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Abstract—Blind audio source separation (BASS) arises in a
number of applications in speech and music processing such
as speech enhancement, speaker diarization, automated music
transcription etc. Generally, BASS methods consider multichan-
nel signal capture. The single microphone case is the most
difficult underdetermined case, but it often arises in practice.
In the approach considered here, the main source identifiability
comes from exploiting the presumed quasi-periodic nature of
sources via long-term autoregressive (AR) modeling. Indeed,
musical note signals are quasi-periodic and so is voiced speech,
which constitutes the most energetic part of speech signals. We
furthermore exploit (e.g. speaker or instrument related) prior
information in the spectral envelope of the source signals via
short-term AR modeling. We present an iterative method based
on the minimization of the Itakura-Saito distance for estimating
the sources parameters directly from the mixture using a frame
based analysis.

I. INTRODUCTION

The need for Blind Audio Source Separation (BASS) arises

with various real-world signals, including speech enhance-

ment, speaker diarization, automated music transcription etc..

Generally, BASS methods consider multichannel signal cap-

ture and has been dealt with extensively in the literature. In

the over determined case of BSS the source separation can be

performed satisfactorily, especially in clean environment, for

example by using Independent Component Analysis (ICA) [1],

[2] or Computational Auditory Scene Analysis (CASA) [3].

For underdetermined BSS (UBSS), the problem is ill-defined

and its solution requires some additional assumptions. In the

approach considered here, the sound is modeled as a sum of

autoregressive processes with an additive white noise. Each

source is assumed to have a periodic nature wich makes its

presence identifiable, in [4] we have presented a separation

algorithm which gives good results when the parameters are

well estimated. Here, the parameters are estimated from the

mixture, assuming the number of sources known, by extracting

the sources correlation instead of using the separated sources.
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This paper is organized as follow. In section II we present

the model of joint speech production. In section III and IV

we present the method for estimating the parameters. Then, in

section VI, we give some results.

II. MODEL

A. Signal Model

We consider the problem of estimating an unknown number

of multiple mixed Gaussian sources. We use the short+long

term autoregressive (AR) voice production model [5]:

yt =
K∑

k=1

xk,t + vt, (1)

xk,t =

pk∑
n=1

ak,n xk,t−n + x̃k,t (2)

x̃k,t = bk x̃k,t−τk
+ ek,t (3)

Such source models are frequently used in voice encoding

algorithms like CELP and LPC. Here, yt is the measured

mixture of signals, K is the number of sources xk. vt is an

additive white gaussian noise of variance σ2
v and is supposed

to be uncorrelated with the sources. ek,t is the excitation signal

of the source k also assumed to be gaussian with variance σ2
k.

For each source xk, τk is the period (its fractional part can be

implemented by linear interpolation if the sampling frequency

is high enough), bk its long-term prediction coefficient and the

short-term prediction coefficients, of order pk, are ak,n.

If we introduce the short-term and long-term prediction

error transfer functions

Ak(z) =

pk∑
n=0

ak,n z−n (4)

Bk(z) = 1 − bk z−τk (5)

with ak,0 = 1, the spectra of the sources can be written as:

Sk(f) =
σ2

k

|Ak(f) Bk(f)|2
(6)

S0(f) = σ2
v (7)



The additive noise is considered as an AR model of order 0
and is included in the signals set.

The sources separation algorithm is based on the assumption

that the sources can be extracted from the mixture using the

knowledge of the parameters, this implies a good estimation

of the related parameters.

B. parameters subsets

If the parameters can be considered constant during a short

time segment we can use a frame based method. The short and

long term aspect of the signals are very different by nature,

it may seem natural to separating their analysis. Except the

additive noise, the parameters are sources related, we group

them by source; this impose to alternate the estimation of a

group between sources. The overall set of parameters contains

the following subsets (short term and long term parameters):

θ = [θT
1 · · · θT

k σ2
v ]T (8)

θk = [ ak ϕk]T (9)

ak = [ak,1 · · · ak,pk
]T (10)

ϕk = [ bk τk σ2
k ]T (11)

For the estimation of a given subset of parameters of a given

source we consider that the other sources are constant and also

the other subset of the current source.

III. PARAMETERS ESTIMATION

Many approach can be used for estimating the AR co-

efficients from a mixture. Here we propose to minimize

the Itakura-Saito (IS) distance, then, most of the derivation

are done in the spectral domain and need low complexity

operations. Consider the IS distance:

∫
df [ln(x) − x + 1] (12)

x =
S′(f)

S(f ; θ)
(13)

Where S′(f) = |y(f)|2 is the sample spectrum and S(f ; θ) =∑
k Sk(f ; θk) with Sk(f ; θk) the parametric spectrum of the

source k, defined in (6).

Close to the solution x ≈ 1 and so ln(x) − x + 1 ≈
1
2 (x − 1)2 + O((x − 1)3). Updating the parameters of the

source k while keeping the other sources parameters constant,

we can rewrite x as:

S′(f)

S(f ; θ)
=

S′(f)

Sk(f ; θk)

1

1 + Sk(f ; θk)−1
∑

k̄6=k Sk̄(f ; θk̄)
(14)

The minimization of the IS distance compared to Sk(θk) leads

to a linear prediction problem on the following spectrum:

S′(f)

S(f ; θ)
=

y(f)

1 + Sk(f ; θk)−1
∑

k̄6=k Sk̄(f ; θk̄)
y∗(f) (15)

which is the crossed spectrum between the Wiener estimates

of the source k and the observation y.

IV. ALGORITHM

The algorithm consists by alternatively estimating the short

term and long term subsets of parameters. Each subsets esti-

mation needs to be iterated between all the sources (including

the additive noise) until convergence. Also, we iterate between

all the sources and the algorithm is stopped when all the

subsets of all sources have converged. The short and long term

parameters are in the spectral domain:

Ak = F [1 − ak 0 · · · 0]T (16)

Bk = F [1 0 · · · − (1 − αk)bk − αkbk 0 · · · 0]T (17)

Where F is the DFT Matrix and the two vectors are zero

padded, Ak and Bk have the same size (N) as the DFT of the

observation. αk is the interpolation coefficient of the source

k, due to non integer period. The two terms in bk are at the

position ⌊τk⌋ and ⌊τk + 1⌋.

Sk(f ; θk) and S0(f) are defined in (6) and (7) respectively.

For convenience, we also define

Sk̄(f ; θk̄) =
∑
k̄

σ2
k̄

|A
k̄
(f)B

k̄
(f)|2

(18)

The index k̄ include all the sources (and the noise) except the

one of interest, the source k.

A. Short term parameters estimation

For estimating the short term (st) parameters of order p+1,

also if we work with a single source, we have to remove the

effect of the long term otherwise the estimation is biased by

the harmonic structure. So, until convergence, and for all the

sources:

Ŝk(f) =
S′(f)

1 + S−1
k (f ; θk)Sk̄(f ; θk̄)

(19)

Sst
k (f) = Ŝk(f) |Bk(f)|2 (20)

rk = F−1 Sst
k (f) (21)

The short term coefficients are computed on the above corre-

lation sequence and the new estimates of ak is used for the

next source.

B. Long term parameters estimation

The long term (lt) parameters consists on three parameters,

we also need to clean the short term influence for estimating

them. So, until convergence, and for all the sources:

Ŝk(f) =
S′(f)

1 + S−1
k (f ; θk)Sk̄(f ; θk̄)

(22)

Slt
k (f) = Ŝk(f) |Ak(f)|2 (23)

rk = F−1 Slt
k (f) (24)

If the period is known bk = rk(τk)
rk(0) otherwise τk is estimated

as the delay wich maximize bk (for a realistic range of delay).



The short+plus long term prediction error is:

Se(f) = Slt
k (f) |Bk(f)|2 (25)

σ2
k =

1

N

∑
f

Se(f) (26)

C. Noise variance

In the above formulation the noise is treated as a source. It

is the only one global parameter (non related to a particular

source) and needs the knowledge of all the sources parameters.

S0(f) =
S′(f)

1 + S−1
0 (f)

∑
k=1 Sk(f ; θk)

(27)

σ2
v =

1

N

∑
f

S0(f) (28)

V. INITIALIZATION AND DETAILS

The algorithm needs to be initialized. The periods (for

voiced speech segment) are estimated using a multipitch

algorithm, see for example [6], and are adapted during the

iterative process. For the short and the long term estimation,

the initialization must be more precise, ifnot, some holes

may appear in the estimated spectrum leading to instability.

A way for avoiding this situation, and independently of the

initialization, is to control the variation of the correlation

sequence used in (21) and (24) using forgetting factors. Like

this, correlations are slowly adapted and allow a kind of

tracking for multiframe processing. But it still needs to be

initialized, for a single frame we choose for the short and the

long term coefficients to set them to zeros. At the begining of

the algorithm this is equivalent of constructing the correlation

sequence (21) with the spectral peaks information (the most

energetic part of the spectrum) for the short term and to

estimate the long term coefficient on the correlation sequence

(24) in the mixture, but, step by step this leads to estimate

the parameters on the correlation sequence of the source

individually. When working on long speech segments we have

several consecutive frames. The initialization of a new frame

analysis is done using estimated parameters and correlation

sequences from the previous frame. When the energy of the

observation becomes too small, we stop the analysis and when

a signal reappears we re-initialize everything.

VI. SIMULATION

A. Synthetic data

The first simulation consists on applying the algorithm on

a completly synthetic spectrum, define as :

Y (f) =
∑

Sk(f) + σ2
n (29)

With Sk(f) defined in (6). The result is shown on Fig 1. As

the signal is synthetic, and corresponds to the model, the result

is almost perfect. For this example all the noises variances are

equal to one and the periods are integer. The estimated short

term coefficients are presented in table I.
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Fig. 1. Spectrogram of the mixture, sources, estimated sources and associated
short term modeling.

TABLE I
SHORT TERM COEFFICIENTS ESTIMATION.

ak=1,n 0.6900 -0.9023 0.6635 -0.2310 0.0025

âk=1,n 0.7220 -0.8818 0.7140 -0.2154 0.0192

ak=2,n 0.7113 -0.5150 -0.0655 0.3670 -0.1737

âk=2,n 0.6847 -0.5407 -0.0866 0.3393 -0.1888

B. Real Speech Segment

The next simulation song is composed of two english

speakers segment, a man and a woman. The lenght of the

segment is 64 ms at 8 KHz, the mixture is artificially made

and the signal to noise ratio (SNR) is fixed to 20 dB, the

periods are estimated using a multipitch estimator. We use the

output of the presented algorithm for making the separation,

we compare the obtained sources to the original sources and

the sources extracted using the parameters estimated on the

individual sources (before the mixing process). The separation

algorithm, presented in [4], extracts windowed sources so the

estimated sources are also windowed. The waveform of the

decomposition is shown on Fig 2. The difference between the

two extracted sources is low, note that the speech segments are

well voiced. In Fig 3 we show the associated spectra, as we

can see the spectra of the extracted sources with the proposed

method is not as closed to the true one as the one obtained

with the parameters estimated on the sources, but the most

energetic part is correctly modeled.
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Fig. 2. Waveform of the mixture, sources and estimated sources. The sources
are extracted with the parameters from the mixture and from the source.

VII. CONCLUSION

In this paper we have proposed an algorithm, based on the

minimization of the Itakura-Saito distance, for estimating the

short+long term AR parameters of several sources and also the

additive noise variance from a mixture. The AR parameters are

estimated on the extracted sources correlations which doesn’t

need to extracts the sources themself, only the spectrum of

the sources are approximated. The algorithm is iterative and

need a robust initialization which, also, has been presented.

Simulations on synthetic and real data are encouraging. The

estimated parameters leads to a separation result which is

closed to the one obtained by using the parameters estimated

on the individual sources.
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Fig. 3. Spectrum of the mixture, sources and estimated sources. The sources
are extracted with the parameters from the mixture and from the source.
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