grow in an uncontrolled manner and enforces the resultitigagions to be sparse.

3 CNSC for overlap detection

We here describe our approach to apply CNSC to the detectiovedapping
speech. Attribution, where we aim to determine the continlguspeakers, is cov-
ered in Section 4. We first consider performance where thengkdruth reference
is used to learn speaker bases and then assess performaugcarugutomatic seg-
mentation output from a practical speaker diarizationesyst

3.1 Ground-truth references

According to the outline presented above, CNSC is implegteatcording to
the following procedure:

1. Using pure (non-overlapping) speech for each given sgeldarn base ma-
tricesT using spectral magnitude features.

3



2. Concatenate together thigs for all the speakers to create a global &t
that spans the spectral patterns for all speakers.

3. Decompose the magnitude spectrum of a mixed, and possielyapping
speech signal (same speakers as in 1.) accordifigtaand update only?
to minimise the optimisation criterion.

The activations ofH corresponding to the basis for each speaker therefore
serve as an indication of that particular speaker’s agtiv@ince the basi$l’ is
normalised, the sum of the activations in a columnHbfs strongly correlated to
the signal energy from that particular speaker in the cpoeding time or analysis
window. The speaker energy is determined according to:

Ej(s) =) Hi €)
il
where, I, is the set of rows inH corresponding to the basis of speakeandj is
the frame index.

We evaluated our approach to overlap detection using a sEb ocbnference
meeting files from the standard NIST Rich Transcription ail Avaluation datasets.
To compute the speaker basis for each evaluation file, pureckpwas first ob-
tained for each speaker according to the reference trgtsdri an oracle-style
experiment. This was done to avoid the impact of errors inwdomatically de-
rived speaker segmentation or diarization output and thdisdus the assessment
on CNSC alone. We used 50 basis vectors for each speaker withvalutional
range of 4.

In order to compare performance with a traditional, base®@MM-based ap-
proach, we undertook a similar experiment using speakexifp GMMs which
were trained on Mel-frequency cepstral coefficients, againg pure speech in a
similar oracle-style setup. Each speaker model is conprigel6 components.
The log likelihood (LLK) for each of the speaker models/(K;(s)) is computed
for each framegj and is used as a indication of each speaker’s activity indnees
way as the frame energy is used in the case of CNSC.

Results are illustrated in Figure 1 which shows the LLK andrgy for the
GMM (a) and CNSC (b) approaches respectively. Ground-trefierence speaker
activities are plotted below using the same profile for spomding speakers. The
latter are plotted on different scales solely for claritylamow that, for the most
part, there are only two active speakers. Between 6.5s gritb8&ver, there are
four active speakers. For the GMM approach, there is litikeetation between the
LLK and ground-truth speaker activity whereas for the CN$fraach the energy
profiles appear to correlate well. We thus surmise that CN&Csaelatively better
potential as an indicator of speaker activity.

In order to implement a classifier capable of detecting eygrihg speech it is
necessary to threshold the LLK or energy profiles. In the cA$&NSC the ratio
of the second highest to the highest speaker energy is cemhfuteach frame:
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Figure 1. An illustration of the correlation between grottnath speaker activity
and (a) LLK scores obtained from the GMM approach and (b)g@nscores with
CNSC approach.

Ej(32)
E;(%1)
wheres; denotes the speaker with tith highest energy. For overlapping segments
we expect the ratio to be nearer to unity while for non-oygriag segments the
ratio should be closer to zero.

An identical strategy is adopted for the GMM approach. H#reugh, given
that LLK scores are in the log-domain, a similar ratio is aldted as follows:

scoreCNSC; =

9)

scoreGMM; = LLK;(83) — LLK (%) (10)

Performance for both GMM and CNSC approaches with varyimgstiolds
is illustrated in the detection error trade-off (DET) cwsvef Figure 2. EERs of
50.1% and 44.4% for the GMM and CNSC approaches respectieeigspond to
a relative improvement of 11% and confirm the potential of@INSC approach.



3.2 Automatic segmentation

CNSC relies on the availability of pure speech to train spedlases and, in
the experiments reported above, this was done using refeteanscripts to avoid
the influence of errors in an automatically derived segntemta We now aim
to assess performance using the output of a practical dianz system, rather
than the ground-truth reference, in an otherwise idensetlip. This work was
undertaken using the top-down speaker diarization sységorted in [15].

Perhaps the most significant difference between the referand the diariza-
tion output lies in the number of real and automatically diste speakers which
will naturally lead to increased error. Overlap detectienfprmance using the real
diarization output is also plotted in Figure 2 and shows, tredisuringly, there is
only a negligable difference in performance. This furthgpports our view that
the use of overlapping segments for clustering is not overbplematic and that
greater attention should be placed on attribution.

3.3 Discussion

We acknowledge that the EERSs reported here are high but imatéhie corre-
spondence of the EER to the diarization error rate (DER) kniawn and certainly
complex; in our experience intermediate assessments pjithrantly poor results
do not always correlate with the resulting DER. We also hggttlthat the EER
is just one operating point and that, by choosing a diffetereshold, one may
trade false alarms for missed overlap. Further work is reguio investigate the
resulting effects on speech/non-speech activity deteetiw speaker error rates.

Finally, other experiments, not reported here, show thatah@recision and
recall rates (for a given, fixed threshold, i.e. a single poimthe DET profile) can
be significantly improved through the smoothing or filterimfgprofiles shown in
Figure 1. Such practice is common with speaker diarizafidius performance is
in practice significantly better than the impression givefigure 2.

4 CNSC for speaker attribution

We now turn to the attribution of overlapping speech to dbuating speak-
ers. Reliable attribution has the potential to improve tl&Rby reducing missed
speech errors where an interval of speech containing maredlsingle speaker is
attributed to only one.

One simple approach involves the thresholding of each gpsadnergy profile
in order to detect active speakers. L&t~ (s) be the total energy attributed to
speaker in segment

Ecps(s) =Y Ej(s) (11)

JjEk
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Figure 2: Detection error tradeoff curves using CNSC and Gafidroaches with
ground-truth references and CNSC using an automatic diéiz output.

were j is the frame index. Speakeris deemed to be active iF_x~(s) >
0 * E-x~(81), whered is an empirically optimised threshold and whéteis the
speaker with the highest energy in the same segment. The éatts to normalise
speaker contributions and vocal effort and works well ircpce.

Performance is again compared to that achieved using asioniterion using
the LLK and GMM-based approach. In this case a speaker isedébe active if
LLK 1~ (51) —T(k)+«Gxlog(d) whereT'(k) is the duration of the segment aGd
is the number of Gaussian components in the GMM. Since wepeatng in the
log domain, we need to scale the threshold as shown to obtfaiin @mparison
between the two approaches.

To assess the performance of each approach we use a metcic ds been
adapted from the standard formula for the DER and here ctrateron speaker
error (SpKErr) only, i.e. we discount speech activity detec Errors in speaker
attribution are calculated over all segments containirgylap according to:

Z T(k)[ma’x(NRefa NHyp) - NCorr]
>_T(k)Npges

where, T'(k) is the duration of the overlapped segmeNiz. ¢ is the number of

speakers in the reference hypothedis;,, is the total number of speakers in the

detection hypothesis anl¢,. is the number of speakers that are correctly at-

tributed to the segment. Note that the metric is time-weadhh a similar manner

as the standard DER.

The attribution error for both GMM and CNSC approaches iswhio Figure 3
against the threshold which varies between 0.1 and 0.9. Whereas the profile for
the GMM approach is relatively flat it descends rapidly far @NSC algorithm as
the threshold increases. Optimum performance is achieitacawalue oy = 0.7.
CNSC thus clearly outperforms the GMM approach in the casewfce attribution
and delivers an improvement close to 40% relative.

Error = (12)
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Figure 3: Speaker Error: CNSC and GMM

5 Conclusions

This paper reports an investigation into the use of conw@uton-negative ma-
trix factorisation with sparse constraints (CNSC) for tietedtion and attribution
of overlapping speech in the context of speaker diarizafldre CNSC approach is
seen to outperform a more conventional approach based tikelieoods obtained
from Gaussian mixture speaker models. A relative reduafdii% in equal error
rate is obtained in terms of detection but improvements tiibation are in the
order of 40% relative. A limitation of the approach relateshe cross-projection
of a speaker’s energy onto the bases of other speakers.shbibé expected since
the bases are purely spectral representations and arerthnsteorthogonal. The
application of sparse contraints alleviates the problersotne extent by encour-
aging activations to be concentrated on a small number @&sbiast further work
is required to optimise the number of basis dimensions, dhegatution length and
sparseness constraints to reduce cross projection and hmepoove performance.
Future work should include an analysis of different spealkases to detect speakers
with multiple models and the full integration of CNSC intoeyular speaker di-
arization framework. This should include a thorough stuidhe impact of overlap
on speaker diarization.
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