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Abstract

This paper presents a new assessment of four approachesigtiaecho
cancellation in the presence of non-linear echo. The coisgars per-
formed with algorithms that are configured to give equivafeerformance
under linear-only echo conditions, thereby giving a moreniegful assess-
ment. We also compare the effect of non-linear echo to thaioafe and
show that, whilst performance differs in non-linear enmirents, there are
negligible differences in noisy environments. The compotelly efficient
FBLMS algorithm is shown to perform as well as other algornishin noisy
environments but performs poorly under non-linear echdalitimms. We also
show how the correlation between non-linearities and tleedp signal can
corrupt the echo path estimate and leads to small attemuatiaon-linear
components at the expense of reduced attenuation for odar. Finally we
discuss the merits of modelling non-linearities as a lirasironment with
a time varying echo path.

Index Terms

echo cancellation, non-linear distortion, noise, AEC, LMEMS, APA,
FBLMS.






1 Introduction

The general problem of acoustic echo cancellation (AEC) has beerlgcti
researched for many years and adaptive filtering has proved to be #igopu-
lar solution in the communications environment. This has led to the development
of many different algorithms to optimize adaptive filtering in the presence -of ad
ditive noise and the inevitable echo path variations that generally dediltase
performance. In noisy environments adaptive filters are configurduasconver-
gence (and/or divergence) occur gradually, and thus there is ailt irdhwstness
to sudden increases in noise level e.g. [1-3]. Fast adaptive filtanssamdbustness
to echo path variations. Additional challenges come from the miniaturization of
components which can lead to non-linear echo artefacts. Many efforts tovep
adaptive filters for non-linear environments have been reported andammant
solutions have emerged. The first is based on the Volterra filter [4] argbtwnd
involves post-filtering [5] in combination with AEC adaptive filtering. The Voleerr
solution is generally slow to convergence and is highly computationally complex.
Post-filters are less complex but rely on the performance of linear addijitars
that are still disturbed by non-linear echo. Thus linear adaptive filterisijlipop-
ular and it is of interest to assess adaptive filters in such environmemepased
in our previous work [6].

In [6] the performance of adaptive filters was assessed by compadmnigtra-
dation in echo return loss enhancemé&i® L E with (i) linear echo and (ii) linear
and non-linear echo. However, this assessment perhaps doesshogftect the
true robustness of each algorithm to non-linear echo, since the comparigg)
was made independently of thieR L E under linear conditions. The contribution
in this paper is thus new experimental work which compares the same appsoac
to AEC that were assessed in [6] but here with identical adaptation stepaside
with tuned regularization factors that give each approach equival&tE per-
formance undetlinear echo conditions. This form of assessment aims to give a
more meaningful and fairer comparison of each approach umaelinear echo
conditions.

A second contribution in this paper is a new comparison of the effects ef non
linear echo to additive background noise. The aim here is to judge theveelati
importance of non-linear echo and associated degradatiBiRibE to that caused
by noise. Since the effects of non-linear echo and noise are unded¢key are
accordingly assessed independently. Therefore, the experimesuétsrehat are
presented in this paper can be used to predict performance in othesreneints
if the level of each perturbation is known. This can help to decide whichoagp
to AEC is most applicable in which environment.

The remainder of the paper is organized as follows. In Section 2 a gecbrm
cancellation system is described with the four different approaches @ tA&t
are investigated in this paper. In Section 3 we introduce the non-linearagcho
noise model which is used in our assessments. Experimental work aris sgsu



Near-end from Far-end

M z(n) % Downlink

h(n)
éd(n)
[ y(n) = e(n)  Uplink g

Figure 1: System/echo model illustrating the acoustical coupling between tie lou
speaker and microphone and a general approach to adaptive AEC.

presented in Section 4. The implications of the work are discussed in Seetiah 5
our conclusions are presented in Section 6.

2 Acoustic echo cancellation

We here introduce a typical system/echo model and a general framearork f
AEC with adaptive filtering. Also described are the four approaches 16 #iat
are investigated in this paper.

2.1 System/echo model

A general system/echo model, which was used for all experiments reported
in this paper, is illustrated in Figure 1. The terminal receives a down-link (or
loudspeaker) signat(n) from a far-end speaker, and transmits an uplink (or mi-
crophone) signal(n). In addition to near-end speeclin) and additive back-
ground noisen(n) the uplink signal potentially includes an additional echo com-
ponentd(n), which is a result of the acoustical coupling between the loudspeaker
and the microphone. It is generally modelled with a linear convolutign) =
x(n) = h(n), whereh(n) is the impulse response which characterizes the acous-
tical coupling. AEC may thus be implemented by estimatirig) with a filter
h(n) in order to give an estimate of the coupled echo sigita) = x(n)  h(n).

The echo is attenuated simply by subtract&(g) from the uplink signal. Since
the acoustical coupling is generally time varyifz(;n) is usually an adaptive fil-
ter. Near-end speech disturbs the adaptive filter and(sdis usually updated in
echo-only periods, i.e. whes(n) = 0. Noise can also disturb the adaptive filter
but, if we also suppose that the noise is negligibleyi(@.) = 0, theny(n) = d(n)
and thus the resulting error signal(n) is simply the difference between the echo
signal and its estimate, i.e(n) = d(n) — d(n). The errore(n) is used to update
the filterh(n) whose goal is to drive(n) to zero.

AEC rarely operates under such ideal conditions, however, and thisifer-

esting to study the robustness under more realistic conditions. i.e. with mear-e



speech, non-linear echo and additive background noise. As adap&saimply
paused during intervals of near-end speech, only disturbancestmo#inear echo
and background noise are considered here. Each of the appsdachieC that are
considered are described below.

2.2 Linear adaptive filtering algorithms

The adaptive AEC filters considered in this paper are updated accdodang
general adaptation recursion given by:

h(n + 1) = h(n) + Ah(n), (1)

whereh(n) is the vector of filter taps at time and whereAh(n) is the gradient
used to update the filter. Everywhere in this paper boldface denotessretiereas
boldface capitals denote matrices. The gradient is different for eaohtalg but,
in all cases, should ensure i) converges to the optimal Wiener solutibg),;
after sufficient iterations. Only the barest of details for each approacbidered
are given below as full details can be found in the open literature [7].

Least Mean Square (LMS) The LMS filter updateAh(n) is equal toux(n)e(n),
wherey is a scalar or step size which aims to control the rate of adaptation (and
hence convergence/divergencd))) = [z(n), z(n — 1), ...,z(n — L + 1)]7 is the

input vector of the filter and is the filter length (256 for all algorithms used here).

Normalized-LMS (NLMS) : The NLMS algorithm uses a normalized step size

Here the updaté\h(n) is equal tomx(n)e(n).

Affine Projection Algorithm (APA) : The updateAh(n) is here given by

pX(n)[XT (n)X(n) + el y]~'e(n) whereX (n) = [X(n)x(n — 1)..x(n — N + 1)],

anL x N matrix. L is the length of the filter]V is the order of the APA| y is the
identity matrix ande(n) is now a vector. For all experiments represented here we
useN = 2.

Frequency Block-LMS (FBLMS): FBLMS is an implementation of a block-by-
block LMS using fast convolution. In the time domain the updatgn) is given
by 121 e(nB + m)x(nB + m) wheren is now a block indexs is the block
sample index and® is the block length. We usB = 256.

3 Non-linear model

In this paper we aim to assess the effects of non-linear echo. So thett dire
comparisons between (i) linear echo and (ii) linear and non-linear echabmay
made with otherwise identical conditions, for all experiments reported here,
linearities are added atrtificially. In practice, non-linearities are introdbgembm-
ponent imperfections, i.e. from the miniaturization of components, and cdi be
vided into two groups: those which arise in the downlink path and those which

3



arise in the uplink path. Previous work [4] has shown that non-linearitesg

from the loudspeaker and amplifiers in the downlink path dominate those in the
uplink path due to the fact that microphone and uplink amplifiers generalhatigpe

on lower-level signals. As in [6] a third-order polynomial model is usectlie
simulate non-linearities and is an approximation to the Volterra model. The output
of the loudspeaker is given by, (n) = z(n) + az?(n) + B23(n), wherex(n) is

the far-end signal andz?(n) + Bx3(n) are the non-linear components introduced
by the downlink loudspeaker and amplifiers. The parameteasd 5 are used to
control the relative levels of second and third order non-linear distartiénfull
description of this setup is given in our previous article [6].

4  Experimental work

We report different tests on each of the adaptive filters and compaedfots
of non-linearities and white noise. The assessment is basédrRinF, conver-
gence time and system distance. A 60-second speech signal is usedaasetint
signalz(n) and is sufficient to ensure the convergence of each algorithm. In all
cased’RLE measurements relate to intervals in which the algorithms are deemed
to have converged. Non-linear artefacts are introduced into the dowsitinal
according to the model described in Section 3. The loudspeaker outputfmsed
of the original speech signain) and a non-linear componeat:?(n) + Sz3(n)
which are both convolved with the echo pattn). This leads to a linear echo com-
ponentz(n) * h(n) and a non-linear echo componéatr?(n) + Bz3(n)] * h(n).
Then, a linear echo to non-linear echo rati\e R) is computed as in [8]:

K
1 .
SNeR = ® ;:1 SNeRge4(1), 2)

whereSN R,4(7) is given by:

SoMZ) d2(n)
Yo dyy ;(n)

and whered;(n) andd,, ;(n) are the linear and non-linear echo components re-
spectively in thei'® segment of analysed signals. TH&V R, (i) is computed
using a window of32ms (M = 256 for a sampling rate ok H =) according to
speech stationarity. Th& NeR is used to generate a noisy signal with linear echo,
where the meaty NR is equal toSNeR. In so doing we have two linear echo
signals that are equally disturbed, one with non-linear echo, and arvaithead-
ditive noise. The weighting factorsandg are in the range df), 1] as in [6]. This
permits us to artificially increase the level of the non-linear echo compoagdt (
noise) by increasing and/or5. We compare the behaviour of each adaptive filter,
with both both non-linear echo and noise, when they are configured wiathe
step sizeu, and to obtain approximately the same leveFdR L E. This is achieved

SNeRgeq(i) = 10logio 3)
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Figure 2: MaximumERLE (in dB) achieved after convergence as a function of
SNR/SNeR (also in dB). Here th& N R or SNeR corresponds to added noise
or to non-linear echo as indicated. Profiles are illustrated for both pattars
and for each of the four approaches to AEC. APA, FBLMS and NLM& af
configured to give equivalent performance under linear echo condlitio

by varying the regularization factor in each case. The APA, FBLMS, NIl S
algorithms obtainE RLE's of ~110dB in linear echo conditions. LMS does not
perform sufficiently well and gives aR RL E of ~80dB.

4.1 Echo Return Loss Enhancement

Figure 2 shows the maximufiR L E achieved by each algorithm in non-linear
and noisy environments. The maximutiRLE is the mearF RL E obtained dur-
ing a 10 second period where each algorithm has converged. Figie@2 she
maximumFE RLE on the vertical axis and the N R (SNeR = SN R) on the hor-
izontal axis. We can observe that whatever the perturbation (non-leoear or
noise) performance decreases for all adaptive filters. In non-lemaronments
APA and NLMS algorithms show similar behaviour; decreases of approxiynate
80dB are observed between the linear conditions (right side of Figure 2)@md n
linear echo conditions (left side of Figure 2). This shows the sensitivitineér
adaptive filters as, in this range, the non-linearities are inaudible. TheviSBL
algorithm is the most affected. Performance decreases by about 9@dBhe
same range and f&f NeRs less tharv5d B performance is worse than that for the
standard LMS algorithm. This is explained in [6] as the effect of blocllogk
processing which is more susceptible to non-linear effects than a samghkiple
process. We see that the LMS algorithm is the most robust of all adaptess fi
considered; it has the least degradation in performance aSAhR or SNeR



decreases. This is due to its poor ERLE performance which is so low that the
algorithm cannot even be configured to give equivalent performantteetother
algorithms under linear echo conditions.

In noisy environments the performance of APA, NLMS and FBLMS algo-
rithms decreases by approximately the same amount. For the APA and NLMS
algorithms, and when th€ NR < 100dB, the difference between theRLE
in non-linear and noisy environments is abddt/B with better performance in
non-linear environments than noisy environments. The FBLMS algorithmsee
to show the smallest differences between non-linear and noisy envirdgsnidris
can again be explained by the averaging effect of block-by-blockoagpes. In
the case of noise the perturbation is effectively averaged over the afatkhus
has a reduced impact on performance. This is not the case with non4iclear
which is correlated with the input signal. The result is that noise perturlstiave
less of an effect than they do for the other approaches and that moisma-linear
echo have an equivalent effect on the performance of the FBLMSitigo

The difference between the effects of non-linearities and those of aoise
explained by two hypotheses:

Frequency range of the noise The convolution of non-linearities with the echo
path reduces the effective frequency range. In general the eathdhps energy
concentrated at low frequencies. Consequently the convolution will @tecom-
ponents at higher frequencies that are introduce by non-linear distarfithe echo
paths used for these tests are estimated in real conditions with noise so same filte
harmonics that are not excited by the linear signal can be introduced laytifie

cially added non-linear distortion. The noise has a flat spectrum so it willifire
more the adaptive filter than will the non-linearities.

Non-linearities are correlated with the far-end signal Since non-linearities are
correlated with the input signal, this can result in the adaptive filter undienagts

ing the linear part but slightly attenuating the non-linearities. This is less so the
case for the noisy environments as there is no correlation between theandise
the far-end signal.

4.2 Convergence Time

The convergence time for each algorithm is computed as given in [6], and is
defined as the time needed for the adaptive filter to ré&éh of its maximum
ERLE value. Convergence times are determined using the same speech signals as
used previously and are estimated for both conditions: linear echo withinmear-
echo, and linear echo with noise. Figure 3(a) shows the convergencatsae-
onds against NR/SNeR for each of the four algorithms and both perturbations.

We see that, with the exception of the LMS algorithm, all profiles have a sim-
ilar trend even though differences in convergence time are in the ord&rsait
110dB. In addition, for each algorithm, convergence times are greater for non-
linear perturbations than they are for noise. The LMS algorithm is the stowes
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Figure 3: Convergence performance with non-linear (NL) and whiteen@éN)
perturbations for (a) APA, FBLMS, NLMS and LMS algorithms plotted asveon
gence time agains VR, and (b) the NLMS algorithm plotted dsR L E against
time.

to converge where thENeR or SN R is low but the fastest where they are high
(> 100dB). This is explained by the fact that tiieR L F’ obtained is lower: about
80d B compared td 104 B for all other algorithms in linear echo conditions (right
side of Figure 2). We remark that, in all cases, the more the perturbaticeséec
the lower the convergence time, since fi& L E obtained is lower.

The plots in Figure 3(a) show the absolute convergence time in seconds but



not give an impression of the dynamic performance and, as alreadyssiétunor

do they reflect thdZ RLFE that is eventually achieved. They are thus potentially
misleading and for this reason we present in Figure 3(b) a plét1®L F against
time, here for the NLMS algorithm only to better illustrate the dynamic and abso-
lute performance. Figure 3(b) shows thé& L E against time with linear echo only
and added non-linear echo or nois&2tnd26dB.

These plots show that higher levels of perturbation result in lower levels of
ERLE. Inthe case of linear echo (top profile) convergence is slow and is/eat e
reached during thé0s illustrated. Crucially, though, th& RLE is much higher
than it is for non-linear and noise perturbations. However, in these thsalgo-
rithm converges faster, but to a lower level (r&5d B for non-linear echo with an
SNeR of 52dB and~20dB at26dB SNeR, cf. ~45dB for noise with anSN R
of 52d B and~25d B at26dB SN R). Hence consideration of the convergence time
or maximum obtained? RLE are not sufficient on their own to properly appreci-
ate the performance of each approach. Similar profiles were obtaingtefother
adaptive filters and show an identical trend to that shown here for theNalglo-
rithm albeit to different levels o RLE. Finally, since all algorithms are shown
to converge reasonably quickly in noise and non-linear environments itjiges-
tionable advantage to focus effort on more computationally efficient algasith
efforts are better directed toward the development of more robust algaritin-
deed, more stable and straight forward algorithms, such as NLMS, gualdy
of more interest for mobile terminal applications than their less stable and more
computationally demanding alternatives.

4.3 Linear echo estimation

The assessment of performance with linear echo is commonly measurediagco

to the system distance which is measuredidsg;o[|i(n) — h(n)[2/|h(n)|?]. Itis

less appropriate in the case of non-linear echo as the system distameesiip

how well the linear echo path is estimated by the adaptive filter. In linear echo
environments, the system distance indicates how effective is the echallatino.

In the case of non-linear echo, the system distance indicates only hovtheell
linear component is estimated but does not necessarily reflect the leeehof
attenuation actually achieved. Figure 4 shows the behaviour of the NLkt8my
distance as a function of time. Whilst there are differences in exact valiggstem
distance, the order of the profiles and general trends are indicatperfoirmance

for all the other filters. In general, the better the system distance, the bedter
FERLE. However, upon comparison of Figures 3(b) and Figure 4 we observe
an apparent disparity. Figure 3(b) shows that performance with nearliecho

is generally better than that under additive noise with the s8ié?, whereas
Figure 4 shows almost no differences. This is due to the fact that sysstamce

is only equivalent toF RLFE under the condition of total linearity. ThERLE
reflects the global performance according to the residual errorgabdhe system
distance reflects the accuracy/dfn). Equivalent values of system distance show
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Figure 4: Plots of system distance (in dB) against time (in seconds) forl{MSN
algorithm. Profiles are illustrated for linear echo and also for linear echaeititar
non-linear echo or added noise at two different levels.

that linear echo can be attenuated equally well with either non-linear eaioss
perturbations. The differences in t&R L F, however, show that non-linear echo
perturbations are better attenuated than noise. This is due to the fact ttoat-in n
linear environments some of the non-linearities are indeed effectively ateshby

the adaptive filter even if the residual error is still higher than in the lineaatsio.

This is due to the fact that adaptive filters aim to reduce the correlatioreéiger
the orthogonality) between the error and the input signal. Since non-kobaris
correlated with the input signal it can also be attenuated, albeit only slightig.i§

not the case with additive noise. This does not imply that adaptive filte tsedier

in non-linear environments than they are in noisy environments as the adaptiv
filter does not aim to reduce the noise, but rather the echo signal whikldésc

the non-linear component. In the next section we try to illustrate the implications
of correlation, the relation to convolution and the potential of modelling noratine
environments as time-varying systems with the assumption of a time invariant echo
path (or an echo path which varies more slowly than the speech signal.).

5 Discussion

The general equation for the LMS filter in a linear environment is given by:

h(n + 1) = h(n) + px(n)e(n), 4

where the error is equal #¥(n) — d(n) and can be written as:

e(n) = hT'x(n) — h" (n)x(n) (5)



If we denote the error in non-linear environmentsggn), then we can write:

ent(n) = hT[x(n) + g(x(n)] — A" ()x(n), (6)
where the subscript/ denotes non-linear ang{z) is a function responsible for
generating the non-linear echo components. If we suppose that thebpdido
can be considered as an echo path variation then we can write the new tyimgvar
system as:

ht.nl(n) =h+ Aht.nl(n)7 (7)

wheret denotes time variation, and whegeh, ,,;(n) is the variation around the
true, static time invariant echo pakthcaused by non-linear distortions. We can
then write the time varying non-linear componentf,; as:

he i (n)x(n) = hT[x(n) + g(x(n))], (8)

and thus:
Ah{ i (n)x(n) = hTg(x(n)). 9)

We note that Equation 9 is similar to the Wiener expression and can thus be
written using the short term Fourier transformation as in [1] (Chapter

f)/h*g(w(n)),w(n) (f)

e L )

a(n)

- Yo )

= A~ 'Yx(f)(f)

= H({) xe(f), (10)

wherec(f) is given by:
o(f) = W (11)

X(f)

whereygx(r)),x(r) 1S the cross power spectral density of the non-linear signal
componentg(z(n)) and the original signalk(n). vx ) is the power spectral den-
sity of z(n). The ratioc(f) is time varying and indicates the variability around
the static echo path. For an intuitive explanation of Equation 10 let us assaime th
g(z(n)) = z(n). As can easily be shown this leadsAd; ,,;(n) = h. Conse-
quently the AEC will converge t® x h. This will not perturb the filter ag(f) is a
constant equal to.

Equation 10 shows that the time varying frequency componentstif,;(f)
are obtained by the multiplication &f(f) andc(f). Therefore they have the same
frequency range. This explains why we observe a poorer estimatior dihtar
echo path in noisy environments than in non-linear environments, as dasanib
our first hypothesis in Section 4.1. Since the adaptive filter aims to track the time
varying echo path, it is natural that non-linear echo is slightly attenuatethau

10



this leads to an under estimate of the linear echo and hence reduced attenuatio
of linear echo components. Another point highlighted by Equation 10 is thet, th
more the perturbation is correlated with the far-end signal, the high€r)s As

c(f) is not constant in time and frequency this will lead to more variability in
time and introduce more perturbation. The consideration of the environreent a
problem of time varying filter tracking has been reported previously [P, TBe
modelling of perturbations as a time varying system has the potential to give a
better parametrization of the adaptive filter and is the subject of our org-gark.

6 Conclusions

This paper presents a new comparison of the effects of non-linearitiesiése
on four adaptive filters. Experimental results show that APA and NLM& kbam-
parable behaviour in non-linear environments whereas FBLMS is baidigted.

In noisy environments, however, there is little difference between egutoagh
and, being less computationally demanding than the other approaches,BLM
an appealing solution in this case. We also show that, as the level of péidneba
increase, performance decreases in both non-linear and noisyreneints. Nev-
ertheless, the echo canceller seems to be more robust to non-linearitie®iban
with a similarS N R (with the exception of the FBLMS algorithm). We show that
the linear component of the echo path is under estimated but is as accurate in th
case of non-linear echo as it is in noisy environments, again with a sis\Wak.

In addition, as the non-linear component is correlated with the far-enclsign
fraction of non-linearities are effectively attenuated. Noise, in contrasther
correlated, nor attenuated.

Finally we show how non-linear echo cancellation can be addressedrak-a p
lem of time varying filter estimation and that this approach has potential to bring
improvements in non-linear environments. Given the correlation betweenghie in
speech signal and non-linear echo, this model illustrates why echollesisce
less perturbed by non-linear echo than they are by additive noise. Ttiel mso
introduces an alternative approach to cope with non-linear echo andssibext
of our on-going work.
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