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Acoustic echo cancellation in non-linear and noisy
environments

Moctar I. Mossi, Christelle Yemdji Tchassi, Nicholas W. D. Evans and Christophe
Beaugeant

Abstract

This paper presents a new assessment of four approaches to acoustic echo
cancellation in the presence of non-linear echo. The comparison is per-
formed with algorithms that are configured to give equivalent performance
under linear-only echo conditions, thereby giving a more meaningful assess-
ment. We also compare the effect of non-linear echo to that ofnoise and
show that, whilst performance differs in non-linear environments, there are
negligible differences in noisy environments. The computationally efficient
FBLMS algorithm is shown to perform as well as other algorithms in noisy
environments but performs poorly under non-linear echo conditions. We also
show how the correlation between non-linearities and the speech signal can
corrupt the echo path estimate and leads to small attenuation of non-linear
components at the expense of reduced attenuation for linearecho. Finally we
discuss the merits of modelling non-linearities as a linearenvironment with
a time varying echo path.

Index Terms

echo cancellation, non-linear distortion, noise, AEC, LMS, NLMS, APA,
FBLMS.





1 Introduction

The general problem of acoustic echo cancellation (AEC) has been actively
researched for many years and adaptive filtering has proved to be the most popu-
lar solution in the communications environment. This has led to the development
of many different algorithms to optimize adaptive filtering in the presence of ad-
ditive noise and the inevitable echo path variations that generally decreasefilter
performance. In noisy environments adaptive filters are configured sothat conver-
gence (and/or divergence) occur gradually, and thus there is an inbuilt robustness
to sudden increases in noise level e.g. [1–3]. Fast adaptive filters ensure robustness
to echo path variations. Additional challenges come from the miniaturization of
components which can lead to non-linear echo artefacts. Many efforts to improve
adaptive filters for non-linear environments have been reported and twodominant
solutions have emerged. The first is based on the Volterra filter [4] and thesecond
involves post-filtering [5] in combination with AEC adaptive filtering. The Volterra
solution is generally slow to convergence and is highly computationally complex.
Post-filters are less complex but rely on the performance of linear adaptive filters
that are still disturbed by non-linear echo. Thus linear adaptive filtering isstill pop-
ular and it is of interest to assess adaptive filters in such environments, asreported
in our previous work [6].

In [6] the performance of adaptive filters was assessed by comparing the degra-
dation in echo return loss enhancementERLE with (i) linear echo and (ii) linear
and non-linear echo. However, this assessment perhaps does not best reflect the
true robustness of each algorithm to non-linear echo, since the comparison in [6]
was made independently of theERLE under linear conditions. The contribution
in this paper is thus new experimental work which compares the same approaches
to AEC that were assessed in [6] but here with identical adaptation step sizes and
with tuned regularization factors that give each approach equivalentERLE per-
formance underlinear echo conditions. This form of assessment aims to give a
more meaningful and fairer comparison of each approach undernon-linear echo
conditions.

A second contribution in this paper is a new comparison of the effects of non-
linear echo to additive background noise. The aim here is to judge the relative
importance of non-linear echo and associated degradation inERLE to that caused
by noise. Since the effects of non-linear echo and noise are uncorrelated they are
accordingly assessed independently. Therefore, the experimental results that are
presented in this paper can be used to predict performance in other environments
if the level of each perturbation is known. This can help to decide which approach
to AEC is most applicable in which environment.

The remainder of the paper is organized as follows. In Section 2 a general echo
cancellation system is described with the four different approaches to AEC that
are investigated in this paper. In Section 3 we introduce the non-linear echoand
noise model which is used in our assessments. Experimental work and results are
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Figure 1: System/echo model illustrating the acoustical coupling between the loud-
speaker and microphone and a general approach to adaptive AEC.

presented in Section 4. The implications of the work are discussed in Section 5and
our conclusions are presented in Section 6.

2 Acoustic echo cancellation

We here introduce a typical system/echo model and a general framework for
AEC with adaptive filtering. Also described are the four approaches to AEC that
are investigated in this paper.

2.1 System/echo model

A general system/echo model, which was used for all experiments reported
in this paper, is illustrated in Figure 1. The terminal receives a down-link (or
loudspeaker) signalx(n) from a far-end speaker, and transmits an uplink (or mi-
crophone) signaly(n). In addition to near-end speechs(n) and additive back-
ground noisen(n) the uplink signal potentially includes an additional echo com-
ponentd(n), which is a result of the acoustical coupling between the loudspeaker
and the microphone. It is generally modelled with a linear convolution,d(n) =
x(n) ∗ h(n), whereh(n) is the impulse response which characterizes the acous-
tical coupling. AEC may thus be implemented by estimatingh(n) with a filter
ĥ(n) in order to give an estimate of the coupled echo signald̂(n) = x(n) ∗ ĥ(n).
The echo is attenuated simply by subtractingd̂(n) from the uplink signal. Since
the acoustical coupling is generally time varyingĥ(n) is usually an adaptive fil-
ter. Near-end speech disturbs the adaptive filter and soĥ(n) is usually updated in
echo-only periods, i.e. whens(n) = 0. Noise can also disturb the adaptive filter
but, if we also suppose that the noise is negligible, i.e.n(n) = 0, theny(n) = d(n)
and thus the resulting error signal,e(n) is simply the difference between the echo
signal and its estimate, i.e.e(n) = d(n) − d̂(n). The errore(n) is used to update
the filterh(n) whose goal is to drivee(n) to zero.

AEC rarely operates under such ideal conditions, however, and thus itis inter-
esting to study the robustness under more realistic conditions. i.e. with near-end

2



speech, non-linear echo and additive background noise. As adaptation is simply
paused during intervals of near-end speech, only disturbances fromnon-linear echo
and background noise are considered here. Each of the approaches to AEC that are
considered are described below.

2.2 Linear adaptive filtering algorithms

The adaptive AEC filters considered in this paper are updated accordingto a
general adaptation recursion given by:

ĥ(n+ 1) = ĥ(n) + ∆h(n), (1)

whereĥ(n) is the vector of filter taps at timen and where∆h(n) is the gradient
used to update the filter. Everywhere in this paper boldface denotes vectors whereas
boldface capitals denote matrices. The gradient is different for each algorithm but,
in all cases, should ensure thatĥ(n) converges to the optimal Wiener solutionhopt

after sufficient iterations. Only the barest of details for each approachconsidered
are given below as full details can be found in the open literature [7].

Least Mean Square (LMS): The LMS filter update∆h(n) is equal toµx(n)e(n),
whereµ is a scalar or step size which aims to control the rate of adaptation (and
hence convergence/divergence),x(n) = [x(n), x(n− 1), ..., x(n− L+ 1)]T is the
input vector of the filter andL is the filter length (256 for all algorithms used here).

Normalized-LMS (NLMS) : The NLMS algorithm uses a normalized step sizeµ.
Here the update∆h(n) is equal to µ

‖x(n)‖2 x(n)e(n).

Affine Projection Algorithm (APA) : The update∆h(n) is here given by
µX(n)[XT (n)X(n) + ǫIN ]−1e(n) whereX(n) = [x(n)x(n− 1)...x(n−N + 1)],
anL×N matrix.L is the length of the filter,N is the order of the APA,IN is the
identity matrix ande(n) is now a vector. For all experiments represented here we
useN = 2.

Frequency Block-LMS (FBLMS): FBLMS is an implementation of a block-by-
block LMS using fast convolution. In the time domain the update∆h(n) is given
by µ

∑B−1
m=0 e(nB +m)x(nB +m) wheren is now a block index,m is the block

sample index andB is the block length. We useB = 256.

3 Non-linear model

In this paper we aim to assess the effects of non-linear echo. So that direct
comparisons between (i) linear echo and (ii) linear and non-linear echo maybe
made with otherwise identical conditions, for all experiments reported here,non-
linearities are added artificially. In practice, non-linearities are introducedby com-
ponent imperfections, i.e. from the miniaturization of components, and can bedi-
vided into two groups: those which arise in the downlink path and those which
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arise in the uplink path. Previous work [4] has shown that non-linearities coming
from the loudspeaker and amplifiers in the downlink path dominate those in the
uplink path due to the fact that microphone and uplink amplifiers generally operate
on lower-level signals. As in [6] a third-order polynomial model is used here to
simulate non-linearities and is an approximation to the Volterra model. The output
of the loudspeaker is given byxnl(n) = x(n) + αx2(n) + βx3(n), wherex(n) is
the far-end signal andαx2(n) + βx3(n) are the non-linear components introduced
by the downlink loudspeaker and amplifiers. The parametersα andβ are used to
control the relative levels of second and third order non-linear distortions. A full
description of this setup is given in our previous article [6].

4 Experimental work

We report different tests on each of the adaptive filters and compare theeffects
of non-linearities and white noise. The assessment is based onERLE, conver-
gence time and system distance. A 60-second speech signal is used as thefar-end
signalx(n) and is sufficient to ensure the convergence of each algorithm. In all
casesERLE measurements relate to intervals in which the algorithms are deemed
to have converged. Non-linear artefacts are introduced into the down-link signal
according to the model described in Section 3. The loudspeaker output is composed
of the original speech signalx(n) and a non-linear componentαx2(n) + βx3(n)
which are both convolved with the echo pathh(n). This leads to a linear echo com-
ponentx(n) ∗ h(n) and a non-linear echo component[αx2(n) + βx3(n)] ∗ h(n).
Then, a linear echo to non-linear echo ratio (SNeR) is computed as in [8]:

SNeR =
1

K

K∑

i=1

SNeRseg(i), (2)

whereSNRseg(i) is given by:

SNeRseg(i) = 10log10

∑M−1
m=0 d2i (n)∑M−1

m=0 d2nl,i(n)
(3)

and wheredi(n) anddnl,i(n) are the linear and non-linear echo components re-
spectively in theith segment of analysed signals. TheSNRseg(i) is computed
using a window of32ms (M = 256 for a sampling rate of8kHz) according to
speech stationarity. TheSNeR is used to generate a noisy signal with linear echo,
where the meanSNR is equal toSNeR. In so doing we have two linear echo
signals that are equally disturbed, one with non-linear echo, and anotherwith ad-
ditive noise. The weighting factorsα andβ are in the range of[0, 1] as in [6]. This
permits us to artificially increase the level of the non-linear echo component (and
noise) by increasingα and/orβ. We compare the behaviour of each adaptive filter,
with both both non-linear echo and noise, when they are configured with thesame
step sizeµ, and to obtain approximately the same level ofERLE. This is achieved
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Figure 2: MaximumERLE (in dB) achieved after convergence as a function of
SNR/SNeR (also in dB). Here theSNR or SNeR corresponds to added noise
or to non-linear echo as indicated. Profiles are illustrated for both perturbations
and for each of the four approaches to AEC. APA, FBLMS and NLMS are all
configured to give equivalent performance under linear echo conditions.

by varying the regularization factor in each case. The APA, FBLMS, andNLMS
algorithms obtainERLEs of ∼110dB in linear echo conditions. LMS does not
perform sufficiently well and gives anERLE of ∼80dB.

4.1 Echo Return Loss Enhancement

Figure 2 shows the maximumERLE achieved by each algorithm in non-linear
and noisy environments. The maximumERLE is the meanERLE obtained dur-
ing a 10 second period where each algorithm has converged. Figure 2 shows the
maximumERLE on the vertical axis and theSNR (SNeR = SNR) on the hor-
izontal axis. We can observe that whatever the perturbation (non-linearecho or
noise) performance decreases for all adaptive filters. In non-linearenvironments
APA and NLMS algorithms show similar behaviour; decreases of approximately
80dB are observed between the linear conditions (right side of Figure 2) and non-
linear echo conditions (left side of Figure 2). This shows the sensitivity oflinear
adaptive filters as, in this range, the non-linearities are inaudible. The FBLMS
algorithm is the most affected. Performance decreases by about 90dB over the
same range and forSNeRs less than75dB performance is worse than that for the
standard LMS algorithm. This is explained in [6] as the effect of block-by-block
processing which is more susceptible to non-linear effects than a sample-by-sample
process. We see that the LMS algorithm is the most robust of all adaptive filters
considered; it has the least degradation in performance as theSNR or SNeR
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decreases. This is due to its poor ERLE performance which is so low that the
algorithm cannot even be configured to give equivalent performance tothe other
algorithms under linear echo conditions.

In noisy environments the performance of APA, NLMS and FBLMS algo-
rithms decreases by approximately the same amount. For the APA and NLMS
algorithms, and when theSNR < 100dB, the difference between theERLE
in non-linear and noisy environments is about10dB with better performance in
non-linear environments than noisy environments. The FBLMS algorithm seems
to show the smallest differences between non-linear and noisy environments. This
can again be explained by the averaging effect of block-by-block approaches. In
the case of noise the perturbation is effectively averaged over the blockand thus
has a reduced impact on performance. This is not the case with non-linearecho,
which is correlated with the input signal. The result is that noise perturbations have
less of an effect than they do for the other approaches and that noise and non-linear
echo have an equivalent effect on the performance of the FBLMS algorithm.

The difference between the effects of non-linearities and those of noiseare
explained by two hypotheses:

Frequency range of the noise: The convolution of non-linearities with the echo
path reduces the effective frequency range. In general the echo path has energy
concentrated at low frequencies. Consequently the convolution will attenuate com-
ponents at higher frequencies that are introduce by non-linear distortions. The echo
paths used for these tests are estimated in real conditions with noise so some filter
harmonics that are not excited by the linear signal can be introduced by theartifi-
cially added non-linear distortion. The noise has a flat spectrum so it will perturb
more the adaptive filter than will the non-linearities.

Non-linearities are correlated with the far-end signal: Since non-linearities are
correlated with the input signal, this can result in the adaptive filter under estimat-
ing the linear part but slightly attenuating the non-linearities. This is less so the
case for the noisy environments as there is no correlation between the noiseand
the far-end signal.

4.2 Convergence Time

The convergence time for each algorithm is computed as given in [6], and is
defined as the time needed for the adaptive filter to reach95% of its maximum
ERLE value. Convergence times are determined using the same speech signals as
used previously and are estimated for both conditions: linear echo with non-linear
echo, and linear echo with noise. Figure 3(a) shows the convergence timein sec-
onds againstSNR/SNeR for each of the four algorithms and both perturbations.

We see that, with the exception of the LMS algorithm, all profiles have a sim-
ilar trend even though differences in convergence time are in the order of25s at
110dB. In addition, for each algorithm, convergence times are greater for non-
linear perturbations than they are for noise. The LMS algorithm is the slowest
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Figure 3: Convergence performance with non-linear (NL) and white noise (WN)
perturbations for (a) APA, FBLMS, NLMS and LMS algorithms plotted as conver-
gence time againstSNR, and (b) the NLMS algorithm plotted asERLE against
time.

to converge where theSNeR or SNR is low but the fastest where they are high
(> 100dB). This is explained by the fact that theERLE obtained is lower: about
80dB compared to110dB for all other algorithms in linear echo conditions (right
side of Figure 2). We remark that, in all cases, the more the perturbations increase
the lower the convergence time, since theERLE obtained is lower.

The plots in Figure 3(a) show the absolute convergence time in seconds butdo
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not give an impression of the dynamic performance and, as already discussed, nor
do they reflect theERLE that is eventually achieved. They are thus potentially
misleading and for this reason we present in Figure 3(b) a plot ofERLE against
time, here for the NLMS algorithm only to better illustrate the dynamic and abso-
lute performance. Figure 3(b) shows theERLE against time with linear echo only
and added non-linear echo or noise at52 and26dB.

These plots show that higher levels of perturbation result in lower levels of
ERLE. In the case of linear echo (top profile) convergence is slow and is not even
reached during the60s illustrated. Crucially, though, theERLE is much higher
than it is for non-linear and noise perturbations. However, in these cases the algo-
rithm converges faster, but to a lower level (i.e.∼55dB for non-linear echo with an
SNeR of 52dB and∼20dB at26dB SNeR, cf. ∼45dB for noise with anSNR
of 52dB and∼25dB at26dB SNR). Hence consideration of the convergence time
or maximum obtainedERLE are not sufficient on their own to properly appreci-
ate the performance of each approach. Similar profiles were obtained forthe other
adaptive filters and show an identical trend to that shown here for the NLMS algo-
rithm albeit to different levels ofERLE. Finally, since all algorithms are shown
to converge reasonably quickly in noise and non-linear environments it is ofques-
tionable advantage to focus effort on more computationally efficient algorithms;
efforts are better directed toward the development of more robust algorithms. In-
deed, more stable and straight forward algorithms, such as NLMS, are arguably
of more interest for mobile terminal applications than their less stable and more
computationally demanding alternatives.

4.3 Linear echo estimation

The assessment of performance with linear echo is commonly measured according
to the system distance which is measured as10log10[|h(n)− ĥ(n)|2/|h(n)|2]. It is
less appropriate in the case of non-linear echo as the system distance shows only
how well the linear echo path is estimated by the adaptive filter. In linear echo
environments, the system distance indicates how effective is the echo cancellation.
In the case of non-linear echo, the system distance indicates only how wellthe
linear component is estimated but does not necessarily reflect the level ofecho
attenuation actually achieved. Figure 4 shows the behaviour of the NLMS system
distance as a function of time. Whilst there are differences in exact valuesof system
distance, the order of the profiles and general trends are indicative ofperformance
for all the other filters. In general, the better the system distance, the betterthe
ERLE. However, upon comparison of Figures 3(b) and Figure 4 we observe
an apparent disparity. Figure 3(b) shows that performance with non-linear echo
is generally better than that under additive noise with the sameSNR, whereas
Figure 4 shows almost no differences. This is due to the fact that system distance
is only equivalent toERLE under the condition of total linearity. TheERLE
reflects the global performance according to the residual error, whereas the system
distance reflects the accuracy ofĥ(n). Equivalent values of system distance show
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Figure 4: Plots of system distance (in dB) against time (in seconds) for the NLMS
algorithm. Profiles are illustrated for linear echo and also for linear echo witheither
non-linear echo or added noise at two different levels.

that linear echo can be attenuated equally well with either non-linear echo ornoise
perturbations. The differences in theERLE, however, show that non-linear echo
perturbations are better attenuated than noise. This is due to the fact that in non-
linear environments some of the non-linearities are indeed effectively attenuated by
the adaptive filter even if the residual error is still higher than in the linear situation.
This is due to the fact that adaptive filters aim to reduce the correlation (increase
the orthogonality) between the error and the input signal. Since non-linearecho is
correlated with the input signal it can also be attenuated, albeit only slightly. This is
not the case with additive noise. This does not imply that adaptive filters arebetter
in non-linear environments than they are in noisy environments as the adaptive
filter does not aim to reduce the noise, but rather the echo signal which includes
the non-linear component. In the next section we try to illustrate the implications
of correlation, the relation to convolution and the potential of modelling non-linear
environments as time-varying systems with the assumption of a time invariant echo
path (or an echo path which varies more slowly than the speech signal.).

5 Discussion

The general equation for the LMS filter in a linear environment is given by:

ĥ(n+ 1) = ĥ(n) + µx(n)e(n), (4)

where the error is equal tod(n)− d̂(n) and can be written as:

e(n) = hT x(n)− ĥ
T
(n)x(n) (5)
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If we denote the error in non-linear environments asenl(n), then we can write:

enl(n) = hT [x(n) + g(x(n))]− ĥ
T
(n)x(n), (6)

where the subscriptnl denotes non-linear andg(x) is a function responsible for
generating the non-linear echo components. If we suppose that the perturbation
can be considered as an echo path variation then we can write the new time varying
system as:

ht.nl(n) = h +∆ht.nl(n), (7)

wheret denotes time variation, and where∆ht.nl(n) is the variation around the
true, static time invariant echo pathh caused by non-linear distortions. We can
then write the time varying non-linear component ofht.nl as:

hT
t.nl(n)x(n) = hT [x(n) + g(x(n))], (8)

and thus:
∆hT

t.nl(n)x(n) = hT g(x(n)). (9)

We note that Equation 9 is similar to the Wiener expression and can thus be
written using the short term Fourier transformation as in [1] (Chapter5):

∆Ht.nl(f) =
γ
h∗g(x(n)),x(n)

(f)

γ
x(n)

(f)

= H(f)×
γ
G(X(f)),X(f)

(f)

γ
X(f)

(f)

= H(f)× c(f), (10)

wherec(f) is given by:

c(f) =
γ
G(X(f)),X(f)

(f)

γ
X(f)

(f)
(11)

whereγG(X(f)),X(f) is the cross power spectral density of the non-linear signal
component,g(x(n)) and the original signal,x(n). γX(f) is the power spectral den-
sity of x(n). The ratioc(f) is time varying and indicates the variability around
the static echo path. For an intuitive explanation of Equation 10 let us assume that
g(x(n)) = x(n). As can easily be shown this leads to∆ht.nl(n) = h. Conse-
quently the AEC will converge to2× h. This will not perturb the filter asc(f) is a
constant equal to1.

Equation 10 shows that the time varying frequency components of∆Ht.nl(f)
are obtained by the multiplication ofH(f) andc(f). Therefore they have the same
frequency range. This explains why we observe a poorer estimation of the linear
echo path in noisy environments than in non-linear environments, as described in
our first hypothesis in Section 4.1. Since the adaptive filter aims to track the time
varying echo path, it is natural that non-linear echo is slightly attenuated but that
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this leads to an under estimate of the linear echo and hence reduced attenuation
of linear echo components. Another point highlighted by Equation 10 is that, the
more the perturbation is correlated with the far-end signal, the higher isc(f). As
c(f) is not constant in time and frequency this will lead to more variability in
time and introduce more perturbation. The consideration of the environment as a
problem of time varying filter tracking has been reported previously [9, 10]. The
modelling of perturbations as a time varying system has the potential to give a
better parametrization of the adaptive filter and is the subject of our on-going work.

6 Conclusions

This paper presents a new comparison of the effects of non-linearities and noise
on four adaptive filters. Experimental results show that APA and NLMS have com-
parable behaviour in non-linear environments whereas FBLMS is badly affected.
In noisy environments, however, there is little difference between each approach
and, being less computationally demanding than the other approaches, FBLMS is
an appealing solution in this case. We also show that, as the level of perturbations
increase, performance decreases in both non-linear and noisy environments. Nev-
ertheless, the echo canceller seems to be more robust to non-linearities thannoise
with a similarSNR (with the exception of the FBLMS algorithm). We show that
the linear component of the echo path is under estimated but is as accurate in the
case of non-linear echo as it is in noisy environments, again with a similarSNR.
In addition, as the non-linear component is correlated with the far-end signal a
fraction of non-linearities are effectively attenuated. Noise, in contrast,neither
correlated, nor attenuated.

Finally we show how non-linear echo cancellation can be addressed as a prob-
lem of time varying filter estimation and that this approach has potential to bring
improvements in non-linear environments. Given the correlation between the input
speech signal and non-linear echo, this model illustrates why echo cancellers are
less perturbed by non-linear echo than they are by additive noise. The model also
introduces an alternative approach to cope with non-linear echo and is thesubject
of our on-going work.
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