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ABSTRACT
Modern data analytics applications, e.g. Internet-scale in-
dexing, system trace analysis, recommender engines to name
a few, operate on massive amounts of data and call for a par-
allel approach to data processing. In this work, we focus on
the popular MapReduce framework to carry out such tasks
and identify bulk data insert operations as a critical prelim-
inary step to achieve reduced processing times, especially
when new data is generated and processed at regular time
intervals.

We present a parallel approach to bulk data insertion in
a system that use horizontally range partitioned data and
evaluate several variants to insertion operations, including
legacy approaches. Our method exploits the parallel pro-
cessing framework itself to insert data into the system, which
is stored in a semi-structured format. Our results indicate
that a parallel approach to bulk insertion can substantially
reduce the recurrent costs of insertion of new data into the
system.

1. INTRODUCTION
The MapReduce (MR) framework [8], designed by Google
and democratized by the Hadoop project [3], has paved the
way for massive-scale data analytics applications. One rea-
son for the success of the MR framework is that it relies on
a distributed system to store and process data that scales
well, tolerate faults and that can be deployed on a cluster of
“commodity” hardware. Current best-practice deployments
[9] suggest to couple the MR framework with a distributed
database such as BigTable [5] or HBase [2], with the goal of
avoiding to read unnecessary data.

In this work, we address the fundamental problem of efficient
bulk data insert in such a distributed framework. Bulk in-
sertion is crucial since it is a recurrent operation: data is
collected over a period of time (e.g. a day), aggregated and
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then bulk inserted into a parallel processing framework. Al-
though some works [12, 4, 7] showed that bulk insertion
accounts for a substantial fraction of the total time required
to obtain processed results, this problem has been framed
for the first time in [13], for horizontally range-partitioned
distributed databases.

The general principle underlying many data management
systems that support parallel processing frameworks is that
of horizontally partition data over a cluster of shared-nothing
machines. There are two kind of horizontal partitioning
techniques, hash based and range based partitioning: the
former scheme uses the hash of the key to decide each key-
value destination, while in the second scheme each partition
corresponds to a range of sorted primary-key values. Ex-
amples of such systems are Dynamo [10], Cassandra [11],
BigTable [5], PNUTS [6], and HBase [2].

In this work, we focus on systems that use range partition-
ing. In this case, bulk insertion can be problematic: when
a key range is hot, the machine assigned to it can be over-
loaded. For example, consider data to be range partitioned
by a timestamp value. As bulk insertion takes place at reg-
ular time intervals, new records will fall in a small subset of
the timestamp range. This creates hot-spots in those ma-
chines that are in charge of such range: overall system per-
formance decreases and parallelism is lost. Instead, when
hash partitioning is used, a natural load balancing avoids
hot-spots. However, many analytic tasks require access to a
range of the key-space, hence this approach is not suitable.

Motivated by our current efforts toward processing a large
amount of network traces for troubleshooting and traffic
analysis using the MR framework and HBase, we study effi-
cient techniques for bulk insertion. Instead of enhancing the
architecture of HBase similarly to what has been done for
PNUTS [6] in [13], we propose a parallel approach to bulk
insertion that uses the MR framework itself to write data in
HBase. We show that for many analytical applications that
require range partitioned data, our method is very efficient:
it involves all machines of the cluster in the insert opera-
tion, while no data movement across machines is necessary.
Through a series of experiments, we show the benefits of our
approach and compare it to current best-practices in bulk
insertion. While in the rest of the paper we focus on HBase,
such approach could be easily adapted to other range based
partitioned systems.



The remainder of the paper is organized as follows: in Sec. 2
we discuss the bulk insertion problem in details, and outline
the method described in [13]. In Sec. 3 we describe our tech-
nique, which is evaluated in Sec. 4, and conclude in Sec. 5.

2. SYSTEM OVERVIEW
In this Section, we outline the system we use in this work
and describe in details the problem raised by bulk insert op-
erations. Here we gloss over several details of each building
blocks of the system, and focus on HBase, which is mostly
affected by insert operations.

In this work we the Hadoop framework [3]: the HDFS dis-
tributed file system, Hadoop MR and HBase, the distributed
database.

HBase is a distributed column-oriented database built on the
top of HDFS. Its main storage containers are the Tables,
conceptually similar to the database equivalents. Data is
stored and retrieved by key, and table rows are sorted by
row key. We now overview the most important components
of HBase. In HBase, tables are automatically partitioned
horizontally into Regions; each region includes a non over-
lapping and contiguous subset of the tables defined by their
first and last keys. Whenever a region grows over a thresh-
old, it is split in two new regions, of roughly the same size.
Regions are assigned to region servers (RSs), the nodes
that are responsible for read, write and split operations. The
HMaster is responsible of coordinating and orchestrating all
the nodes of the cluster; it accounts for assigning regions
to RSs, bootstrapping and failure recovery. Regions are as-
signed in a pseudo-random order to the RSs. Data is not
moved around aggressively in order to achieve load balanc-
ing. HBase uses Zookeeper [1] to maintain the cluster state.
HFiles, the equivalent of BigTable SSTable, are the actual
row storage structure where data is written. They contain an
ordered sequence of key/values and some indexes, to speed
up data lookup. Using the Zookeeper cluster, fresh clients
obtain a table holding the list of all regions and their start
keys, from which they can learn the location of each row in
the table.

When a distributed database system, such as HBase, stores
range partitioned data, it is important to avoid overloading
individual cluster nodes when a particular portion of the
range is hot.

In the following, we illustrate the problem of bulk insert with
the simplifying assumption of an empty database (Fig. 1).
Suppose data is indexed using a (unique) timestamp as key:
data is partitioned according to the timestamp value. Fur-
thermore we assume data sorted according to the partition
key and inserted chronologically. The key space is repre-
sented using a line, divided in days. The nodes of the cluster
are represented as circles, ranging from A to G. The figure
is split in four parts, representing four insertion phases.

Initially the table is empty. As the first key value is inserted
in the table, the whole key space is assigned to a single
region, hosted by a single RS, namely A. All subsequent
insertions are supported by node A (see Fig. Fig. 1.1).

As soon as the region size reaches a threshold, a split oper-

ation is required: the partition is divided in two new par-
titions (see Fig. 1.2). One partition will hold half of the
data written so far, the other partition will hold the other
half. In general, the HBase system will assign one of the two
new partitions to a different machine to achieve load balanc-
ing. As a consequence, a move operation, i.e. moving data
from the original node to the new node, is also required.
In the example, the RS A hosting the first partition takes
care of range Monday 0-6 am, RS B of all the remaining key
range (starting from Monday 6 am). In Fig. 1.3 the process
continues. Since data is inserted in order according to the
timestamp, all the following insertions affect node B only.
In Fig. 1.4, when the insertion point reaches Monday 18 pm,
the region hosted by node B fills up and is split in two equally
sized parts. The first half covers keys from Monday 6 am to
Monday 12 pm; the second half covers the whole remaining
key space and takes half of the previous split. The last re-
gion is assigned to node C, that will will support the whole
insert load. Indeed, the range affected by new data is the
one assigned to the new node. This phenomenon propagates
as new splits and move operations take place, when the par-
tition size is not sufficient to accommodate new data. Note
that when the assumption of an empty database is dropped,
this problem aggravates: split and move operations are more
frequent and involve more cluster nodes.

In the above example we considered only one possible sce-
nario for bulk insert. As illustrated in [13], there are several
other cases that can be studied. In general, when no split op-
erations are required (because the new data to insert in the
database is small), bulk insert is not critical. In this work
we consider a dense scenario, in which bulk insert involves a
large amount of data. Note also that data can be inserted in
a random or in a sorted order (based on range keys). We fo-
cus on the latter case, which is often encountered in practice.
For example log files, network traces, e-commerce transac-
tions all have a natural order based on the timestamp of an
event.

An architecture for efficient bulk insert and its application
to PNUTS has been proposed in [13]. The main idea be-
hind the design of such a system, which requires auxiliary
components to complement the legacy PNUTS data store,
is the following. Bulk insert is prepared through a planning
phase, in which a central component minimizes the maxi-
mum makespan on each machine, computed as the sum of
the costs payed to move and insert data in the system. In
practice, partitions are pre-computed so that both the insert
and the move load is evenly shared among all the nodes of
the cluster and the insertion time is minimized. Once the
planning phase is completed, a number of staging servers
proceed in parallel to insert new data into the machines in
charge of each partition.

In this work we show that it is possible to achieve efficient
bulk insert without having to modify the underlying data
management system and use additional nodes, that can add
significant complexity and cost to the system. Bulk insert is
executed using the MR framework: all nodes of the cluster
are equally involved in insert operations, and no optimiza-
tion phase is required. Our method is particularly adapted
for dense bulk inserts, and when data is generated and read
in sorted order.
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Figure 1: Example of sorted insertion of timestamp ordered data in a range partitioned distributed database.
All the insertions are supported by a single node, which covers the most recent key range.

Before proceeding any further, we now outline the data flow
that characterizes bulk inserts in our system, which is il-
lustrated in Fig. 2. A data source collects raw data that
is aggregated and written on the HDFS. HDFS is particu-
larly suited for streaming data access, with typical patterns
consisting of a single write operation and multiple read op-
erations. Read/write latency is sacrificed in favor of high
throughput. Raw data is split into equally sized blocks
stored at different locations in the cluster. Data blocks can
be replicated by HDFS to cope with failures. Note that data
uploaded to HDFS does not need to be structured: hence,
no pre-processing operations are required during this phase.
However, if the input data is not splittable, e.g. due to the
absence of record boundaries, the data source is required
to introduce sync points to help MR jobs perform parsing
operations.

Once raw data is on HDFS, bulk inserts in HBase can take
place. As hinted above, we use the MR framework to per-
form such operation. Each mapper reads data from the local
(HDFS) node and parses and analyzes it to create an assign-
ment of data ranges to reducers such that each reducer will
be involved in inserting roughly the same amount of data.
Finally, reducers executed by each node of the cluster collect
data from the mappers and write it in parallel to HBase.

3. PARALLEL BULK INSERTION
We now describe how the MR framework can be stretched
to go beyond analytic tasks: in what follows we describe a
parallel approach to bulk data insert. Despite its conceptual
simplicity, the design of appropriate MR jobs to perform
such tasks is far from being trivial. Recall that the HBase
system relies on RS that store a subset, termed region, of
the row keys of data tables. Each RS is responsible for one
or multiple column families. Note also that tables are sorted
based on row keys and column families are sorted based on
column keys.

Our approach directly produces, sorts and positions HFiles,
which are the materialization of a column family. A bulk
insert job consists of both a Map and a Reduce phase. In the
Map phase, data is read in parallel by all the mappers from
HDFS using the native HDFS client interface; in the Reduce
phase, HFiles are written in parallel by all the reducers back
to HDFS for HBase to consume them. HFiles need to be
appropriately sorted and placed to achieve load balancing
across region servers in terms of number of row keys to store.

Between the Map and the Reduce tasks, we proceed with an
intermediate sorting phase. In practice, the goal is to assign
reducers an ordered range of mapper output keys to allow
the Reduce phase to produce “well-formed” HFiles.

The default partitioner used in the MR framework applies a
hash function to each key to determine a mapping between
the (sorted) output key space of a mapper and the reducers.
Each reducer is responsible for a set of roughly the same
size of mapper output keys. However, note that the sort
phase does not produce a globally sorted output, because
each mapper only deals with a subset of the global key space.
Therefore, reducers may operate on interleaved key ranges,
e.g. a reducer could deal with keys (1, 2, 5) and another with
keys (3, 4, 6).

Hence, our data insertion MR job uses an order preserving
partitioner, which maintains a total order among the whole
mapper output key space and avoids reducers to operate on
interleaved key ranges. However, such a partitioner intro-
duces an additional problem: the key space cannot be easily
split among multiple reducers. Indeed the distribution of the
keys in the mapper key space is rarely uniform and some re-
ducers may end up being assigned a key range containing
a small number of keys while other reducers may be over-
loaded with a densely populated key range. We solve this
problem with a preliminary sampling phase on the global
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Figure 2: Data flow

key space, which is executed before the data insertion MR
job by the client in charge of the data insertion. Note that
the sampling phase is lightweight and fast, as it does not
require a full scan of the dataset.

The MR framework comes with a set of three samplers: the
“SplitSampler” takes a fixed number of keys to sample from
the beginning of a fixed number of HDFS chunks; the “Ran-
domSampler” is similar to the SplitSampler, but chooses the
keys to sample uniformly at random; finally, the “Interval-
Sampler” selects keys at regular intervals through the HDFS
chunks. The choice of a particular sampler depends on the
nature of the dataset to be analyzed and, if needed, a new
sampler can be easily coded. In this work, we use the “In-
tervalSampler”, which is a good choice when the key space
to analyze is sorted1. Note that the samplers provided with
the MR framework can only operate on the input key space
of the mappers. However, our requirement is to balance the
load of reducers, which would require sampling the output
key space of mappers. Indeed, the partitioning (i.e., the
“shuffle” phase) is performed on the mapper output keys. In
our work, we set the input/output key space of a mapper
to be equal, thus the sampling phase can be done without
modifications to the MR framework.

4. EVALUATION
We now proceed with an evaluation of our approach to par-
allel bulk insert. We compare the performance achieved by
our method to that of two baseline approaches that are cur-
rently used in real deployments.

Inserting data directly in the HDFS constitutes a typical ap-
proach to bulk data insertion. In this case, a single source
writes data to the cluster. With this method, the MR frame-
work requires full scans of the entire dataset to parse data,
which constitutes a recurring computational overhead for
all nodes involved in Map operations. We label this method
HDFS.

An alternative approach is to use HBase as the sink of a
data stream. In this case, the source needs to produce semi-
structured data which introduce computational overhead at
the client node. However, once data is inserted in HBase,
MR jobs are greatly simplified since data analysis tasks nei-

1For sake of completeness, we used the dataset file position
indicator as the input key to mappers and reducers.

ther involve parsing nor a complete scan of the dataset. This
approach is particularly effective when the data to insert is
not too big or if the data is produced in real time and at
small rate. Note that in this case, the speed can be improved
by using multiple threads to write to HBase. We label this
method HBase.

Additionally, we study the performance of an alternative
parallel bulk insert method based on the MR framework.
This method relies on the native HBase interface instead
of directly writing HFiles as described in Sec. 3. In this
case, the legacy HBase system takes care of split and move
operations. First data is uploaded to HDFS, as described
above. Subsequently, a data insertion MR job, made by
a single Map phase, takes care of writing data in HBase.
Data is read from HDFS and written to HBase using the
respective native interfaces. Read and write operations are
performed in parallel by all the nodes of the cluster. This
simple approach to parallel data insertion heavily relies on
HBase to appropriately organize and sort data. We label
this method Parallel HBase.

Tab. 1 includes the 2 default methods HDFS, and HBASE,
parallel HBase and our method discussed in Sec. 3 and la-
beled Parallel HFile.

For our experiments we used a cluster of 34 nodes: a single
node features a dual core processor, 4 GB of RAM and 250
GB of disk. All servers reside in the same network and are
connected using a Gigabit switch. Four machines are per-
manently assigned to individually host the necessary aux-
iliary services that control our cluster: a filesystem meta-
data server (the NameNode) required by HDFS, Zookeeper
required by HBase, the HBase metadata server, and the
master controller of the MR framework (the JobTracker).
The other machines are used to instantiate the distributed
components of HDFS (the DataNode), HBase (the Region-
Server) and MR (the TaskTracker), and we vary their num-
ber across the experiments, from 10 to 30. In this work, we
used the Cloudera CDH3 distribution of Hadoop MR and
HDFS, and we patched the latest release of HBase following
the best practices indicated in [2].

The dataset used to perform the bulk data insert exper-
iments originally reside on a separate client machine and
consists of 11 GB of network traces collected from the inter-
nal LAN of our laboratory. The dataset is formatted accord-



Default Parallel
HDFS HBASE HBase HFile

10 nodes 17 min 286 min 212+17 min 25+17 min
20 nodes 17 min 264 min 114+17 min 14+17 min
30 nodes 17 min 239 min 89+17 min 10+17 min

Table 1: Execution time of different insertion strate-
gies

ing to the PCap specification2, which is a typical example
of an un-splittable data format. In particular, our dataset
includes a global header, followed by the records of captured
packets. The record size is not fixed and each record con-
tains a field incl len indicating the record size. The dataset
contains no sync points, hence a parsing phase executed at
the client is required. We used the default, 64 MB, split size
of HDFS: we thus have a total of 174 splits.

Tab. 1 summarizes the results we obtained with the various
bulk data insertion approaches we discussed. The values
reported in Tab. 1 are averaged over 5 experiment runs, and
the variance is in the order of seconds.

For the default approaches, uploading data directly to HDFS
allows, as expected, to obtain the best write throughput
values. However, the dataset is stored in a form that requires
the data analysis MR jobs to do the heavy lifting of scanning
(possibly multiple times) the whole dataset. Instead, writing
directly to HBase allows analytics operations to avoid full
scans reading unnecessary data. This comes at the cost of
a dramatic increase in the insertion times, which is order of
magnitude larger for the second default approach. For the
parallel approaches, we observe that Method 1, which uses a
MR job to write in HBase, reduces by roughly 30% the data
upload time with respect to the HBase default method. This
result can be greatly improved with the approach described
in Sec. 3, which bypasses the HBase client interface. Data
upload times are reduced by one order of magnitude with
respect to the HBase default method. Moreover, parallel
methods scale better with the number of hosts belonging to
the cluster, as shown in the table.

5. CONCLUSION
In this work, we examined a variety of approaches to bulk
data insertion, a recurrent operation that consists in import-
ing a dataset into a cluster to be processed using the MapRe-
duce framework. We showed that a parallel approach to data
insertion can consistently speed up this critical preliminary
step, that has been reported to account for a large fraction
of the total time to obtain processed results in prior works
on data-intensive analytics applications. Our most advanced
method required an elaborate use of the MapReduce frame-
work itself to carry out insertion operations. As a result,
data was stored in a semi-structured manner, which can
substantially benefit analytic operations by avoiding read-
ing unnecessary data.

Our research agenda includes an extension of our method to
accommodate complex scenarios with non-empty database

2wiki.wireshark.org/Development/LibpcapFileFormat

and with multiple input sources.
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