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Abstract

Traditional window-based color indexing techniques
have been widely used in image analysis and retrieval sys-
tems. In the existing approaches, all the image regions are
treated with equal importance. However, some image areas
carry more information about their content (e.g. the scene
foreground). The human visual system bases indeed the
categorization process on such set of perceptually salient
region. Therefore, in order to improve the discriminative
abilities of the color features for image recognition, higher
importance should be given to the chromatic characteristics
of more informative windows. In this paper, we present an
informativeness-aware color descriptor based on the Color
Moments feature [17]. We first define a saliency-based mea-
sure to quantify the amount of information carried by each
image window; we then change the window-based CM fea-
ture according to the computed local informativeness. Fi-
nally, we show that this new hybrid feature outperforms
the traditional Color Moments in a variety of challeng-
ing dataset for scene categorization, object recognition and
video retrieval.

1 Introduction

Image recognition frameworks rely on low level descrip-
tions of visual content to detect concepts and objects in dig-
ital images. Generally this is achieved by (1) reducing the
redundant amount of visual information to a small-sized nu-
merical description, namely an image feature, and (2) learn-
ing a model for scene and object recognition, based on sim-
ilarities in the feature space. Most of the Content Based Im-
age and video Retrieval (CBIR) techniques work on these
two steps to search for visual content in large databases.
One of the main bottlenecks for the development of such
systems is the discriminative power of the low-level fea-
tures used for stage (1), i.e. how well they represent the
visual input.
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Figure 1. Color indexing issue: even if the
two images depict the same thing and the
main object (the canoe) has the same color,
the two backgrounds vary and the feature
vectors are completely different.

Among the various global (frequency based [10], edge-
based [21], texture-based [12]) and local (for example, SIFT
[8]) indexing techniques, color based features play an im-
portant role in image recognition and retrieval. The most
intuitive representation of the chromatic information, the
color histogram, has been proved to be an effective way to
describe images [18, 4]. Following this idea, a faster and
more robust descriptor has been proposed in [17], where
the first three moments of the color distribution are stored
in the Color Moments (CM) feature. Generally, in CBIR,
the CM is used in its localized version, where the index is
built by dividing the image into an n×n grid and collecting
the moments of the resulting image sub-windows.
Despite the proved effectiveness of chromatic information
for object and concept recognition, two main elements can
cause the decrease of their discriminative ability. First, im-
ages semantically dissimilar (i.e. depicting completely dif-
ferent concepts) might have similar color composition. This
first issue can be partially solved by combining the color in-
dex with other sources of visual description (texture, edge,
. . . ) in a complete CBIR system. Second, traditional color
analysis does not take into account the fact that some re-
gions (e.g. the foreground) could contain more information
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Figure 2. The effect of adding saliency measures in the CM computation: more importance is given
to the salient (more informative) regions color components.

than others. Treating all image windows with equal impor-
tance might cause inconsistencies in color description, es-
pecially when the amount of informative regions is small
compared to the less important regions, i.e. when the main
object is small compared to the background (an example is
shown in Fig 1).
In this paper we propose a solution for this second issue; the
main observation is that we can improve the discriminative
power (partly removing the mentioned inconsistencies) of
the color features by collecting the chromatic components
of the informative subregions only. An attempt of weight-
ing image areas for color indexing was proposed in [16],
where users were required to indicate a value for each sub-
region representing its importance for image matching. An-
other solution to this problem was brought by Sebe et al. in
[13], where CM vectors were extracted from image patches
surrounding interest points. These works show that the in-
formativeness of image regions can be a meaningful way to
improve color-based image retrieval.
How can we automatically measure the image sub-windows
importance and build a light and fast informativeness-aware
color index? The idea here is to tackle this issue by fol-
lowing the visual attention principles [2]. The human eye,
when exploring a scene, gets attracted by a subset of se-
lected salient regions, very informative areas that support
the image recognition process. The features coming from
such regions are more important than the others, and scene
identification is mainly based on them. Saliency informa-
tion has indeed been previously used in image analysis to
boost recognition processes, e.g. to speed up object catego-
rization based on local features [20] or coupled with global
features to help the object detection [19].
Given the relationship between the amount of information
and the probability of a region to attract our attention, in
this paper we present a means of measuring image areas in-
formativeness based on the local saliency distribution. We
then use it to improve the Color Moments feature for im-

age recognition and retrieval, building a new descriptor that
we call Saliency-Aware Color Moments (SACM). This re-
sults in a low-dimensional representation of the image that
allows meaningful/salient regions to be taken more into ac-
count when performing color-based matching and retrieval
(see Fig. 2 for a visual explanation).
With our approach we try therefore to add some localized
information (i.e. the saliency distribution) in a typically
global feature, without involving any parameter tuning,
learning or image segmentation. With a fast pre-processing
step, we change the localized CM values according to the
amount of information carried by each window, that we cal-
culate with easy operations. Our experiments show that
with SACM we achieve a more effective color-based de-
scription of the visual content compared to traditional Color
Moments, for both the scene/object recognition (using Tor-
ralba’s outdoor dataset [10] and Caltech-101 database [3])
and the video retrieval (data from Trecvid 2010) tasks.

2 The Color Moments Feature

The traditional window-based Color Moments [17] is
one of the most widely used chromatic descriptors in image
analysis and retrieval. It is based on the statistical analysis
of the distribution of pixel values at given locations.
First, an image I ∈ RX×Y is divided into a set of rectangu-
lar image subregions

Akl ∈ RM×N

where k = 1 . . . X
M and l = 1 . . . Y

N are the region indexes
and M × N is the window resolution.
For each window Akl the color feature in [17] extracts color
information and builds the window index

cm
(c)
kl = {μkl, σkl, ηkl} (1)

where μkl represents the average pixel value on the channel
c = {r, g, b} over the subregion Akl, and σkl, ηkl corre-



spond to the second and third moment of the distribution
drawn from the pixel values, namely standard deviation and
skewness. Finally, as shown in Fig.3 , the feature describes
the color components of an image by gathering the chro-
matic information of each image subregion in a global im-
age signature cm(I) = {cm(c)

kl }.

3 Saliency-Aware Color Moments

In its original framework, the CM feature is homo-
geneously calculated over the whole set of image re-
gions, without considering that not all the sub-windows are
equally important. As we know from information theory
[14], however, some image regions carry more information
than others, based on the amount of contrast in color, in-
tensity, orientation, etc. Various studies (e.g. [9]) showed
that region informativeness and visual attention are strictly
related. The salient regions are, in fact, the image areas that
attract the human eye and based on which the human visual
system recognizes objects and scenes. Various computa-
tional models [5, 7, 1] have been built that highlight such
regions in a saliency map, a matrix that represents the dis-
tribution of the saliency over the image surface, or, equiv-
alently, the probability that a specific location attracts the
visual attention of an observer, with higher values where
the image shows high contrasts or statistical singularities.
The main idea (see Fig.3) is that we can quantify the in-
formativeness of an image sub-window by calculating the
amount of saliency in it. The more the saliency concentrated
in its rectangular area, the more the information carried by
such sub-window. Having calculated each sub-window im-
portance, a scalar value that goes from 0 (not informative)
to 1 (very informative), we can then use it to weigh its corre-
sponding CM index. In this way, less informative regions do
not give an important contribution in the final feature vec-
tor, and the description is mainly based on the chromatic
components of the salient objects.
In the remainder of this section we explain in details our
proposed approach for color indexing. A window-based
informativeness measure is proposed in Sec 3.1, so that,
for each rectangular area described by CM, we also have
a value that quantifies the information carried. Finally, in
Sec 3.2 the two analysis are combined to build a Saliency-
Aware Color Moments feature.

3.1 Image Regions Informativeness

How can we extract the importance of an image region
using a quick computational approach? As said, such value
should represent the amount of salient regions in each image
window, in order to represent the amount of information
carried.
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Figure 3. SACM Algorithm: CM are ex-
tracted from each of the M ×N windows and
weighted by the informativeness value

From the previous subdivision, we have a set of M × N
rectangular region Akl, and we need to find a function

g : RM×N → R

that maps the image window in a scalar value representing
its informativeness, by exploiting the local saliency infor-
mation.
We know that the saliency distribution can be obtained by
using visual attention algorithms. No matter the approach
used, the output of such models is a saliency map S(I),
a matrix with higher pixel values corresponding to higher
probability of the pixel to fall into the visual attention space.
Our proposed procedure is as follows (see Fig. 3 for a vi-

sual explanation):

1. From the image I , we obtain a X × Y saliency map
S(I) (to simplify, we assume same dimension for input
image and output map).

2. We can then find the window-based saliency distri-
bution by dividing S(I) into subregions S(Akl) =
{sij}, being i = Mk, . . . , Mk + M − 1, and
j = Nl, . . . , Nl + N − 1 the pixel indexes inside
the saliency sub-window, whose dimension is again
M × N .

3. Given the windowed saliency map S(Akl), the infor-
mativeness γkl of the rectangular area Akl can be ob-
tained by averaging its value over the sub-window sur-
face:

γkl = g(Akl) =
∑M

i=1

∑N

j=1
sij

M×N

The function g will have higher values when the im-
age window considered contains more salient regions
(higher values in the map), and lower values when the
window considered carries little information.



3.2 Adding Informativeness to the Color
Feature

We now have a window-based color analysis cmkl and
a window-based informativeness measure γkl. How do we
integrate these two sources of information in a meaningful
feature for image recognition and retrieval?
Our aim is to extract from the image the color information
generated mostly from its salient regions (see Fig. 2). A
straightforward way to obtain this effect is to weigh the
window-based color statistics with the scalar value repre-
senting the amount of information carried by that window
(the value of function g, as explained in the previous sec-
tion). We therefore change Eq. 1 in order to “switch off”
the less important windows, obtaining a new set of compo-
nents for each Akl:

sacm
(I)
kl = {μkl · γkl, σkl, ηkl} (2)

By weighting the first moment of each window, we modu-
late its average color brightness based on the local informa-
tiveness value, allowing salient regions to pop-out from the
image background and mitigating the effect of less impor-
tant regions.
Finally, we gather in a single descriptor the region-based in-
dexes by concatenating them in a feature vector sacm(I) =
{sacm

(I)
kl } that we use as input for the recognition and re-

trieval systems.

4 Experiments

We validated the improvement brought by adding our
informativeness measure into a classical color indexing
technique, experimenting its effectiveness for scene recog-
nition, object recognition and video retrieval.

4.1 Experimental Setup

For our experiments, we divided each image (or
keyframe) into 25 rectangular subregions (k = 1, . . . , 5 and
l = 1, . . . , 5) and extract the CM feature from each of them.
In parallel, we extract the map containing the salient lo-
cations in the image, as shown in Sec 3. In order to en-
sure computational efficiency, we chose to compute the map
with the spectral residual method [6], which produces fast
saliency measures, perceptually comparable to the state of
the art methods. This method operates in the Fourier do-
main: by subtracting from the amplitude of the Fourier
Spectrum its smoothed version (see Fig 3), it highlights sta-
tistical singularities in the frequency domain, which corre-
spond to salient proto-objects in the pixel domain.
In Sec. 3.1 we assumed for simplicity that the map S(I) has

the same resolution X × Y as the input image. In practice,
for most of the saliency detection algorithm1, S ∈ RX′×Y ′

,
with X ′ < X and Y ′ < Y , therefore, having the same
number of subregions (the ratio between image and win-
dow resolution), the saliency distribution for each window
will be S(Akl) ∈ RM ′×N ′

, where M ′ < M and N ′ < N .
We tested our new descriptor and compare it with the Color
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Figure 4. SACM and CM: (a) accuracy on the
test set for the 8 scene categories dataset,
and for (b) Caltech-101, (c) Mean Average
Precision for the SIN task of TRECVID 2010

Moments feature on a variety of dataset and tasks:

• for the scene recognition task, we considered the out-
door scene categories database, introduced by Torralba

1For example, the Spectral Residual method in [6] gives saliency maps
at resolution 128 × 128 pixels.



CM SACM CM SACM CM SACM CM SACM
Motorbikes 100 100 brain 45.45 45.45 wrench 27.27 54.55 bass 10.00 10.00
minaret 100 100 windsor_chair 45.00 50.00 saxophone 26.32 31.58 garfield 5.56 5.56
Leopards 100 100 grand_piano 45.00 50.00 joshua_tree 26.32 31.58 water_lilly 5.00 5.00
Faces_easy 100 100 dolphin 45.00 35.00 gramophone 26.32 21.05 stapler 5.00 10.00
Faces 95 100 umbrella 42.11 57.89 butterfly 26.32 21.05 hedgehog 5.00 40.00
airplanes 90 95 buddha 42.11 36.84 pyramid 25.00 35.00 crocodile 5.00 10.00
pagoda 85.00 60.00 starfish 40.00 55.00 flamingo 25.00 30.00 chair 5.00 10.00
bonsai 75.00 65.00 scorpion 40.00 40.00 ewer 25.00 20.00 barrel 5.00 5.00
trilobite 72.22 83.33 revolver 40.00 46.67 dalmatian 25.00 15.00 wild_cat 0.00 0.00
pizza 70.00 65.00 lotus 40.00 30.00 stegosaurus 21.05 36.84 snoopy 0.00 0.00
sunflower 65.00 70.00 kangaroo 40.00 55.00 schooner 20.00 26.67 sea_horse 0.00 5.00
cellphone 63.16 63.16 inline_skate 36.84 47.37 okapi 20.00 25.00 scissors 0.00 11.11
accordion 63.16 47.37 electric_guitar 36.84 52.63 mandolin 20.00 40.00 platypus 0.00 5.00
watch 60.00 60.00 dollar_bill 36.84 47.37 llama 20.00 45.00 octopus 0.00 5.88
stop_sign 57.89 63.16 soccer_ball 35.71 42.86 lamp 20.00 15.00 mayfly 0.00 0.00
hawksbill 55.00 50.00 wheelchair 31.58 42.11 emu 20.00 15.00 lobster 0.00 0.00
menorah 52.94 64.71 euphonium 31.58 52.63 crab 15.79 15.79 gerenuk 0.00 5.00
ketch 52.63 63.16 camera 31.58 36.84 headphone 15.00 30.00 cup 0.00 0.00
helicopter 50.00 40.00 binocular 31.58 21.05 nautilus 13.33 20.00 crocodile_head 0.00 10.00
chandelier 50.00 60.00 strawberry 30.00 45.00 panda 10.53 15.79 ceiling_fan 0.00 10.53
rooster 47.37 57.89 ibis 30.00 20.00 ferry 10.53 21.05 cannon 0.00 0.00
metronome 47.37 63.16 elephant 30.00 35.00 rhino 10.00 15.00 brontosaurus 0.00 0.00
laptop 47.37 42.11 tick 27.78 22.22 pigeon 10.00 20.00 beaver 0.00 5.00
dragonfly 47.06 41.18 crayfish 27.78 22.22 flamingo_head 10.00 10.00 ant 0.00 0.00
yin_yang 46.67 53.33 cougar_face 27.78 27.78 cougar_body 10.00 5.00 anchor 0.00 0.00

Caltech 101 Per-Class Accuracy

Figure 5. Per class accuracy of CM and SACM
on the challenging Caltech-101 dataset

et al.in [10]. For both CM and SACM we setup a one-
versus-all SVM with polynomial kernel, that builds a
model for each class by separating one class from all
the others. The classifier parameters are estimated via
grid search on the training set. The outputs are then
combined and the predicted label is chosen as the one
corresponding to the classifier with higher score. Per-
formances are evaluated by calculating the per-class
and the average multi-class prediction accuracy, as
suggested in [11].

• for the object recognition task, we chose the widely
used Caltech 101 database [3]. The experimental setup
used for this dataset is the same as the one used for the
outdoor database.

• Moreover, we compare the effectiveness of CM and
SACM for video concept detection, testing the two
features in a Content Based Video Retrieval task. In
particular, we build a feature extraction system for the
TRECVID 2010 [15] dataset Light Semantic Indexing
Task. For this task, a set of videos (divided in shots)
and a list of ten semantic concepts are provided. The
retrieval system is required to produce, for each con-
cept c, a list of shots s ranked according to their rele-
vance with respect to the concept considered. The sys-
tem is based on a set of concept-specific binary SVM,
that are trained to predict the concept relevance for
each shot p(c|s), based on the color features (CM or
SACM) extracted. Performances are evaluated here in
terms of mean average precision.

4.2 Outdoor Scene Categories

We test our new color descriptor for scene recognition
using the outdoor scene database, that was first proposed in
[10] to prove the properties of the spatial envelope. It con-
tains 2600 RGB images with a fixed 256x256 resolution,
and it involves a total of 8 categories of natural scenes. As
suggested in [10], the multi-class classifier is trained with
100 images per class, while the rest is used for testing.
Figure 4.1(a) shows that boosting the color feature with
saliency measures actually improves the average accuracy
for outdoor scene recognition, with SACM that brings an
improvement of about 10% over the standard CM feature.

4.3 Caltech-101

For the object recognition task we evaluate the perfor-
mances of Saliency-Aware Color Moments on the widely
used Caltech 101 database. This is a very diverse and chal-
lenging dataset that spans 101 different semantic categories,
with about 40 to 800 images per class. For this set of exper-
iments, we follow the experimental setup in [11]: 20 images
for testing the rest for training. Fig. 5 shows the per-class
prediction performances for the 101 categories of the Cal-
tech database. Results show that by considering the color
of the main object only, SACM improves the color index-
ing performances for object recognition: as shown in Figure
4.1(b) the average classification accuracy improves of about
10%, when compared to the CM descriptor.

4.4 TRECVID 2010

The TRECVID dataset is divided in development videos
and test videos. Our system is based on the development
subset, which contains about 3200 Internet Archive videos.
The Semantic Indexing Light task involves the evaluation
of 10 different semantic concepts: for each of them we gen-
erate a list of ranked shots and evaluate the performances
of both CM ans SACM. We split the IACC.1.tv10.dev set
in 2 subsets, and we train the retrieval system 1617 videos
and test on 1616. We show in Figure 4.1(c) that the retrieval
performance of SACM is in average 10% better than CM,
with some peaks for concepts like Cityscape (+20 %) and
Boat Ship (+190%).

5 Conclusions, Limitations and Future Work

Color indexing techniques assume that every region
in the image carries an equally important amount of
information about its content. However, the human brain
recognizes object and scenes based on a selected subset of
very informative regions. Therefore, in a color feature used
for image categorization, more importance should be given



to the chromatic components coming from more informa-
tive regions. We therefore defined a way to measure the
importance of the image areas, observing that the amount
of saliency of an image subregion indicates how much
information is carried by such image portion. We then
combined this information with the Color Moments feature
extracted from each image area and built a saliency-aware
color index.
Our results show that, by adding this perception-based
measure, we improve the CM performances by 10 %
for all the tasks proposed in our experiments: scene
categorization, object recognition and concept detection
in TRECVID 2010 video dataset. This makes SACM a
suitable substitute of CM for (partly) color-based image
recognition and retrieval.
Despite from the embedding of localized information,
SACM remains a global feature, therefore, even if it is
low-dimensional and fast to compute, its major drawback
is the lack of transformation-invariance and discriminative
power compared to local features.
As mentioned in Sec. 3, the analysis in our paper relies on
a spectral saliency detector [6]. It was not in the aim of this
paper to compare different visual attention computational
models for color indexing. However, SACM performances
could be further improved by using more complex saliency
measures, e.g. the model proposed by Koch et al. in [5].
An idea from the future work comes from the observation
that, similar to Color Moments, many of the global de-
scriptors included in a CBIR systems are computed on a
window basis, in order to add some spatial constraint in the
holistic representation of the image. Therefore, a possible
extension of the work in this paper may involve the use
of our informativeness measure to boost other window-
based global features (e.g. the MPEG Edge histogram [21]).
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