
Implementing the Media Fragments URI Specification

Davy Van Deursen
Ghent University - IBBT,

Ghent, Belgium
davy.vandeursen@ugent.be

Raphaël Troncy
EURECOM

Sophia Antipolis, France
raphael.troncy@eurecom.fr

Erik Mannens
Ghent University - IBBT,

Ghent, Belgium
erik.mannens@ugent.be

Silvia Pfeiffer
Vquence

Sydney, Australia
silviapfeiffer1@gmail.com

Yves Lafon
W3C

Sophia Antipolis, France
yves@w3.org

Rik Van de Walle
Ghent University - IBBT,

Ghent, Belgium
rik.vandewalle@ugent.be

ABSTRACT
In this paper, we describe two possibilities to implement the
W3C Media Fragments URI specification which is currently
being developed by the Media Fragments Working Group.
The group’s mission is to address media fragments on the
Web using Uniform Resource Identifiers (URIs). We de-
scribe two scenarios to illustrate this implementation. More
specifically, we show how User Agents (UA) will either be
able to resolve media fragment URIs without help from the
server, or will make use of a media fragments-aware server.
Finally, we present some ongoing discussions and issues re-
garding the implementation of the Media Fragments speci-
fication.

Categories and Subject Descriptors
H.5.1 [Multimedia Information System]: Audio, Video
and Hypertext Interactive Systems; I.7.2 [Document Pre-
paration]: Languages and systems, Markup languages, Mul-
ti/mixed media, Standards

General Terms
Languages, Standardization

Keywords
Media Fragments, Video Accessibility

1. INTRODUCTION
Media resources on the World Wide Web (WWW) used

to be treated as ‘foreign’ objects, which could only be em-
bedded using a plugin that is capable of decoding and inter-
acting with the media resource. The HTML5 specification
is a game changer and most of the popular browsers support
already the new <video> element. However, specific media
servers are generally still required to provide for server-side
features such as direct access to time offsets into a video
without the need to retrieve the entire resource. Support for
such media fragment access varies between different media
formats and inhibits standard means of dealing with such
content on the Web [7].

The W3C Media Fragments Working Group1 (MFWG)

1http://www.w3.org/2008/WebVideo/Fragments/

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

is part of W3C’s Video in the Web activity whose goal is
to make video a “first class citizen” on the Web. In this
context, the mission of the MFWG is to address media
fragments on the Web using Uniform Resource Identifiers
(URIs) [1]. Following a requirement phase [9], three differ-
ent axes have been identified for media fragments: temporal
(i.e. a time range), spatial (i.e. a spatial region), and track
(i.e. a track contained in the media resource). Furthermore,
media fragments can be identified by name, which is a com-
bination of the aforementioned three axes.

In this paper, we present a partial implementation of this
specification. We illustrate this implementation using two
scenarios. In scenario (a), Alice has received on her Face-
book wall a status message containing a Media Fragment
URI, that highlights 75 seconds of a video clip. In scenario
(b), Alice creates a Web page embedding this video and
adding a Spanish audio track (another resource), and sends
it to José, her Spanish nephew. We first show the different
possibilities to implement the Media Fragments specification
based on these two scenarios (sections 2 and 3). We identify
then a list of current implementation problems (in section 4).
Finally, we give our conclusions and outline future work in
Section 5.

2. PROCESSING MEDIA FRAGMENTS
WITHIN THE USER AGENT

In scenario (a), Alice receives Facebook notifications on
her smart phone. She wants to watch the 75 seconds of the
movie using the media fragment URI posted on her wall:

http://example.com/video.ogv#t=25,100

In order to be able to play this part of the video without
downloading the whole media resource, the time range needs
to be mapped to one or more corresponding byte ranges.

Let’s suppose Alice has a smart UA at her disposal, in the
sense that it can map by itself a fragment identifier into a
range request expressed in bytes. When Alice clicks on the
Media Fragment URI link, the following steps occur:

1. The UA parses the media fragment identifier and maps
the fragment to its corresponding byte ranges. Note
that this mapping highly depends on the underlying
media format. For example, a UA can collect the
header information of MP4 files (containing tables giv-
ing a complete time and byte-offset mapping) by ask-
ing the first couple of bytes of the file [2]. Further,

Ogg files support temporal seeking over the network
by applying a bisection search algorithm over the Ogg
pages in the file [4].

2. Based on the found byte ranges, the UA sends one
or more HTTP Range requests in terms of bytes to
the server. Note that, in this scenario, an HTTP 1.1-
compliant Web server supporting byte range requests
is enough to serve media fragments.

3. The server responds with a 206 Partial Content re-
sponse, containing the bytes corresponding to the re-
quested media fragment. Finally, the UA starts play-
ing the requested media fragment. The HTTP com-
munication between the UA and the server is listed in
Listing 1.

Listing 1: Accessing media fragments on an HTTP
server.
HTTP request
GET /video.ogv HTTP /1.1
Host: www.example.com
Accept: video/*
Range: bytes =19147 -22880

HTTP response
HTTP /1.1 206 Partial Content
Accept -Ranges: bytes
Content -Length: 3743
Content -Type: video/ogg
Content -Range: bytes 19147 -22880/35614993

{binary data}

The advantage of processing media fragments within the
UA is that media fragments can be served by a traditional
HTTP Web server. On the other hand, UAs need to be
aware of the syntax and semantics of media formats. Fur-
thermore, whether media fragment to byte range mapping
is possible or not within the UA, without having the full
original media resource at its disposal, highly depends on
the media format.

3. PROCESSING MEDIA FRAGMENTS
WITH SERVER HELP

In scenario (b), Alice wants to share her experience with
José, her Spanish nephew. However, she knows that her
nephew is not fluent as she is in English. Therefore, she
quickly sets up an HTML 5 web page containing just the
video track of the movie fragment she saw:

http://example.com/video.ogv#t=25,100&track=’video’

Alice adds also a Media Fragment URI to this Web page,
pointing to the corresponding Spanish audio track, which is
located in a different media resource:

http://example.com/video_es.ogv#t=25,100&track=’audio’

Let’s suppose that José has a normal UA that cannot
map media fragments to bytes by itself, but understands
also media fragments URI. When José starts to play the
video, the following steps occur:

1. The UA parses the two media fragment identifiers and
creates for each of them an HTTP Range request ex-
pressed in a different unit than bytes. More specifi-
cally, the Range header is expressed with time and/or
track units, as illustrated in Listing 2 [8].

2. The server, which understands these other units, inter-
prets the HTTP Range request and performs the map-
ping between media fragment and byte ranges. Based
on this mapping, the server selects the proper bytes
and wraps them within a HTTP 206 Partial Content
response. Note that such a response also contains ad-
ditional Content-Range headers describing the content
range in terms of time and tracks (see Listing 2).

3. The UA needs to synchronize the two received me-
dia resources. This can be easily implemented using
HTML5 and a bit of Javascript (an excerpt of this is
shown in Listing 3) [5]. Synchronization is obtained by
setting the currentTime properties right for each me-
dia element. Note that, as pointed out in [3], drift
problems can occur since these different media ele-
ments are normally decoded in different threads. To
fix such drifts, regular re-synchronisation points can
be included during the playback.

Listing 2: Accessing media fragments on a Media
Fragments-enabled HTTP server.
HTTP request
GET /video_es.ogv HTTP /1.1
Host: www.example.com
Accept: video/*
Range: t:npt =25 -100& track='audio '

HTTP response
HTTP /1.1 206 Partial Content
Accept -Ranges: bytes , t, track
Content -Length: 3743
Content -Type: video/ogg
Content -Range: bytes 19147 -22880/35614993
Content -Range: t:npt 24.85 -100.34/653.791
Content -Range: track audio ,subtitle /653.791

{binary data}

Listing 3: Excerpt of HTML5 and Javascript code
for synchronizing media resources.
<div id="tracks">

<video class="v" src="video.ogv#t=25 ,100& track='
video '" type="video/ogg" />

<audio class="a" src="video_es.ogv#t=25 ,100& track
='audio '" type="audio/ogg"/>

</div>
<script type="text/javascript">

// move all current playback times to same time
function playTime(time) {

tracks = jQuery("div#tracks").children ();
for (i=0; i<tracks.length; i++) {

tracks[i]. currentTime = time;
}

}

// play/pause toggle
function playpause () {

// resynch tracks ...
}

</script >

An example of a server implementing the media fragment
to bytes mapping is NinSuna2. NinSuna is a fully integrated
platform for multimedia content selection and adaptation.
Its design and the implementation thereof are based on Se-
mantic Web technologies. Furthermore, a tight coupling ex-
ists between NinSuna’s design and a model for describing

2http://ninsuna.elis.ugent.be/

structural, semantic, and scalability information of media
resources. Media resources are ingested into the platform
and mapped to this model. The adaptation and selection
operations are based on this model and are thus indepen-
dent on the underlying media formats, making NinSuna a
format-independent media delivery platform [10]. The plat-
form is currently able to perform track and time range se-
lection and supports therefore the Media Fragment-specific
HTTP request discussed above.

4. DISCUSSION
In this section, we would like to point out a number of

discussion points related to the implementation of the Media
Fragments specification.

Currently, it is not clear for all media fragment axes, how
media fragments should be rendered and experienced by
the end-user in a meaningful way. For instance, temporal
fragments could be highlighted on the seekbar; spatial frag-
ments could be emphasized by means of bounding boxes or
they could be played back in colour while the background
is played in grayscale. Finally, different tracks could be se-
lected using dropdown boxes or buttons. Whether media
fragments URIs are hidden from the end-user or not depends
on the application.

Another point of discussion is how UAs are able to dis-
cover the available named and track fragments. More specif-
ically, there is currently no standardized way to discover
these names. One possibility is to use the Continuous Me-
dia Markup Language (CMML, [6]), which allows to an-
notate and index continuous media files. This way, a UA
requests a CMML description of a media resource to obtain
the available named and track fragments. Another possibil-
ity is to use the Media Multitrack API3 developed within
the HTML5 Working Group. This proposal is a JavaScript
API for HTML5 media elements that allows Web authors to
determine the data that is available from a media resource.
It exposes the tracks that the resource contains, the type
of data it is (e.g. audio/vorbis, text/srt, video/theora), the
role this data plays (e.g. audio description, caption, sign
language), and the actual language it is in (RFC3066 lan-
guage code). It also enables control over the activation state
of the track.

Finally, existing Web proxies used to cache and speed up
the delivery of Web content. However, they have no means of
caching Media Fragment URI Range requests as illustrated
in section 3, since they only understand byte ranges. One
way to solve this issue is to develop Web proxies that are
aware of Media Fragment URIs. Another possibility is to
implement a so-called two-ways handshake in which a first
Range request expressed in a custom unit is issued from the
UA, for which the server answers with just a header contain-
ing the correspondence of this unit into bytes and a specific
header telling the UA to issue another Range request, this
time expressed in bytes and can therefore be cached [8].

5. CONCLUSION AND FUTURE WORK
In this paper, we discussed how parts of the W3C Media

Fragments 1.0 specification can be implemented. We dis-
cuss this implementation using two simple scenarios: one
scenario where the UA is smart enough to resolve the media

3http://www.w3.org/WAI/PF/HTML/wiki/Media_
MultitrackAPI

fragment on its own and one scenario where the UA gets help
from a Media Fragments-aware Web server. Additionally,
we identified a number of discussion points regarding the
implementation of media fragments that need to be solved
in the near future, such as how to render media fragments in
UA, how to discover named and track fragments, and how
to cache media fragments.

6. ACKNOWLEDGMENTS
This paper was supported by the French Ministry of In-

dustry (Innovative Web call) under contract 09.2.93.0966,
“Collaborative Annotation for Video Accessibility” (ACAV),
Ghent University, the Interdisciplinary Institute for Broad-
band Technology (IBBT), the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research-Flanders (FWO-Flanders),
and the European Union.

7. REFERENCES
[1] M. Hausenblas, R. Troncy, Y. Raimond, and

T. Bürger. Interlinking Multimedia: How to Apply
Linked Data Principles to Multimedia Fragments. In
2nd Workshop on Linked Data on the Web
(LDOW’09), Madrid, Spain, 2009.

[2] ISO/IEC. Information technology – Coding of Audio,
Picture, Multimedia and Hypermedia Information –
Part 14: MP4 file format. ISO/IEC 14496-14:2003,
December 2003.

[3] S. Pfeiffer. http://blog.gingertech.net/2010/02/
12/audio-track-accessibility-for-html5/.

[4] S. Pfeiffer. The Ogg Encapsulation Format Version 0.
RFC 3533, http://www.ietf.org/rfc/rfc3533.txt,
2003.

[5] S. Pfeiffer and C. Parker. Accessibility for the HTML5
<video> element. In 6th International
cross-disciplinary conference on Web accessibility
(W4A’09), pages 98–100, Madrid, Spain, 2009.

[6] S. Pfeiffer, C. Parker, and A. Pang. The Continuous
Media Markup Language (CMML), Version 2.1.
http://www.annodex.net/TR/

draft-pfeiffer-cmml-03.html, 2006.

[7] R. Troncy, L. Hardman, J. van Ossenbruggen, and
M. Hausenblas. Identifying Spatial and Temporal
Media Fragments on the Web. W3C Video on the
Web Workshop, 2007.

[8] R. Troncy and E. Mannens, editors. Media Fragments
URI 1.0. W3C Working Draft. World Wide Web
Consortium, December 2009.

[9] R. Troncy and E. Mannens, editors. Use cases and
requirements for Media Fragments. W3C Working
Draft. World Wide Web Consortium, November 2009.

[10] D. van Deursen, W. V. Lancker, W. D. Neve,
T. Paridaens, E. Mannens, and R. V. de Walle.
NinSuna: a Fully Integrated Platform for
Format-independent Multimedia Content Adaptation
and Delivery based on Semantic Web Technologies.
Multimedia Tools and Applications – Special Issue on
Data Semantics for Multimedia Systems,
46(2-3):371–398, January 2010.

