
Browsing Online Music Catalogs in a Vehicle.

Connecting Automotive User Interfaces with the World Wide Web.

Stéphane Turlier
BMW Group Research and

Technology
Munich, Germany

Eurécom, Sophia-Antipolis,
France

stephane.turlier@bmw.de

Clemens Hahn
BMW Group Research and

Technology
Munich, Germany

Ulm University, Germany
clemens.hahn@bmw.de

Sascha Gebhardt
BMW Group Research and

Technology
Munich, Germany

University of Munich, Germany
sascha.gebhardt@bmw.de

ABSTRACT

The increasing amount of information available on the in-
ternet has raised a lot of challenges in terms of organization
of knowledge. In the domain of music indexing, the mul-
timedia research has produced valuable techniques to sort
content and compute similarity measures based on differ-
ent criteria from low-level features like acoustic properties
to high-dimensional data like folksonomies. On the other
hand, most of the recommender systems need a lot of user
interactions to produce suitable results. Those are major
drawbacks that prevent from integrating them as such in
vehicle multimedia systems.

We present in this article a prototyped study which com-
bines a new interface to browse online music catalogs and to
create playlists with a hardware and software architecture
designed to overcome known limitations of vehicle connectiv-
ity like limited datarates, high network latency and limited
computation performance.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: User interfaces;
D.2.11 [Software Architecture]: Data Abstraction, Domain-
specific architectures

General Terms

Design, Human Factors, Performance

Keywords

Embedded vehicle software, Entertainment ergonomic, On-
line music, Cloud metadata

1. INTRODUCTION
The display of online music information in a vehicle en-

counters mainly two sorts of constraints:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCMC’10, October 29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0168-8/10/10 ...$10.00.

Firstly it is necessary to cope with the specific modalities
that are available in a vehicle (video, haptic and audio),
and to overcome their limitations. Secondly it is necessary
to deal with the limitations of computing and networking
resources of embedded systems.
We tried to address both aspects in our prototyped study

and to achieve the following goals:

• Provide the user with a graphical interface and a con-
troller knob which reduce the complexity of the task
of browsing online music catalogs.

• Improve the latency of the display of this information
by caching information on a multi-layered architecture.

• Use the cloud information that is proposed by web ser-
vices to improve content preselection and the quality
of information that is delivered to the user.

2. RELATED WORK
This prototype is developed to deliver music into a vehicle,

which best matches the drivers’ music taste. The driver can
tell the system his music wish and the system will automat-
ically generate a playlist based on this input. The literature
proposes several methods to automatically generate playlists
[1]. They can be grouped into three different categories: (1)
seed-song(s), (2) visual selection, (3) user constraints.
The first method expects one or more seed-songs from

the user. In the playlist generation process similar songs to
these selected songs are ordered in a playlist [19, 12, 18].
The quality of the resulting playlist strongly depends on the
computation of similarity and accordingly to the available
dataset of songs. Another drawback is that the user has to
remember songs or artists he likes for the seed selection.
A lot of research effort has focused on the development

of graphical user interfaces to display a music catalog. All
visualizations aim at providing the user with intuitive un-
derstanding of the underlying music catalog. Most of them
offer the ability to browse the music collection. [17] provides
an annotated overview of a music collection. Similar songs
are arranged close together. These clusters are presented on
a two dimensional map [5]. Data from external sources and
self computed information from the raw audio data are used
for the similarity computation. [9] also clusters similar mu-
sic on a two dimensional map. It combines contextual and
content-based features of each of the songs in the available
music collection. In both approaches the user can gener-
ate playlists. He can draw lines, circles or other geometric

World Wide Web

!  Crawling

!  Music Similarity Calculation

!  Content Storage

Frontend (Vehicle)

!  User Interaction

!  Presentation

!  Playback

Backend (Server)

!  Caching

!  Aggregation

!  Abstraction

!  Playlist Generator

!  Web Service

tion

1

2

3

2*4

Figure 1: Conceptual model and interaction be-
tween the components frontend, backend and cloud
services

shapes onto the map. The resulting playlist gets built from
the songs residing closest to these shapes. We believe that
drawing shapes is too distracting to be used in the vehicle
while driving; therefore we propose in our prototype other
methods for selecting songs.

[13, 4, 10] present a playlist generation method close to
the presented approach. The user has the ability to tell
the system what kind of songs he wants to listen to. Via
constraint satisfaction songs are ordered into the playlist.
These systems, for example, provide duration, genre, artist,
album, tempo or mood as constraint.

Our approach combines the former methods. The user
can tell his song constraints to the system via an easy-to-
understand user interface. Based on these constraints, a
few seed songs are looked up in our own database. Over
similarity methods the playlist is generated automatically
and then be presented to the driver.

3. PROTOTYPE ARCHITECTURE OVER-

VIEW
The prototype is split in two main applications: firstly the

graphical user interface (the so called frontend), with whom
the user can interact in the car and secondly a web service
and a database (backend). A conceptual model of this ar-
chitecture is presented in figure 1. The roles and tasks of
the backend are to cache, to aggregate, to generate person-
alized playlists and to handle user administration. An ad-
vantage of this architecture is that the development of the
frontend can be focused on the ergonomics of the user in-
teractions regardless of the integration of the cloud services.
This approach reduces the complexity of the frontend com-
ponents in charge of integrating the music cloud services.
Interfacing the frontend with a single set of methods avoids
reimplementing them for every new single music service and
reduces the need of software updates. Moreover, the use of
a cloud similarity service is justified by the fact, that vehicle
head-units have limited computation resources. This pre-
vents intensive signal processing to compute song similarity.
The role of the backend is to abstract the cloud services and
to aggregate them.

A typical interaction between frontend and backend is a
request of a new playlist. As described, the frontend col-
lects the user inputs, more precisely his music wish. This

information is sent to the backend (1). The backend which
has already cached some music metadata from the World
Wide Web, can instantly send back a preview with a few
songs. Simultaneously the automatic playlist generation
process starts. Cloud music similarity services are needed
for this. Querying them takes a few seconds and consumes
computation time, because they have to be called several
times (2*). (2) and (2*) are separated from each other to
offer on the one hand a fast answer to the user input and on
the other hand to generate interesting playlists. Once the
playlist generation process is finished, the playlist is ready
to be delivered (3). The vehicle gets a download URL for
each track of the playlist. With this URL the vehicle can
autonomously get the audio content from the web (4). In
the next sections we will explain the main components more
precisely.

4. OVERCOMING THE CONSTRAINTS OF

A VEHICLE UI TO CREATE PLAYLISTS
The frontend is an embedded system in the vehicle. It re-

ceives user input, communicates with the server and visually
presents the results to the driver.

4.1 Vehicle Interface Constraints
Creating an entertainment system for a vehicle is a chal-

lenging task. In contrast to desktop entertainment systems,
where the user can spend his full cognitive load on those, the
primary task in an automotive context is to drive the vehi-
cle. Operating additional systems like setting turning signals
or switching on and off the windshield wiper are secondary
tasks. Consequently operating an entertainment system is
a tertiary task [16]. Therefore, a user interface for such a
system needs to be designed in a simplified way as. It must
not distract the user from its main task. Accordingly gaze
duration needed in order to control the system has to be
as short as possible and the manual load should be min-
imized. The increasing resolution (1280x480 pixels in our
testing car) allows more details to be displayed, while the
driver’s distance (approximately 85cm) to the display lim-
its the full use of this potential. The prototype proposes a
tradeoff between the information density and the font and
icon size. In our application we do not use font sizes smaller
than 30 pixels, resulting in very few text lines that we can
use.

4.2 Radio-Like Listening Behavior
Car drivers are used to radio broadcasting as a standard

entertainment system in their car. It has several advantages
compared to systems like CD or MP3 Players: the user has
no need to care about creating playlists or selecting par-
ticular media assets, which he wants to listen to. He just
switches on the radio and starts to listen. Though, radio
has some disadvantages. The number of channels in a tradi-
tional radio system is quite limited resulting in little choice
of auditory possibilities. Among other media the problem
is quite the opposite. When dealing with CDs or MP3, the
user can select the audio content of his choice, while being
required to interact with the media assets directly. That
implies both cognitive as well as manual load which is dis-
tracting the user from his primary driving task.

4.2.1 Fuzzy Multicriteria Search

In order to compensate these drawbacks, we created a
system that offers a radio-like listening style by providing a
never ending playlist, combined with a fuzzy multicriteria
search. That means that a user defines a set of filters and
that the system provides him with a playlist, containing only
songs, matching his filter criteria. He can choose from five
filter categories: genre (hierarchical list of 542 genres, orga-
nized below 19 top level categories), year (decades, years or
ranges of time), popularity (three stages: hot, mainstream,
underground), mood (choice of 25 moods) and source (vir-
tual sources like the own listening history, the own music
collection, system recommendations or loved songs). The
user can add as many filters as he wants, while filters from
different categories are linked by a logical AND and filters
from the same category are linked by a logical OR. We ex-
pect the user to naturally assume that kind of linkage. This
fuzzy multicriteria search gives the user more control over
the playlists he is provided compared to traditional radio
broadcasting. It also produces little manual and cognitive
load due to the fact that the process of selection and han-
dling of media assets is being avoided: when the user has
specified his choice of filters, the system provides a never-
ending playlist.

4.2.2 Multi-Playlist Presentation of Recommendation

According to the principle previously demonstrated, the
user is likely to get music he appreciates. Furthermore he
is only required to interact with the system when he wants
to listen to something quite different or when he wants to
rate or skip songs. In addition to the playlist, the user gets
offered alternate choices of music in two ways. He can choose
to insert one or more songs from the following alternative
playlists into the running playlist: the album of the currently
playing song or a selection of music that is similar to it.

4.3 UI-Prototype
The UI-Prototype we implemented for the frontend is

written in Flash. The Input/Output-devices used in the
prototype are the controller knob (a push-shift-rotate con-
troller) for input and the central information display (CID)
for visual output. The music playback performs over the car
audio system.

4.3.1 User Interface

Conceptually, the frontend is split into two major modes:
the filter specification mode (figure 2) and the music listen-
ing mode (figure 3). In the filter specification mode (figure
2 (1)), the user can add, modify or remove different filter
criteria. We apply a fish-eye filter to the filter selection lists
to be able to display longer lists with this focus and context
technique. Every time he makes a change to the current
set of filters, he gets a preview (figure 2 (2)) of about seven
songs, that would be anywhere in the playlist if he decided
to confirm his selection. When he presses the play button, a
playlist matching his filter criteria is fetched from the server
and the application switches to the listening mode. The lis-
tening mode is again split into three subparts: the listening
history (figure 3 (3)), the currently playing song (figure 3
(1)) as well as the playlist with the album of the currently
playing song and similar songs as alternatives (figure 3 (2)).
These parts are displayed as a continuous chain of song icons
(icons containing the cover, the mood as color and the title

Figure 2: Filter Screen: (1) Filter Selection Pane,
(2) Preview Pane

Figure 3: Play Screen: (1) Currently Playing Song,
(2) Playlist and Alternatives, (3) Listening History,
(4) Selection Information

and the artist as text), passing the screen from right to left.
The user can scroll through the chain by rotating the con-
troller knob and has different interaction options, depend-
ing on the part where the currently selected song is located.
When the currently playing song is selected, the user can
rate it with a love or hate rating or switch to the filter spec-
ification. We also provide him information about the way
he or the system selected this song to play (figure 3 (4)) (for
example by a filter combination or because he chose to listen
to the album of a song he had heard earlier). When scrolling
to the playlist part, the user can select a song in the playlist
to play. When the playlist part is in focus, he can also insert
songs from the album or the similar songs. Those are dis-
played above and below the playlist. In the history part, the
user is able to insert songs he heard before into the active
playlist. Some markers are linked to the history chain that
indicate certain events, helping the user to locate songs he
listened to before. Possible events are for example switching
on/off the car or opening doors. The history is linked to a
folksonomy profile, and gets periodically synchronized with
it. This way we can provide a global listening history in the
car that covers the everyday music listening custom of the
user and is linked to all of his other listening devices.

4.3.2 Content Preloading

The UI-Prototype also has to deal with the latency prob-
lems that rise among a mobile music streaming client. These
can be especially critical in an automobile, because it can

move fast through regions with variable network coverage.
In our prototype we try to overcome these problems by
preloading enough music in advance. We always try to com-
pletely preload the actual song and the next song in the
playlist. This is enough for a seamless music listening expe-
rience within cities or regions with adequate network cover-
age.

5. BACKEND FOR THE AGGREGATION OF

ONLINE CONTENT
The backend runs on a server with a servlet container.

It has two main components: firstly, in a weekly process,
actual metadata from different sources has to be collected
and cached in a database. Secondly, the backend offers a web
service, which can be accessed by the frontend. This service
is designed in a RESTful style [3]. The data is transferred
between front- and backend in XML format.

5.1 Caching Referenced Content
In order to support the user in his playlist generation pro-

cess best, the system must react to the user interactions very
fast. Short reaction times reduce the risk of distraction from
the main duties and responsibilities of the vehicle-driver.
Thereby, it reduces the cognitive disorder. Another reason
for decreasing the latency is the consumer acceptance. Most
users expect a fast answer from the system after giving their
input.

For those reasons, all information which has to be deliv-
ered very fast is cached in a relational database management
system. In the concept of the playlist generation process it
is very important for the driver, that he gets an immediate
reply to his filter choice. For instance, the user chooses in his
first option the filter genre g1 = rock. The system quickly
provides a direct preview of 8 to 10 rock-songs. In the next
step, he chooses the filter mood m1 = happy. Afterwards, a
new preview has to be presented with 8 to 10 songs, which
are in the genre g1 and are rated in the mood m1. This
direct preview gives the driver a direct and clear response
to his query.

5.2 Aggregating Metadata
There is no exclusive provider in the World Wide Web who

can deliver all required metadata. Therefore, the system
has to combine the information of many different metadata-
providers. In order to get good seed songs for the particular
filter combinations chosen by the user, the backend has to
cache song metadata, tagged with the following attributes:

• name of track, artist and album

• year of release

• genre and mood information

• ratings of the popularity

• user specific ratings

• album cover

• download URL of the audio data

[14] compared data from two sorts content providers: the
commercial providers which offer expert music classifications
and ratings; the social networks which deliver data, provided

by their users. We added to our prototype a third sort;
the crawlers which analyze occurrences of artists names and
tracks in the internet (music reviews, radio charts, blogs,
etc.) to deliver actualized information.

5.2.1 Metadata Provided by Experts

In the caching process, sources from both groups are used.
In order to collect metadata for the genre filter, the genre
taxonomy from the commercial provider Rhapsody1 is ap-
plied. The taxonomy has a fine genre structure with 19
top genres. Each genre can be extended to up to two lev-
els of subgenres. Altogether Rhapsody classifies its songs in
542 different genres. A top fifty song list can be requested
for each genre. In this first caching process metadata of
approximately 13100 songs from about 3000 unique artists,
released on about 4300 albums is being collected which is en-
riched with genre-information. The metadata received from
Rhapsody also contains the song’s year of release. This in-
formation can be used directly for the year filter. In the
next step the database is enriched by mood-metadata. We
are using expert data from Gracenote2. For the concep-
tion of the prototype, we had access to mood metadata for
3795 songs. Therefore, the co-occurrence between genre and
mood metadata is about 29 percent in the cache database.
For our use case - providing a fast preview of 8 to 10 songs
- we consider that this co-occurrence is sufficient.

5.2.2 Cloud Metadata Provided by the Folksonomies
and Crawlers

Furthermore, the database must be enriched with rating
information for each song. To achieve this, the system col-
lects data from a so called folksonomy and a web crawler.
The social network Last.fm3 and the web service The Echo
Nest4 provide exhaustive and innovative ratings on demand.
Particularly the “hotttnesss” and “familiarity” factors of the
Echo Nest are very good indicators how common and hip
a song currently is. The Echo Nest does not only take
into consideration the sales volumes. It additionally crawls
blogs, music portals, social networks and other web pages
and counts the references to artists or songs [7]. In its open
web service called the audioscrobbler5, Last.fm presents in-
formation on how often their users listened to a particular
song. This playcount information combined with the num-
ber of Last.fm listeners’ results in an additional ranking.

5.2.3 Combining Different Metadata Sources

Unfortunately it is not trivial to combine the different
metadata sources. It is common that a song has many differ-
ent spellings on the web. This problem especially increases
through the free text tagging modality in the social net-
works. The spelling problem can be illustrated very nicely
by the song “Guns N’ Roses - Knockin’ on Heaven’s Door”.
[6] has identified that there are more than 100 ways to spell
this song. Even if some providers try to avoid it, a request
of a single song can still generate a list of multiple hits. In
order to get the right hit, each song in the response list has
to be analyzed. A song can be identified by its track name,
the artist name and the name of the album on which the

1http://www.rhapsody.com/
2http://www.gracenote.com/
3http://www.last.fm/
4http://the.echonest.com/
5http://www.audioscrobbler.net/

song was released. In order to combine them, the names
have to be normalized. The rules of the text normaliza-
tion can be viewed at [2]. Additionally we analyzed some
algorithms which try to compare two strings with regard
to their spelling sound (e.g. soundex [15]) and algorithms
which compute the edit distance between two text sequences
(e.g. levenshtein distance [8]). When we need to disam-
biguate between multiple results of a provider, we calculate
a matching rate between the reference data which is being
searched and the different solutions. The closer they are to
the reference, the higher is the rate. For example, a candi-
date that matches the track name and the artist name gets
a higher rate than a candidate that only matches the track
name.

6. USE CASES
In order to illustrate the potential of our prototype, we

identified and implemented the following scenarios.

6.1 Playlist Generation
As already described, in the caching and aggregating pro-

cess the system collects about 13.100 songs and stores them
into our database. The playlist generation begins with col-
lecting local metadata from the database.

After the user has specified his playlist criteria to the sys-
tem, in other words the different filters have been set; the
best matching songs are selected from the database. “Best”
means in this context: all the songs that are in the intersec-
tion of all filters. These songs are the anchors for the new
playlist. To fill the gaps between them, different providers
are called for some similar songs for the particular anchors.

Using this method, a set of a few songs is gathered for each
anchor, using services presented in section 5.2. In the next
step, these sets of songs are converted to the final playlist.
To support a smooth crossover between the anchors, the sim-
ilar songs of two neighboring anchors are interlaced. This
playlist generation process is initiated in parallel to the pre-
view request by the user. This way, the playlist is ready to
be delivered as the user requests for it.

6.2 Proposing Alternative playlist
As described in section 4.2.2 the user has some interaction

options to control his playlist. He can insert the whole album
of a currently playing song into his playlist. He can add
similar, perhaps unknown music to the playlist at any time
as well. The basis of this interaction is the suggested playlist,
generated by the prototype. There are several strategies to
respect the user’s filter choice.

[11] summarizes some approaches found in the literature.
Possible strategies for our prototype are: (a) to weight the
chosen filter considering the sequence of their nomination
(the first choice is more important than the second and so
on) or (b) the finer a filter is adjusted the more important
this filter is for the user. The strategies (a) and (b) do not
require the user to interact; the weighting is implicit.

If the restrictive playlist generation process (limited by an
intersection of all filters as described in section 4.2.1) fails,
[11] suggests to relax these filters. A possible reason for the
generation of the playlist to fail is that the user adjusted
too many filters or filter combinations that cannot match
with any known songs. If so, the playlist is built up by an
aggregation of the filters, considering a relaxing strategy.

6.3 Social Use Case
The usage of the prototype is not limited to the car.

Rather it connects the mobility of the car with the persis-
tence of the social networks in the World Wide Web. This
makes the system more ubiquitous. A driver can register his
Last.fm account-data into the system. The system monitors
the listening behavior while driving and stores this data in
the user profile of the backend database. This data is sent
to Last.fm (aka. scrobbling). Thereby the user can browse
his own music history, generated in the car, on every device
with access to internet.
Moreover, if the user connects other devices to the Last.fm

services, he can reuse his global music history in the car. The
prototype synchronizes the user’s listening history in both
ways; from the car into the social network and vice versa.

7. CONCLUSIONS
We have presented a new kind of music player for the

automotive domain. Our prototype is organized in a three-
layered architecture. We have developed an innovative user
interface including the fuzzy multicriteria search in order to
minimize user interactions while maintaining a refined user
control. We introduced a caching system to reduce latency
and give the user immediate and representative examples
of the playlist queries. Moreover, we presented aggregation
techniques of cloud services to overcome resource limitations
of vehicle head units in terms of computation and software
updatability and to achieve metadata enrichment over dif-
ferent music services. Our prototype shows through different
use cases (playlist generation, alternative music recommen-
dation and social use case) that the integration of cloud
services gives new perspectives to the infotainment applica-
tions in the automotive domain far extending the current
radio services.

8. FUTURE WORK
The potential of the prototype in terms of ergonomics and

architectural efficiency needs to be confirmed with a user
study. We plan to perform it in a vehicle under real driv-
ing conditions. In this study we will also compare different
criteria relaxation strategies.
In the prototype stage we also implemented a quite simple

preloading mechanism. This is enough for regions with good
network coverage, but could result in leaks in areas, where
the coverage is worse. This mechanism will be improved in
such a way, that the system always tries to preload as many
songs as possible from the active playlist, while in areas with
good coverage. This way we can guarantee maximum play
duration, if the user does not change the playlist.

9. REFERENCES

[1] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman.
A large-scale evaluation of acoustic and subjective
music-similarity measures. Computer Music Journal,
28(2):63–76, 2004.

[2] D. Ellis. Text normalization conventions for artist,
album, and track names, 2010. [Available online at
http://www.ee.columbia.edu/~dpwe/research/

musicsim/normalization.html; accessed
9-June-2010].

[3] R. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
Citeseer, 2000.

[4] finetunes. musiclens - in tune with you, 2010.
[Available online at
http://finetunes.musiclens.de/; accessed
9-June-2010].

[5] O. Goussevskaia, M. Kuhn, and R. Wattenhofer.
Exploring music collections on mobile devices. In
G. H. ter Hofte, I. Mulder, and B. E. R. de Ruyter,
editors, Mobile HCI, ACM International Conference
Proceeding Series, pages 359–362. ACM, 2008.

[6] R. Jones. The guns n roses issue, 2010. [Available
online at http://cdn.last.fm/rj/gnr_kohd100.txt;
accessed 9-June-2010].

[7] P. Lamere. Music machinery - hottt or nottt?, 2010.
[Available online at http://musicmachinery.com/
2009/12/09/a-rising-star-or/; accessed
9-June-2010].

[8] V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. In Soviet Physics
Doklady, volume 10, 1966.

[9] A. Lillie. MusicBox: Navigating the space of your
music, 2007.

[10] musicovery. interactive webradio, 2010. [Available
online at http://www.musicovery.com/; accessed
9-June-2010].

[11] O. Noppens, M. Luther, T. Liebig, M. Wagner, and
M. Paolucci. Ontology-supported preference handling
for mobile music selection. In Proceedings of the
Multidisciplinary Workshop on Advances in Preference
Handling, Riva del Garda, Italy, august 2006.

[12] E. Pampalk and M. Gasser. An implementation of a
simple playlist generator based on audio similarity
measures and user feedback. 2006.

[13] S. Pauws and S. van de Wijdeven. User evaluation of a
new interactive playlist generation concept. In Proc.
Sixth International Conference on Music Information
Retrieval (ISMIR2005), volume 11, page 15. Citeseer,
2005.

[14] M. Sordo, O. Celma, M. Blech, and E. Guaus. The
quest for musical genres: Do the experts and the
wisdom of crowds agree? Philadelphia, USA, 2008.

[15] The National Archives. The soundex indexing system,
May 2007.

[16] M. Tönnis, V. Broy, and G. Klinker. A survey of
challenges related to the design of 3d user interfaces
for car drivers. In 3DUI ’06: Proceedings of the 3D
User Interfaces, pages 127–134, Washington, DC,
USA, 2006. IEEE Computer Society.

[17] R. van Gulik and F. Vignoli. Visual playlist generation
on the artist map. In Proceedings of the International
Conference on Music Information Retrieval ISMIR.
Citeseer, 2005.

[18] F. Vignoli and S. Pauws. A music retrieval system
based on user-driven similarity and its evaluation. In
Proc. ISMIR, pages 272–279. Citeseer, 2005.

[19] T. Westergren. Pandora radio - the music genome
project, 2010. [Available online at
http://www.musicovery.com/; accessed 9-June-2010].

