
Back To The Future: On Predicting User Uptime

Matteo Dell’Amico Pietro Michiardi
Yves Roudier

Eurecom, Sophia-Antipolis, France
{matteo.dell-amico,pietro.michiardi,yves.roudier}@eurecom.fr

October 4, 2010

Abstract

Correlation in user connectivity patterns is generally
considered a problem for system designers, since it
results in peaks of demand and also in the scarcity
of resources for peer-to-peer applications. The other
side of the coin is that these connectivity patterns are
often predictable and that, to some extent, they can
be dealt with proactively.

In this work, we build predictors aiming to deter-
mine the probability that any given user will be on-
line at any given time in the future. We evaluate
the quality of these predictors on various large traces
from instant messaging and file sharing applications.

We also illustrate how availability prediction can
be applied to enhance the behavior of peer-to-peer
applications: we show through simulation how data
availability is substantially increased in a distributed
hash table simply by adjusting data placement poli-
cies according to peer availability prediction and
without requiring any additional storage from any
peer.

1 Introduction

User uptime patterns in Internet applications are
known to be very different from what would be ob-
tained from random, uncorrelated models. Many
measurements [1, 3, 5, 6, 10, 11] confirmed that traces
of different applications have daily and weekly pat-
terns. User uptime therefore cannot be modeled as

a simple Markovian process, because user activity is
often correlated.

In system design, correlation is often seen as a
problem: for instance, simultaneous requests from
many users results in a “flash-crowd” phenomenon
which is problematic for content distribution systems;
in peer-to-peer storage systems, the fact that many
user are offline at the same time creates problems
with respect to data availability.

In this work, we strive to build a set of predictors to
exploit the correlated nature of user activity. Indeed,
if users do not behave randomly, then it should be
possible to design mechanisms capable of anticipating
user behavior with a certain degree of precision.

A considerable amount of effort has been devoted
to characterizing and predicting session lengths and
future uptime patterns within a short time span [5,7,
10, 11, 13]; however, long-term predictions have been
largely neglected, and the probability for a user to be
online is generally modeled as the same for each user
and each moment in the future.

In [10], which is the closest to our work, uptime
predictors are built around the concept of saturating
counters and refinements thereof, and go beyond a
boolean classification of user online time. However,
such techniques are not easily amenable to anticipate
the long term user behavior and do not account for
users that abandon an application.

In this work, we build refined mechanisms for pre-
dicting long-term user behavior that also account for
user departures. We verify the quality of our tech-
niques on traces of Internet applications such as in-

1

stant messaging and peer-to-peer applications, and
we show that elaborate predictors are able to consis-
tently reduce the uncertainty about future user be-
havior.

Our techniques can be used in many cases where in-
dividual user behavior has an influence on application
performance like for example social networks or peer-
to-peer storage applications. To illustrate the bene-
fits derived from using the information provided by
our predictors, we simulate a distributed hash table
(DHT) and show that an informed policy for choos-
ing node identifiers can result in higher data avail-
ability without requiring additional storage resources
from nodes nor major modifications to the base DHT
mechanism.

2 Datasets

In the context of Internet applications, a user gen-
erally launches an application (e.g., a P2P client),
establishes a connection to other users or to a server,
and finally disconnects from the service. We term
this series of actions the user’s online behavior. The
online behavior is used to compute the user availabil-
ity, defined as the cumulative amount of time spent
online, in a reference period of 24 hours.

We analyzed a variety of application traces to
study the online behavior of users and to compute
user availability distributions. We considered an in-
stant messaging application (labelled IM in the fol-
lowing), the eMule file-sharing application relying on
the Kad network [9] (labelled Kad) and the Skype
VoIP application (labelled Skype). For IM, an au-
thor of this work is one of the administrators of a
large IM service in Italy and had access to server logs
indicating the online behavior of users. For Kad, we
used the traces collected in [11] and for Skype, we
used the dataset from [5], obtained by crawling the
Skype super-peer network and made available on [8].
Table 1 summarizes the salient features of the three
datasets: the trace duration ranges from roughly 1 to
6 months and the number of captured users ranges
from roughly 2000 up to several hundred thousand
users.

What information do the above traces convey re-

Trace Duration Users High availability (≥ 0.17)
IM 172 days 1,825 354 (19.4%)
Kad 179 days 400,375 10,279 (2.57%)
Skype 24 days 2,081 1,174 (56.52%)

Table 1: Basic dataset information.

garding the online behavior of users? Fig. 1 illus-
trates, for an arbitrary week of each datasets, the
number of online users per day, detailing users with
an availability larger than an average of four hours
per day. The user behavior is highly correlated:
hourly, daily, and weekly patterns clearly arise. Fur-
thermore, we can pinpoint at important differences
of such patterns depending on the application exam-
ined. In the IM trace, the online behavior is affected
by weekends: in the last two days of the week dis-
played in Fig. 1a, a considerable fraction of users re-
mained offline. In contrast, the Kad trace indicates
a stable online behavior over a week: users connect
mostly at night, which is particularly true for highly
available users. Clearly, a regularity in the aggregate
traces does not however imply that individual user
behavior is regular. Lastly, in the Skype trace one
can notice that most of the online users are highly
available: this is a result of the crawling methodol-
ogy used in [5] which only collects traces of super-
peers. Some visible measurement artifacts are due to
network problems on the measurement site.

The cumulative distribution of user availability is
also clearly distinct for every application trace, as
shown in Fig. 2. Indeed, user availability derives from
the online behavior, as a result of implicit or explicit
incentive mechanisms.

For the IM application, incentives for users to stay
online are implicit and intrinsic to the application
itself. Indeed, IM applications are synchronous, al-
though tolerant to delays, and require parties to be
online at the same time to communicate. The CDF
of user availability (Fig. 2) indicates that a large frac-
tion of the users are sporadically online, and a small
fraction of users have an availability larger than 0.4.

For the Kad application, incentives for users to stay
online are explicit. Kad is used to support eMule,
a file-sharing application, which implements a quite

2

May 05 2009

May 06 2009

May 07 2009

May 08 2009

May 09 2009

May 10 2009

May 11 2009
0

50

100

150

200

250

300

O
nl

in
e

no
de

s

All nodes (1825)
High availability (354)

(a) IM.
Dec 05 2006

Dec 06 2006

Dec 07 2006

Dec 08 2006

Dec 09 2006

Dec 10 2006

Dec 11 2006
0

2000

4000

6000

8000

O
nl

in
e

no
de

s

All nodes (400375)
High availability (10299)

(b) Kad.
Sep 19 2005

Sep 20 2005

Sep 21 2005

Sep 22 2005

Sep 23 2005

Sep 24 2005

Sep 25 2005

Sep 26 2005
0

100

200

300

400

500

600

700

800

O
nl

in
e

no
de

s

All nodes (2081)
High availability (1174)

(c) Skype.

Figure 1: Number of online users in an arbitrary week of our different datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Availability

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
D

F

Kad
IM
Skype

Figure 2: CDF of user availability.

elaborate incentive mechanism that prioritizes users
with a high availability when awarding upload slots
[2]. The CDF of user availability is even more skewed
(Fig. 2), indicating that a very large fraction of users1
are rarely available, while a tiny set of users have an
availability larger than 0.2.

Finally, for the Skype application, incentives are
implicit. VoIP applications are not delay tolerant and
users need to be online to be reached by others. The
distribution of user availability is more uniform than
in the other cases (Fig. 2), apart from an appreciably
small fraction of users that are not available.

As clearly highlighted above, the user behavior is
a combination of personal factors, like for instance
the user’s willingness to remain online or user time
zone, and external factors, like application specific
incentives or connectivity between hosts. Given the

1To be precise, we can only characterize those users that
use Kad in combination with eMule, and not all eMule users.

variety of resulting behaviors, the question we try and
address in the following is whether simple predictors
of the future availability of a user can be designed
and tuned, and whether their prediction accuracy is
influenced by the very nature of the application itself.

Before describing the details of our prediction tech-
niques, some further observations have to be drawn.
Any attempt at anticipating the online behavior of
users would be doomed to introduce errors if the
eventuality for a user to abandon indefinitely an ap-
plication was omitted. For this reason, we analyzed
the user mortality rate in our traces, defined as the
rate of users “disappearing” from a dataset.

As a second observation, even though most re-
lated work focused on continuous availability esti-
mates, correlated behaviors seem to be the most crit-
ical parameter that needs to be estimated. However,
such correlated behaviors lead to the need for sophis-
ticated predictors tailored to users rather than at-
tempting to be generic. In Fig. 3, we focus on the
IM and Kad traces and rearrange them by applying
an off-the-shelf clustering algorithm (k-means). We
arbitrarily define k = 6 clusters (labelled Ci in the
figure) and plot the percentage of online users per
cluster. It can be observed that there are two classes
of peers (the first and the last cluster) that comprise
a non-negligible fraction of the total user population,
for which user availability is very high and very low,
respectively. For such users, predicting their avail-
ability is simple. Instead, a large fraction of the user
population exhibits very specific traits. For example,
in Fig. 3a, users in C1 have a regular online behav-

3

mag 17 2009

mag 18 2009

mag 19 2009

mag 20 2009

mag 21 2009

mag 22 2009

mag 23 2009

mag 24 2009

mag 25 2009
0%

20%

40%

60%

80%

Av
ai

la
bl

e
us

er
s

pe
r c

lu
st

er

C0

C1

C2

C3

C4

C5

(a) IM.
dic 1

1 2006

dic 1
2 2006

dic 1
3 2006

dic 1
4 2006

dic 1
5 2006

dic 1
6 2006

dic 1
7 2006

dic 1
8 2006

0%

10%

20%

30%

40%

50%

60%

70%

80%

Av
ai

la
bl

e
us

er
s

pe
r c

lu
st

er

C0

C1

C2

C3

C4

C5

(b) Kad.

Figure 3: Clustered traces: detail of single weeks.

ior that is marginally affected by a particular day
of the week, while users in C2 are highly influenced
by weekends, i.e., the last two days displayed in the
plot. Fig. 3b illustrates another kind of user-specific
behavior: each cluster groups users with consistently
distinct availability figures.

Both observations support our claim that the de-
sign of prediction algorithms, and in particular the
tuning phase, should be tailored to the specific traits
of a particular user. An evaluation of the accuracy of
general predictors versus that obtained by individual
predictors is provided in Sec. 4. The predictors de-
scribed in the following are also adjusted to account
for permanent user departures.

3 Prediction Algorithms

To describe the long-term behavior of users, our pre-
diction algorithms face the task of anticipating, based
on a history of past actions, the probability pi,t that
a user i will be online at any time t in the future. To
do so, we divide our traces between a training period
from which past observations are drawn and a test
period in which predictions are evaluated.

Since tuning a handful of parameters was required
to make our algorithms work properly, we adopted a
four-step approach to the evaluation, as exemplified
in Fig. 4. Besides dividing traces between a train-
ing and a test period, we distinguished between the
nodes used to “train” the algorithm and those used
to validate it. Predictors are first trained on the first
quadrant; in the “fitting” phase, predictors are tuned
to provide optimal performance on the training users

U
se

r I
D

Time

Training
Period

Test
Period

Tr
ai

ni
ng

U
se

rs
Te

st
U

se
rs

1 2

3 4

user i

4p
m

1 1 0

5p
m

6p
m

Figure 4: Chopping the traces: an illustrative exam-
ple of our four-step approach.

for the test period (second quadrant). In the third
phase the predictors, now properly tuned, get trained
with the test users in the training period, and their
accuracy is evaluated on the test periods in the fourth
phase. In a real situation with growing traces, tun-
ing would naturally be a dynamic process that would
be re-evaluated as the mass of available information
grows.

In the following, we use Mean Squared Error
(MSE) as a metric to assess prediction accuracy, con-
sidering the prediction error as (1− pi,t)

2 if user i

is actually observed online at time t, and (pi,t)
2 if

i is instead offline. A “completely uninformed” pre-
dictor always predicting pi,t = 0.5 for any i and t
would obtain a MSE of 0.25. The MSE exhibits a
key property (as opposed to other metrics such as,
for example, Mean Absolute Error): if an event has
probability p, the prediction p that minimizes the
MSE is exactly p = p. Indeed, the expected MSE
is p (1− p)

2
+(1− p) p2 = p2− 2pp+ p, whose differ-

entiation leads to 2 (p− p). The function is therefore
minimized when p = p.

We now describe a range of algorithms that dif-
fer in the way the history of past user behavior is
processed. For simplicity, we use Fig. 4 and illustrate
the first training phase described above. The input to
our algorithms is a matrix, where rows are user iden-
tifiers and columns correspond to a moment identified
by time and day of week (e.g., monday, 6PM). The
difference in time between columns is a tunable pa-
rameter (1 hour in the example). Each cell contains
a value indicating the time ratio a user was online

4

at that particular time during the training period.
Fig. 4 provides example values for user i.

In the Flat predictor, we compute the average user
availability for all users and all time-slots, i.e., using
the entire matrix described above. Hence, pi,t equals
the average user availability for all future time in-
stants. A more refined approach takes into account
weekly patterns. In the Weekly periodic predictor,
pi,t is the average availability of all users for a refer-
ence day and time of the week, that is pi,t is com-
puted for the column identified by the day of week
and hour of t. For example, if t corresponds to 6PM
on a Monday, pn,t is the average availability for every
Monday at 6PM in the training period. The Daily
periodic predictor focuses on daily patterns: hence,
pi,t is the average availability of all users for a refer-
ence time of the day, that is pi,t is computed for all
the columns identified by the hour of t, irrespectively
of the day of the week. As users exhibit very different
behavior during the week and during weekends, as il-
lustrated in Fig. 3, we designed a Weekend-aware
daily periodic predictor, which isolates weekends
from weekdays. This means that predictions in week-
ends (resp. weekdays) are only influenced by obser-
vations in weekends (resp. ordinary workdays).

Each approach elaborated above is implemented in
two different “flavors”. A global version computes the
statistic on all users, resulting in the same value of
pi,t for each user; an individual variant only uses the
behavior of user i in the training period to compute
pi,t.

Moreover, we enhance the quality of prediction of
all our approaches as follows (fitting step). First, we
encode the possibility for users to leave indefinitely
the system. We compute the user mortality rate r, as
defined in Section 2, on the training users, and we up-
date our original prediction to output p′n,t = pn,t · rt:
in our traces, we observed that highly available users
quit an application with a roughly uniform probabil-
ity. Secondly, we compute a linear regression such
that the choice of a and b minimizes the MSE of
p′′n,t = ap′n,t + b on the training users, justified by
the fact that we in general expect linear correlation
between p′n,t and the actual observations. We then
use p′′n,t adjusted with the new values of r, a, and b
as our predictor in the evaluation step.

Note that each of the predictors described so far
specializes in capturing only a single trend of user
behavior. A better predictor can take into account
all these factors in order to output a more refined
prediction. Our take at this task is a linear com-
bination of all the previously defined predictors p[i]
(before linear correction): the resulting predictor is
p̂n,t =

∑
i cip[i]n,t, where the ci values are obtained

via least-square fitting in order to minimize errors on
the training users. We call this predictor ad-hoc,
since the values of ci are different for each dataset
and synthesize the regularities in the trace at hand.

4 Prediction Accuracy

In this section, we study the impact of the train-
ing period length on the accuracy of our predictors
in terms of MSE. Both the IM and Kad traces are
roughly 6 months long: we use the first three months
of the trace as a candidate training period, while
the test period begins on the first day of the fourth
month. We therefore considered week, month, and
three month long training periods, going backwards
in time from the beginning of the test period (refer
to Fig. 4).

For the accuracy analysis we filtered all users with
an availability less or equal to 0.17 in the training
period2: indeed, those are the users whose behav-
ior is the easiest to predict. Additionally, for the
Kad dataset, we performed a random sampling of the
user population and restricted our attention to 10,000
training users and 10,000 test users. The Skype trace
is shorter than the other two traces: as a consequence,
we only consider a week-long training period.

Table 2 summarizes the MSE errors for the various
predictors we designed in this work. We report mea-
sures for different training period lengths, as well as
for the ad-hoc predictor, which combines the features
of all preceding mechanisms. It should be mentioned
that comparing the prediction accuracy across the
three dataset reported in this table is somehow ir-
relevant. For example, the behavior of Skype users
is more difficult to predict than the others, as the

2We use the same value that the Wuala file storage service
adopts to filter peers that can trade storage [4].

5

Dataset Training period Flat Weekly Daily “Weekend” Combined
Global Ind. Global Ind. Glob. Ind. Glob. Ind. ad-hoc

1 week .2037 .1849 .2036 .1987 .2037 .1951 .2034 .1767 .1727
IM 1 month .2039 .1770 .2036 .1936 .2037 .1912 .2032 .1657 .1601

3 months .2169 .1732 .2038 .1933 .2037 .1877 .2032 .1517 .1478
1 week .1780 .1638 .1783 .1699 .1779 .1612 .1779 .1632 .1608

Kad 1 month .1778 .1636 .1778 .1666 .1777 .1605 .1777 .1615 .1598
3 months .1779 .1707 .1780 .1697 .1779 .1664 .1779 .1671 .1662

Skype 1 week .2491 .2054 .2489 .2259 .2481 .1971 .2480 .2054 .1955

Table 2: MSE for the various basic predictors (lower is better).

average availability is roughly 0.5. Hence, it is gener-
ally difficult to do better than an uninformed guess
of pn,t = 0.5 that yields a MSE of 0.25. Instead, the
prediction quality should be observed within a single
dataset, comparing the various predictors to the Flat
predictor.

As a general observation that applies to all our re-
sults, it appears that individual predictors perform
better than global ones, which confirms the intuition
that users are characterized by specific traits, as dis-
cussed in Sec. 2. Considering node mortality also
ensures consistently better predictions, especially for
the Kad dataset, where user mortality is higher.

Another global trend that can be observed from
Table 2 is that prediction accuracy is related to the
intrinsic nature of the datasets we study. For the IM
dataset, which involves users connecting also from
work, considering “specialized” predictors that in-
clude week days and weekends improves the predic-
tion accuracy. In comparison, for the Kad dataset,
users largely connect from home and at night and
their behavior is not influenced by weekends. Thus,
“specialized” predictors are not necessarily more ac-
curate.

Finally, the ad-hoc predictor outperforms all other
mechanisms we have designed, confirming that in-
corporating a range of periodic patterns effectively
increases the prediction quality.

We now discuss the impact of the length of the
training period on prediction accuracy. Global pre-
dictors are largely insensitive to training period

lengths: one week of observations on user behavior
appears to be sufficient to reach a plateau for MSE
values. Instead, the individual and ad-hoc predictors
are affected by the length of the history of past user
behavior. In general, one could think that a longer
training period would mitigate the “noise” introduced
by a small number of samples on which the predictors
are tuned. However, user behavior can also evolve
with time, and as a consequence, the training phase
used to tune our predictors might use obsolete data.

These observations are verified in our traces. As
the rows corresponding to the IM trace in Table 2
show, longer training periods imply better accuracy,
i.e., lower MSE values. Indeed, the behavior of the
users of an IM application is regular on the long
term. The Kad dataset exhibits an inverted trend: a
longer training period entails lower prediction accu-
racy. Since the online behavior of Kad users evolves
with time, shorter training periods are better to re-
flect these dynamics.

Overall, our results indicate that when properly
tuned, our predictors can effectively anticipate user
behavior, as confirmed by the low MSE values ob-
tained. It is of course legitimate to question the con-
crete meaning of low MSE values. In particular, what
is an acceptable level of accuracy? Obviously, it is
impossible to design a predictor which makes no er-
rors, and it is easy to define MSE=0.25 as an upper
bound for the prediction error. We try and address
this question in the following, where we study the
impact of prediction accuracy in practice, our pre-

6

dictors being used to optimize the performance of an
example application.

5 An Application Example
DHT applications are generic infrastructures map-
ping straightforwardly to the traces we have at hand
as they can be used in both IM as well as file-sharing
applications (as in the case of Kad). Here, we con-
sider a Chord-like [12] DHT providing a key-value
lookup primitive.

In our DHT model, identifiers and hash values for
keys are distributed on a logical ring, and each in-
formation is replicated on a neighbor set of n nodes
whose identifiers are the closest successors to the hash
of the key in the ring. We assume that information
is stored on a long-term basis, so the data does not
get erased from nodes between sessions: hence, data
maintenance is required only when peers abandon
the system for good. For simplicity, we do not im-
plement maintenance mechanisms: data redundancy
decreases with peer “death”.

In contrast to approaches that reduce object copy-
ing in a DHT by biasing replicas towards highly avail-
able nodes [10], we focus on improving data availabil-
ity without imposing additional storage burden on
any peer.

In general, node identifiers in DHTs are chosen via
a random or pseudo-random function. We propose
instead the application of a smart policy that max-
imizes data availability, i.e., the probability that at
least one peer in each neighbor set will be online at
any moment in the future. For example, a smart
replica placement policy would distribute pieces of
data between peers which are frequently online at day
and at night in order to obtain high data availability.

The predicted availability of data placed in the
DHT can be computed using the ad-hoc predictor
for a neighbor set N and a set of samples in time T
as

1−
∑

t∈T 1−
∏

n∈N (1− pn,t)

|T |
.

Since our predictors have a weekly period, we limit
our analysis to the first week after the training period,
sampling with a frequency of one hour.

0 20 40 60 80 100 120 140 160
Length of test period (days)

0

10

20

30

40

50

60

70

80

90

Un
av

ai
la

bi
lit

y
pr

ev
en

te
d

(%
)

Skype
IM
Kad

Figure 5: DHT simulation: benefits vs. test period.

Our optimizing algorithm works iteratively by re-
peatedly considering a pair of random nodes and ver-
ifying whether exchanging their identifiers would en-
hance, on average, the predicted data availability for
the involved neighbor sets. If so, their identifiers get
exchanged. The algorithm proceeds until swapping
operations do not improve data availability over a
fixed threshold. Although centralized in our simula-
tions, this strategy can easily be implemented in a
distributed fashion.

We executed our DHT simulation on the IM and
Kad traces with a training period of 1 month, and
on Skype with a training period of 1 week. All re-
sults are averaged on 10 simulation runs. Here we
compute the replication factor n using the traditional
approach where user uptime is assumed to be uncor-
related. That is, we used the smallest n that satisfies
1− (1− a)n ≥ 0.99, where a is the average availabil-
ity observed in the training period. Applying this
formula resulted in a value of n = 15 for Kad, n = 11
for IM, and n = 5 for Skype. Obviously, our predic-
tions obtain different values for the estimated data
availability, since in reality user behavior is strongly
correlated.

The simulated data availability was computed by
sampling the available nodes in the test period with
a granularity of one hour, then computing the ra-
tio of neighbor sets with at least one online node.
The overall data availability was finally obtained by
considering different lengths for the test period. For
example, when a month is used as a training period,
the average simulated data availability grows in IM
from 0.95 to 0.98.

7

Data availability using the optimized ID allocation
is consistently better than with a random placement.
In Fig. 5 we show the benefits of the optimized ID al-
location in terms of reduced data unavailability. For
example, a 50% unavailability reduction means that
the probability that a piece of data is unavailable is
halved in the optimized case with respect to the orig-
inal random allocation. As the test period grows, the
benefits of the smart allocation policy decrease, both
because some peers leave the system and because oth-
ers change their behavior. In a real system, periodic
data maintenance and identifier reallocation can be
used to maintain good performances.

6 Conclusions

In this work, we studied the online behavior of users
for a range of Internet applications. We designed
and implemented simple predictors that anticipate
user behavior capturing individual, global, daily, and
weekly patterns. We evaluated the accuracy of our
mechanisms and studied their impact on a “toy” DHT
application, showing that user behaviors are pre-
dictable, which can be used to achieve considerable
benefits in terms of data availability.

We believe that our work can be continued in var-
ious interesting directions. First, better predictors
can be designed and tested, in particular on longer
traces once they are available. While there is obvi-
ously an inherent level of unpredictability in the fu-
ture behavior of users and even the smartest possible
predictor will have a considerable margin of error, we
are at the moment unable to guess if it is possible to
obtain results that are substantially better than the
ones that we are presenting here.

The DHT application that we presented in Sec-
tion 5 is admittedly only a proof of concept. The task
of incorporating our techniques into a real system will
incur various tradeoffs, considering issues such as the
cost of running the optimization algorithm and per-
forming node repositioning. Also, security issues will
need to be examined: could a malicious node be able
to exploit such a repositioning protocol in order to
disrupt the system?

Using our predictors to improve data placement in

current P2P storage applications is an important ob-
jective. Additionally, we will explore other applica-
tions where availability predictions can be exploited.
We believe that the knowledge of which users will
be more likely to connect at a given moment in time
could benefit social networking applications, e.g., to
optimize pre-fetching schemes for home pages of users
which are most likely to connect.

Acknowledgements

The authors wish to thank Moritz Steiner and Lluis
Pamiez-Juarez for helping them obtaining the Kad
traces.

References

[1] Ranjita Bhagwan, Stefan Savage, and Geoffrey
Voelker. Understanding availability. In Peer-to-
Peer Systems II, pages 256–267, 2003.

[2] Luca Caviglione, Cristiano Cervellera, Franco
Davoli, and Filippo Aldo Grassia. Optimization
of an emule-like modifier strategy. Computer
Communications, 31(16):3876 – 3882, 2008. Per-
formance Evaluation of Communication Net-
works (SPECTS 2007).

[3] Jacky Chu, Kevin Labonte, and Brian N. Levine.
Availability and locality measurements of peer-
to-peer file systems. In Proc. of ITCom: Scala-
bility and Traffic Control in IP Networks, 2002.

[4] D. Grolimund. Wuala - a distributed file system.
Google TechTalks video, http://www.youtube.
com/watch?v=3xKZ4KGkQY8, 2007.

[5] Saikat Guha, Neil Daswani, and Ravi Jain. An
experimental study of the skype peer-to-peer
voip system. In Proc. IPTPS, 2006.

[6] Bahman Javadi, Derrick Kondo, Jean M. Vin-
cent, and David P. Anderson. Mining for Avail-
ability Models in Large-Scale Distributed Sys-
tems:A Case Study of SETI@home. In MAS-
COTS 2009. IEEE, September 2009.

8

http://www.youtube.com/watch?v=3xKZ4KGkQY8
http://www.youtube.com/watch?v=3xKZ4KGkQY8

[7] D. Kondo, A. Andrzejak, and D. P. Ander-
son. On correlated availability in internet-
distributed systems. In Proceedings of the 2008
9th IEEE/ACM International Conference on
Grid Computing, pages 276–283. IEEE Com-
puter Society, 2008.

[8] D. Kondo, B. Javadi, A. Iosup, and D. Epema.
The failure trace archive: Enabling comparative
analysis of failures in diverse distributed sys-
tems. In 10th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing
(CCGrid), 2010.

[9] P. Maymounkov and D. Mazières. Kademlia:
A Peer-to-Peer Information System Based on
the XOR Metric. In Revised Papers from the
First International Workshop on Peer-to-Peer
Systems, pages 53–65. Springer-Verlag, 2002.

[10] J.W. Mickens and B.D. Noble. Exploiting avail-
ability prediction in distributed systems. In
Proceedings of the 3rd conference on Networked
Systems Design & Implementation-Volume 3,
page 6. USENIX Association, 2006.

[11] Moritz Steiner, Taoufik E. Najjary, and
Ernst W. Biersack. A global view of Kad. In IMC
’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 117–
122, New York, NY, USA, 2007. ACM.

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In
Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols
for computer communications, page 160. ACM,
2001.

[13] Daniel Stutzbach and Reza Rejaie. Understand-
ing churn in peer-to-peer networks. In IMC ’06:
Proceedings of the 6th ACM SIGCOMM confer-
ence on Internet measurement, pages 189–202,
New York, NY, USA, 2006. ACM.

9

	Introduction
	Datasets
	Prediction Algorithms
	Prediction Accuracy
	An Application Example
	Conclusions

