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ABSTRACT

In this paper we present Saliency Moments, a new, holistic
descriptor for image recognition inspired by two biological
vision principles: the gist perception and the selective visual
attention. While traditional image features extract either lo-
cal or global discriminative properties from the visual con-
tent, we use a hybrid approach that exploits some coarsely
localized information, i.e. the salient regions shape and con-
tours, to build a global, low-dimensional image signature.
Results show that this new type of image description out-
performs the traditional global features on scene and object
categorization, for a variety of challenging datasets. More-
over, we show that, when combined with other existing de-
scriptors (SIFT, Color Moments, Wavelet Feature and Edge
Histogram), the saliency-based features provide complemen-
tary information, improving the precision of a retrieval sys-
tem we build for the TRECVID 2010 [31] dataset.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; 1.4.7 [Artificial Intelligence]: Scene
Analysis

Keywords

Image Indexing, Scene Recognition, Feature Extraction, Vi-
sual Attention, Gist, Saliency

1. INTRODUCTION

Automatic recognition of image category has been ex-
tensively studied to identify both local concepts (“What is
this?”) and scene-level concepts (“Where are we?”) in vi-
sual data. The general aim is to build a model that detects
the presence of a semantic concept given a low-dimensional
description of the image input, namely a feature vector. De-
spite from the advances in the field, human vision systems
still outperform their computer-based counterparts: one of
the crucial elements for the development of effective image

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICMR 11, April 17-20, Trento, Italy

Copyright (©2011 ACM 978-1-4503-0336-1/11/04 ...$10.00.

Bernard Merialdo
EURECOM, Sophia Antipolis
2229 route des crétes
Sophia-Antipolis
merialdo@eurecom.fr

256x256

Figure 1: (a) Saliency distribution can be seen as
a coarse-resolution representation of the image lay-
out; (b) Multi-resolution saliency represents differ-
ent level of details in visual attentional selection.

categorization frameworks still remains the informativeness
of the descriptors used for categorization. Biological visual
systems can be a useful source of inspiration: by analyzing
how humans understand the real word scenes and objects,
we can build more discriminative image features.

In the image recognition literature we can find two opposite
approaches for feature extraction:

(1) Local Analysis: here, local interest points are statisti-
cally described and then grouped into a single feature vector.
Relevant regions need to be parsed from the image and a de-
tailed object analysis is performed, achieving a very precise
model of the visual input.

(2) Global Analysis: general properties of the image are
summarized into a single descriptor without requiring seg-
mentation, interest point detection or grouping operations;
this class of descriptors is computationally efficient and gen-
erally low-dimensional.

In this paper we propose a new, biologically plausible, global
feature for content representation that stands in an interme-



diate point between the mentioned approaches. Our hybrid
technique is inspired by the visual perception theory: in
particular, we explore two processes of the visual cortex,
the (local) selective visual attention and the (global) “gist”
perception for scene recognition. The first refers to the fact
that the human eye, when recognizing the content of a scene,
focuses on a subset of selected salient regions that attract
its attention (local process). Local analysis algorithms [10,
13, 1] have been proposed to model such behavior in using
a computational approach. Generally, they highlight such
regions in a saliency map, a matrix with higher pixel values
corresponding to perceptually salient image regions. On the
other hand, various studies [20, 23] proved that the brain
is able to recognize images under very brief exposures (less
than 100 ms), gathering a coarse representation of the image
contours and structures: the gist of the scene. What does
the gist contain? Various global image descriptors have been
proposed modeling such a low-resolution, holistic summa-
rization of the image spatial layouts and components (e.g.
spectrum-based [22], texture-based[26]). Even if both these
two aspects of visual perception have inspired computational
models for image understanding, the interaction between the
two has been rarely explored.

Given these observations, we build an image signature, called
Saliency Moments, that embeds some locally-parsed infor-
mation, i.e. the salient regions and objects in the scene,
in a holistic representation of the scene. This is achieved
by abstracting the salient region shape as a whole for a
global, gist-based', discriminative description of the image.
In order to ensure computational efficiency, we choose a
frequency-based light-weight algorithm [11] for the extrac-
tion of the saliency distribution and perform the image sig-
nature construction via spectral sampling (directly in the
Fourier domain) and higher order statistics.

The final hybrid descriptor takes advantage of the discrim-
inative power of a local analysis while keeping a low di-
mensionality and fast computation. Moreover, the key as-
pect of our descriptor is that saliency is a new source of
discriminative information compared to traditional features
for image categorization (e.g. color and edge distribution).
Therefore, when we combine Saliency Moments with exist-
ing local and global descriptors for Content Based Image
Retrieval (CBIR), we add complementary, meaningful infor-
mation that improves the overall performances of the sys-
tem.

We test the effectiveness of Saliency Moments in a variety
of diverse datasets for scene (indoor and outdoor) and ob-
ject recognition. A Support Vector Machine (SVM)-based
learning framework is built to evaluate and compare our new
feature with many existing global descriptors for content-
based image and video retrieval, including Torralba’s Gist
descriptor. Results show that introducing the visual atten-
tion element into a global descriptor improves the classifica-
tion performances for all the considered tasks. We also prove
the effectiveness of Saliency Moments in the non-trivial Se-
mantic Indexing Task for Trecvid 2010 [31], by combining it
with a set of traditional image features in a complete CBIR
system.

The remainder of this paper is organized as follows: in Sec.
2 we describe the related work in both computational vi-

'In this paper we will use “gist” to identify a coarse rep-
resentation of the image and “Gist” to refer to Torralba’s
descriptor in [22]

sual attention and image recognition; in Sec. 3 we motivate
the choice of using visual saliency as a holistic image sig-
nature, presenting related visual perception theories; Sec. 4
outlines the technical details of our implementation and fi-
nally, in Sec. 5 results and comparisons between different
descriptors are presented.

2. RELATED WORK

Based on the nature of the feature used (local/global) for
the categorization system, we can divide the image recogni-
tion techniques in two main subsets: bottom-up and global
approaches.

Bottom-up approaches build an image description by group-
ing local analyisis of corners and points of interest. The
general approach here is to learn a visual dictionary from
the set of keypoints, which are described with robust local
features [2, 17, 18]. In [6], a K-means algorithm is used
to build a vocabulary of n visual words, corresponding to
the bins of a n-dimensional histogram that collect the num-
ber of points in the image that can be approximated by
each visual word. Similar to this approach, Jegou et al in
[14] compute for each point the element-by-element distance
with the closest visual word. In [16], a region-based bag-of-
feature model is proposed for scene and object recognition.
Despite their effectiveness for description tasks, the major
drawback of these approaches is their high computational
cost. On the other hand, global approaches for scene recog-
nition aim at identifying the entire shape of the scene, by
gathering a general representation of the image structures
and characteristics. Common low-level global features sum-
marize image statistics such as the color distribution [32]
[12], the texture variations [27] or the edge distribution [36].
More sophisticated biologically inspired holistic descriptors
have also been proposed, inspired by the gist perception of
the scene (see Section 3 for a detailed explanation). The
general approach here is to synthesize in a holistic feature
the principal color and layout components of the image: for
example, Biederman’s “geons” [3] represent the image as a
set of colored, very simple shapes. Similarly, Torralba et al
gather the scene fingerprint in a global descriptor (the Gist
descriptor) based on energy spectrum principal component
analysis [22]. Another example can be found in [26], where
a set of texture descriptors is used for scene recognition.
Even if global descriptors are generally low dimensional and
fast to compute, they represent a general description of the
image and therefore they are not transformation invariant,
which leads to a weaker discriminative power.

A common aspect of all the previous methods is that, when
computing the feature, they assume that every location in
the image carries an equally important amount of informa-
tion about its content. However, some regions in the image
are more informative for the human eye. As a matter of
fact, when understanding at a scene, the human attention
is directed to a small set of salient regions that generally
cluster around high-contrast regions and image singulari-
ties. Various attention-based computational models have
been proposed emulating the human way of parsing the vi-
sual space, either frequency-based [1, 11] or color/texture
based [10, 13] . Generally they rely on a local analysis to
automatically highlight in a visual saliency map perceptu-
ally relevant regions, e.g. areas where the image shows high
contrast or statistical singularities (see Fig. 1(a) for visual
examples).



Visual attention models have been recently used in a few
studies showing the relevance of saliency in local and global
recognition approaches. Mainly, visual attention informa-
tion has been used to improve the bottom-up local feature
extraction. In [35] Walther et al. show that object recogni-
tion performances are improved by extracting keypoints in
subregions corresponding to salient proto-objects: a similar
approach is used by Lowe et al in [8] for a mobile robot vi-
sion system. Saliency information is also used by Moosman
et al in [19] to sample image subwindows and classify image
patches for object recognition.

On the other hand, visual attention information has been
rarely explored for global image description and recognition.
However, we can find attempts of fusing holistic data with
visual attention outside the CBIR context: Torralba et al in
[34] combine the gist information with the local saliency map
to perform object search and detection. Visual attention fea-
tures have been used for mobile robotics scene recognition in
[30], where a low dimensional feature vector is used to rep-
resent each feature map extracted from orientation, color
and intensity channel. In this paper, we evaluate the con-
tribution of adding locally-extracted saliency information in
a global feature for image recognition and retrieval. Follow-
ing the idea that the gist of the scene is not a pre-attentive
task (see Sec. 3 for further explanations), we build a robust
global feature based on a low dimensional representation of
the shape of the salient region.

3. SALIENCY AS A HOLISTIC SIGNATURE
OF THE IMAGE

The use of saliency as a gist-based image fingerprint is
motivated by the visual perception theory: how do we pro-
cess the information coming from the visual space?

A plausible answer can be found in [20]: the human brain
synthesizes the image globally before understanding the lo-
cal details (i.e. it sees the “forest before seeing the trees”).
According to this model, Oliva and Schyns in [28] showed
that the visual information is organized in a set of spatial fre-
quencies that correspond to different resolutions and levels
of detail of the visual space. When first looking at a scene,
we perceive the holistic, most coarse-grained representation
of the image, which is enough for the human brain to cat-
egorize the visual space after a very brief exposure (100ms
or below). In this phase, we do not rely on segmentation
or local analysis operations but we gather the meaningful
information into a low-resolution gist of the scene. Accord-
ing to the definition of gist, such “holistic envelope” should
represent an “impoverished version of the principal contours
and textures” [23].

On the other hand, a well-studied aspect of the human visual
perception is the selective visual attention, i.e. the process
by which the human brain analyses a scene by gathering a
reduced but sufficient amount of information from the mul-
tidimensional visual space. As a matter of fact, the human
eye, when exploring a scene, focuses on a small number of
salient regions, i.e. very informative areas that support the
long-term recognition process.

Traditionally (see, for example [9]) visual attention is consid-
ered to be independent and posterior to the gist perception.
As pointed out in [30], apparently gist and saliency rely on
opposite procedures, as the first one is a global, fast sum-
mary of the image structures, while visual attention requires
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Figure 2: Interaction of attention and gist in vi-

sual perception theories: a multi-resolution input
is parsed to obtain salient frequencies when gather-
ing the spatial envelope of the scene. Our proposed
implementation: a multi-resolution saliency map is
extracted and summarized into a global signature.

slow local analysis to highlight image singularities. Never-
theless, the human cortex bases the visual input understand-
ing on both these components, and some perception-based
experiments proved the interaction between these two ele-
ments for rapid scene analysis. These studies (see [23] [33]
[5]) report that, similar to the traditional attentional per-
ception, scene understanding under brief exposures involves
an attentional stage that selects different frequencies from
different spatial scales (see figure 2 for a visual explanation).
Following these theories, there would be an early attentional
selection before the gist perception that contributes to the
recognition process.

Does a chromatic component come into the picture under
brief exposures? different studies showed that color can
play an important role in the rapid recognition of object
and scenes. According to these studies, conducted by Oliva
et al in [21] and by Castelhano et al in [4], the human brain,
when gathering the gist of an image, synthesizes and uses
the color information for the classification task.

Given all these observations, we want to test the importance
of the visual attention component in the gist perception us-
ing a computational approach that:

(1) Represents the input as a multi-resolution visual sig-
nal, according to the spatial frequencies organization of the
visual information mentioned in [28].

(2) Extracts the saliency distribution for every spatial
scale considered, simulating the pre-gist attentional stage.

(3) Analyzes the visual saliency as a whole, summarizing
the previous analysis in a gist-based image signature.

(4) Explores the role of the chromatic component by
adding a coarse representation of the locally dominant color
information.

4. SALIENCY MOMENTS

We therefore build our hybrid descriptor by implementing
the four requirements outlined in the previous Section (see
Fig. 3 for a visual explanation of our algorithm).

The idea is to use the saliency shape (the ensemble of con-
tours of the salient objects and regions in a digital image) as
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A low dimensional image

signature is build by multiplying the spectrum with Gabor filters and then taking their average value over

non-overlapping windows, the standard deviation and

an image fingerprint, in order to represent the visual atten-
tion information in a gist-based image signature. Despite
from its local nature, using the saliency maps as a signature
of the scene does not contrast with the definition of spatial
envelope seen in [23]. In fact, the saliency map is a grayscale
matrix, with higher pixel values that cluster around strong
edges or object of interest, outlining, as a whole, a coarse
representation of the spatial composition of the scene. More-
over, Fig. 1 shows that different objects and scenes generate
different saliency maps: the saliency shape can be seen as
a discriminative source of information for image categoriza-
tion.

According to point (1) and (2), we downsample the image at
different scales and compute a multi-resolution map of the
perceptually relevant areas (implementation details can be
found Sec. 4.1). We use for this purpose a Fourier-domain
saliency detector proposed in [11] that highlights different
salient shapes for different resolutions (see Fig.1(b)).

We then propose an approach for the global image signature
construction (requirement (3)): we decompose the signal in
what we call the “saliency components”, obtained by sam-
pling the spectral maps directly in the frequency domain.
We then extract various statistics from these samples, build-
ing an image index that we call “Saliency Moments” (SM)
(see Sec 4.2 for details).

Finally, following requirement (4), we describe (Sec. 4.3)

the skewness.

a color-opponents based chromatic feature that is merged
with the previous index to build the Color Saliency Moments
(CSM) feature.

4.1 Multi-Resolution Visual Attention

In this Section we show how visual attention information
is extracted from the image. Of the many computational
models available in literature, we chose to compute the vi-
sual attention map with a spectrum-based approach pre-
sented in [11] by Hou et al. The Spectral Residual technique
aims to detect coarse salient regions using a fast, straight-
forward approach, that does not require parameter selec-
tion or multi-channel features weighting, and it is therefore
suitable for being the basic component of our global fea-
ture. This method exploits the properties of the amplitude
A(f=, fy) of the Fourier Spectrum, observing that statistical
singularities in the frequency domain correspond to salient
proto-objects in the pixel domain.

The following steps are computed on the input image:

1. the luminance channel of the input image I is down-
sized to a ¢ X ¢ coarser resolution;

2. the log-spectrum L(fz, fy) = log(A(f=z, fy)) and its
smoothed version S(fz, fy) = L(fz, fy) * hn, where
hy is an average filter of size n, are computed on the
grayscale matrix;



3. the log spectral residual Lr(fz, fy) = L(fz, fy)—S(fz, fy)

is then obtained by subtracting the two signals com-
puted.?

4. The linear version of the spectral residual

R(fz, fy) = exp(Lr(fz, fy) + P(fa, fy)) (1)

is found by joining Lr(fs, fy) with its original phase

5. Finally, the pixel domain saliency map is the result of
the Inverse Fourier Transform (IFT) on R(fz, fy).

As pointed out in [11], spectral residual can detect salient
regions under various scales of the image, depending on the
size selected in the resizing preprocessing step. Different spa-
tial scales lead to different saliency maps, detecting proto-
objects with a level of details that increase with the resolu-
tion chosen, as shown in Fig.1 (b).

In our global feature, we computed the spectral residual
R(f=z, fy): on three i x i rescaled versions of the input images
(i = 64,128,256), simulating the variety of possible salient
spatial frequencies (and salient shapes), from coarse to fine,
available to the observer when recognizing a scene.

4.2 The Image Signature: Saliency Compo-
nents and Saliency Moments

We now construct a coarse representation of the image
based on the salient spectrum. We use as input of this step
the Fourier-transformed Saliency Map, in Eq. (1), we pro-
cess it with a Gabor wavelet in the frequency domain; finally,
we compute average and higher order statistics in the pixel
domain.

In fact, R(f, fy): is a very high dimensional signal (86016
variables: each component of the 3d-matrix R(fz, fy)i, for
all values of 7) that we want to use as a whole to discriminate
different image categories for the scene and object recogni-
tion task. We want to reduce the dimensionality of such
information, finding a smaller set of variables that allow to
preserve the variation between different image categories.

However, as shown by Torralba et al in [22], traditional tech-
niques for dimensionality reduction, like Principal Compo-
nent Analysis, do not estimate the most informative compo-

nents reliably, when applied on such spectral, high-dimensional

signals. We therefore use a Gabor filter-based approach,
proposed in [22] for the power spectrum dimensionality re-
duction, that approximates, as shown in [15] , and [29] , the
behavior of the primary visual cortex cells receptive fields.

Oy peopeEsdPlieesd " E oI puAISEs: Here, we analyze the
saliency distribution directly in the frequency domain
with a set of oriented Gabor filters that are described
by the function:

7’;?3 ~Uz o) ~Uxtio)?
G(fz7 fy)i,e =e 7 (6 Tz +e o ) (2)

2 As a matter of fact, it is showed that the log-spectra of dif-
ferent images are described by frequency-amplitude curves
with very similar shapes. S(fs, fy) represents therefore an
approximation of such general behavior of the log spectra. If
all the natural images share a general log-spectrum behavior,
the spectral elements that produce discrimination between
different images, and that therefore imply visual attention,
can be found in the local peaks in the curve that deviate
from such general trend.

Figure 4: sampling the

Saliency components:
frequency-domain spectral residual with oriented
Gabor filters we obtain different views of the
saliency map in the pixel domain

where fo is the central frequency chosen to be 0.3 cy-
cles/pixel, and o,,0, are filter parameters. As R; is
already a multi-resolution signal, and saliency is al-
ready created at different scales, the same central fre-
quency fo is selected for each scale i. For each band i,
we considered 8 orientations by changing the value of
0 to rotate the components in equation (2).

2. Spectral Sampling: We have therefore a set of 24
(8 orientations x 3 resolutions) filters that sample the
spectral residual in the following way:

F(fzafy)iﬁ:R(fZafy)i'G(fzvfy)iﬂ (3)

3. Saliency Components: We obtain the equivalent of
the previously computed samples in the pixel domain,
by applying the IFT on the samples F(fz, fy)i,0, and
we define them M (x,y): 9. As shown in Fig.4, they
represent fundamental, highly informative components
of the saliency shape.

4. Averaging Operations: We now want to summa-
rize, in a shorter index, meaningful information about
the spatial distribution of such saliency components.
We use a simple approach suggested in [30] for its
biological plausibility: the local averaging. Each of
the 24 saliency components is divided into a 16 non-
overlapping sub-regions. The average image value over
every image block is then taken and stored in the im-
age feature vector, as in equation (4):

(k+1)i (1+1)i
gl -1

1.
Vi]fél:TGﬁ Z Z M(z,y)ie (4)

x:%ik y:iil

where k,l represent respectively the horizontal and
vertical block indexes, and ¢ X ¢ is the saliency compo-
nent resolution. We therefore obtain a 384-dimensional
(16 blocks x 24 components) image index.



5. Saliency Moments: In order to make the feature
more robust, and similar to the Color Moments feature
[32], we interpret each saliency component as a proba-
bility distribution and calculate 2"¢ and 3"¢ moment,
namely standard deviation and skewness, on the whole
matrix M(z,y)i,0, for all the ¢ and 6 considered. The
result is a 48-dimensional vector storing the higher or-
der statistics, that we concatenate with the previously
computed index Vikél obtaining a descriptor composed

of 432 elements: the SM descriptor.

4.3 The Color Contribution

The proposed approach, until now, receives as input a

single-channel, grayscale image and builds a descriptor based
on the luminance values only.
We add the chromatic information in our descriptor by con-
catenating a summarized representation of the dominant col-
ors in the image, following an approach similar to the one
in [32]:

1. We transform the RGB input image (at resolution i=128)
into an opponents-based color space, namely the L*A*B*.

The choice of this color space is again due to its bio-
logical plausibility: the LAB system is built to map
the perceptual distances between colors, as explained
extensively in [21]. Moreover, the channels A and B
represent colors along the green-red and yellow-blue
opponents, similarly to how the visual cortex gathers
the chromatic information.

2. We perform averaging operations over subwindows ob-
tained from the A and B channels.

3. Similar to the SM approach, we then calculate 2" and
37 order statistics on the global image matrix.

5. EXPERIMENTAL VALIDATION

In this Section we present results on recognition for three
different datasets: outdoor scene categories [22], indoor scenes
[25], and Caltech-101 [7]. We compare the descriptor pro-
posed in this paper with the most widely used global features
for CBIR. In particular, we consider the Gist descriptor [22],
a wavelet-based texture proposed by Papageorgiou et al in
[24], the Color Moments feature [32] and an Edge-Histogram
based descriptor [36]. We also experiment with the two dif-
ferent versions of our image signature to test the influence
of color opponents for scene and object recognition, namely
the SM and CSM. For every proposed features and datasets,
a one-versus-all SVM-based model is built to separate each
class from the others, using a polynomial kernel of degree 2.
The outputs are then combined and the predicted label is
chosen as the one corresponding to the classifier with higher
score.

Moreover, we show the effectiveness of SM for CBIR, by em-
bedding it in a high-level feature extraction system tested on
the TRECVID 2010 [31] dataset. In particular, we present
results for the Light Semantic Indexing Task, where the re-
trieval system is required to produce a ranked list of relevant
shots for each of the ten semantic concepts proposed. For
this task, we build a framework based on a pool of four visual
features (Sift[17], Color Moments [32], a Wavelet Feature
[27], and the MPEG7 Edge histogram [36]); a set of clas-
sifiers is trained to predict the presence of a concept based
on each feature, then the outputs are linearly combined to
obtain the concept score for each shot. We then add to the

system the contribution of SM by linear fusion, and compute
the improvement in terms of mean average precision.

5.1 Outdoor Scene Categories

The first dataset considered has been used in [22] to eval-

uate the performances of the Gist descriptor and to describe
the properties of the spatial envelope. It is composed of 8
categories of natural scenes and a total of 2600 color im-
ages, with a resolution of 256x256 pixels. For each feature,
we trained the classifier on 100 images per class and used
the rest for testing.
Results in Fig. 5(a) show that, despite its lower dimensional-
ity, our visual attention-based feature outperforms the Gist
descriptor, and that adding a coarse representation of the
dominant colors further improves the prediction accuracy.

5.2 Indoor Scene Categories

The second group of experiments is based on a dataset

that has been first proposed in [25] as a new, unique database
for indoor scene recognition. It spans 67 categories with
around 15620 images of various resolutions. For this set of
experiments, we follow the approach outlined in [25]: we
use 20 images for testing and the remaining for training. As
evaluation measure, we present the classification accuracy
per class, and the standard average multiclass prediction
accuracy.
Despite the challenging task, results shown in Fig.5(b) con-
firm the discriminative power of saliency for image descrip-
tion: the CSM feature brings an improvement of 33% over
the Gist descriptor, and some good results for some classes
(corridor - 66% of correctly retrieved results, greenhouse -
70 %, pantry - 60%).

5.3 Caltech-101

based We test here the effectiveness of our approach for
object recognition on the Caltech 101 database, a widely-
used dataset that contains images of various resolutions la-
beled with 101 different semantic categories. Despite from
its limited amount of highly cluttered images and its lack in
pose variation, we chose this database because it is one of
the most diverse multi-object set of labeled images publicly
available.
For this set of tests, we follow the experimental approach
explained for the indoor scene images (20 images per class
for test, the rest for training), obtaining again very good re-
sults on the average accuracy with the SM (435 % compared
to the Gist descriptor and +21% compared to the edge his-
togram feature). Fig. 5(c) shows the classification results
for the proposed set of descriptors.

5.4 TRECVID 2010

We show here the results for the TRECVID 2010 Semantic
indexing task. The development dataset for 2010 contains
3200 Internet Archive videos based on which we generate
ten ranked lists, one for each concept required for the light
task. We split the IACC.1.tv10.training set in 2 subset, we
train on 1617 videos and tested on 1616. Results in fig 5(d-e)
show the per concepts average precision and the MAP. By
adding new sources of information, the Saliency Moments
and the Saliency Color Moments, we provide good comple-
mentary knowledge on the image representation. Therefore,
by combining the concept score of the five features with the
saliency-based classifiers output we improve significantly the
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Figure 5: Performances on the test set for the dif-
ferent descriptors. Accuracy in scene recognition
on the (a) outdoor scene dataset, (b) indoor scene
dataset and in object recognition on the (c) Caltech-
101. (d) mean average precision (MAP) and (e)
per-concept average precision (AP) for TRECVID
2010: we show the improvement brought by adding
Saliency Moments to the pool of visual descriptors

performances of the final retrieval framework.

6. CONCLUSIONS AND FUTURE WORKS

When we look at a scene, we focus on a limited num-

ber of salient details based on which we recognize the image
category. At the same time, the human brain is said to
quickly understand the semantic scene category after brief
exposures, by gathering a global representation of the im-
age contours and layouts: the gist of the image. What does
this gist contain? We proposed a holistic image feature, the
Saliency Moments feature, based on a low dimensional repre-
sentation of the saliency shape, i.e. the ensemble of contours
of the salient objects and regions in a digital image. We also
tested the importance of color in scene recognition under
brief exposures by merging a coarse description of the dom-
inant chromatic component of the scene. Results show that
saliency is actually an informative characteristic for global
description and a complementary source of information com-
pared to traditional visual features: it is therefore a promis-
ing cue for content based multimedia retrieval.
Despite from the spectral sampling and the moments extrac-
tion, Saliency Moments is still quite high-dimensional com-
pared to traditional low-level features (e.g. Color Moments
and Wavelet Feature). Therefore, part of the future work
will focus on more effective dimensionality reduction tech-
niques. Another related topic to be explored is the chromatic
component. By adding a simple, low dimensional represen-
tation of the dominant color we achieved very good perfor-
mances for scene recognition, while the CSM in the Caltech
101 dataset performs slightly worse than SM. The proposed
color contribution that we merge with our saliency-based
descriptor is just one of the many biologically-plausible pos-
sibilities, and our future research will study how to relate
the dominant color extraction with the visual attention in-
formation. Lastly, we will try to compare the effectiveness of
the different saliency detectors when embedded in a global
image signature for scene and object recognition.
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