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ABSTRACT

This work studies the performance of our recently proposed

differential feedback scheme for multi-input-multi-output

(MIMO) communication systems using real channel mea-

surement data. The algorithm is applied to the channel cor-

relation matrix exploiting geodesic curves and the intrinsic

geometry of positive definite Hermitian matrices. The perfor-

mance of this and a conventional non-differential feedback

scheme are evaluated using real data and channel measure-

ments obtained with the Eurecom MIMO OpenAir Sounder

(EMOS). Additionally, the impact of having a delay in the

feedback link is also studied in terms of a loss of performance

in the communication through several simulations.

The results show that the differential feedback strategy

performs much better than the non-differential strategies in

low mobility channels, while in high mobility channels the

performance is similar. A delay in the feedback channel af-

fects specially high mobility channels while having a negligi-

ble impact in the slow-varying cases.

Topics: Precoding and limited feedback, Multi-antenna

channel measurements, MIMO systems.

1. INTRODUCTION

Multi-input-multi-output (MIMO) communication systems

are shown to provide improved performance when compared

to single-antenna configurations, specially when both the

transmitter and the receiver have some kind of channel state

information (CSI). A possibility to obtain CSI at the transmit-

ter consists in the exploitation of a low rate feedback channel

from the receiver to the transmitter. A feedback channel is

mandatory in frequency-division duplexing channels, where

channel reciprocity does not hold.

In the literature, several feedback schemes have been pro-

posed in order to provide CSI to the transmitter side. For time-
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varying channels, where the coherence time is higher than

the time difference between consecutive feedback instants, a

good approach consists in quantizing the channel response in

a differential way. This lowers the required feedback load or

improves the quality of the quantization for a fixed capacity

of the feedback link. Taking this philosophy, there are several

techniques, such as the direct scalar quantization of the en-

tries of the channel variation matrix, or more sophisticated ap-

proaches, such as those based on geodesic curves over Grass-

mannian manifolds or correlation-type matrices [1–3].

All these real time feedback schemes suffer from the de-

lay inherent to the feedback channel. This delay causes a

mismatch between the true channel and the available CSI and,

consequently, between the actual design of the transmitter and

the optimum one, which results in a degradation of the per-

formance. The effect of the delay can be alleviated using a

channel predictor.

The main objective of this paper is to evaluate experimen-

tally in a real environment the performance of different feed-

back strategies and the impact of feedback delay. This will be

done taking as example the differential technique presented

in [3] for feedback and channel quantization (this technique

will be summarized in the subsequent sections) and a non-

differential feedback strategy from [4]. Both of them will be

applied to real channel measurements obtained with the Eu-

recom’s MIMO OpenAir Sounder (EMOS) [5, 6]. In order

to alleviate the effect of feedback delay a technique based

on channel prediction will be studied. In particular a linear

Wiener predictor will be considered.

The paper is organized as follows. The system and signal

models are given in section 2. Section 3 summarizes the dif-

ferential quantization technique used in the feedback link, and

section 4 describes the EMOS and the channel measurements.

The performance of differential versus non-differential feed-

back strategies applied to the measured channel, including an

analysis of the effect of feedback delay, is shown in section

5. A solution based on prediction is presented in 6. Finally,

section 7 concludes the paper.



2. SYSTEM AND SIGNAL MODELS

This section and the next one summarize some of the ideas

presented in [3] concerning the differential feedback tech-

nique that will be used in this paper to evaluate a realistic

system performance according to real channel measurements.

We consider the transmission through a MIMO channel

with nT and nR transmit and receive antennas represented at

time instant n by matrix H(n) ∈ CnR×nT . The nR received

signals at the same time instant, assuming a linear transmitter,

can be expressed as

y(n) = H(n)B
(
R̂H(n)

)
x(n) + w(n) ∈ C

nR , (1)

where x(n) ∈ CnS represents the nS streams of signals to be

transmitted with E
[
x(n)xH(n)

]
= I, and B ∈ CnT ×nS is

the linear transmitter matrix. Note that we explicitly indicate

that the transmitter depends on the available estimate of the

channel correlation matrix R̂H(n), where the exact channel

correlation matrix is RH(n) = HH(n)H(n). The additive

white Gaussian noise (AWGN) at the receiver is represented

by w(n) ∈ C
nR with E

[
w(n)wH(n)

]
= σ2

wI.

In the system setup, it will be considered that the receiver

knows perfectly the current channel matrix H(n) and that the

transmitter designs B assuming that the available CSI at its

side represented by R̂H(n) is also perfect. In reality, the CSI

at the transmitter is not perfect because it is a quantized ver-

sion of the perfect CSI obtained at the receiver. The trans-

mitter design can be done according to different criteria, such

as the maximization of the mutual information or signal to

noise ratio (SNR), or the minimization of the mean square

error (MSE) or the bit error rate (BER), among others. In

all the cases, the optimum transmitter has been shown to de-

pend only on the channel correlation matrix RH(n) [7]. For

each of them a cost function d(R̂H(n),H(n)) can be defined,

where the design objective is its minimization. A couple of

examples of cost functions are given below, although any cri-

terion can be applied (we drop the dependency with respect

to the time index n for the sake of clarity in the notation):

• Maximization of the SNR with single beamforming

(nS = 1):

d(R̂H(n),H(n)) = −
1

σ2
w

‖HB‖2
F , (2)

where the transmission matrix B ∈ C
nT ×1 is defined

as

B
(
R̂H(n)

)
=

√
PTumax

(
R̂H(n)

)
, (3)

and umax(·) stands for the unit-norm eigenvector of

maximum associated eigenvalue. PT represents the

maximum transmission power, i.e., ‖B‖2
F ≤ PT ,

where subindex F stands for the Frobenius norm.

• Maximization of the mutual information:

d(R̂H(n),H(n)) = − log2

∣∣∣∣I +
1

σ2
w

BBHHHH

∣∣∣∣ ,
(4)

where the transmission matrix B ∈ CnT ×nS is defined

as

B
(
R̂H(n)

)
= Ũ(n)P1/2(n), (5)

P(n) = diag(p1, . . . , pnS
), (6)

and Ũ(n) consists of nS columns that are the nS

unit-norm eigenvectors of R̂H(n) associated to its

nS maximum eigenvalues {λi}
nS

i=1. The power P(n)
is allocated according to the waterfilling solution

(pi = max {0, µ − 1/λi} where µ is a constant such

that
∑nS

i=1 pi = PT ) [7].

The next section is devoted to summarize algorithm [3]

for quantizing the actual correlation matrix RH (instead of

H) from the receiver to the transmitter in a differential way.

Since RH belongs to the set of Hermitian positive definite

matrices,1 exploiting its inherent geometry will improve the

performance of the quantization.

3. ALGORITHM DESCRIPTION FOR

QUANTIZATION IN FEEDBACK LINK

In this section first we will give some comments on the

concept of geodesic curves on the set of positive definite Her-

mitian matrices and then we will summarize the basic ideas

concerning the algorithm presented in [3] for differential

quantization.

3.1. Geodesic curves

As shown in [2] the set of Hermitian positive definite matri-

ces S = {R ∈ CnT ×nT : RH = R,R � 0} is a convex

cone2, i.e., ∀R1,R2 ∈ S, ∀s ≥ 0, R1 + sR2 ∈ S [8]. This

set is characterized properly by means of differential geom-

etry, which states a set of definitions for the distance, scalar

products and routes within this set:

• Scalar product: At any point in this set S given by

R (also named as base point), the scalar product

between two Hermitian matrices A and B is de-

fined as 〈A,B〉R = Tr(R−1AR−1B). This defi-

nition implies that the norm is defined as ‖A‖R =√
Tr(R−1AR−1A).

1In the following, it will be assumed that the channel correlation matrix is

strictly positive definite. If this cannot be guaranteed because, for example, if

nR < nT , it is possible to work with extended correlation matrices defined

as eRH = H
H

H + εI, ε > 0, which are positive definite by construction.
2Actually, reference [2] is devoted to the case of real matrices, although

the results and conclusions can be extended directly to the complex case.



• Geodesic curve: Given two points R1and R2 in the

set S, the geodesic curve, which is the curve connect-

ing these points with minimum distance and with all its

points belonging to S, is given by

Γ(t) = R
1/2
1 exp

(
tC

)
R

1/2
1 , (7)

where C = log
(
R

−1/2
1 R2R

−1/2
1

)
, Γ(0) = R1, and

Γ(1) = R2. The derivative of the geodesic curve at t =
0, which is in fact the direction of such curve at t = 0,

is given by the Hermitian matrix Γ′(0) = R
1/2
1 CR

1/2
1 .

• Distance: The geodesic distance between any two

points in S is given by the length of the geodesic curve

that connects them. According to the previous notation,

it can be shown that this distance is given by

dg(Γ(0), Γ(t)) = |t|‖C‖F , ⇒ dg(R1,R2) = ‖C‖F .
(8)

or, using an equivalent expression,

dg(R1,R2) =
( ∑

i

| log λi|
2
)1/2

, (9)

where {λi} are the eigenvalues of matrix R
−1/2
1 R2R

−1/2
1 .

3.2. Differential quantization

In general terms, differential quantization is based on a quan-

tization of the difference between the CSI at consecutive feed-

back intervals, instead of quantizing the complete CSI every

time [4]. Depending on the design criterion and the allowed

computational complexity, different strategies arise.

Some techniques can be based on the quantization of

the variations of the MIMO channel matrix H(n) itself or

even, on the differential quantization of the strongest right

eigenspaces spanned by such matrices [1]. The technique

that will used in this paper to evaluate experimentally the

performance of the communication setup corresponds to ref-

erence [3]. It relies on the fact that in general, all the joint

transmitter-receiver designs for MIMO channels and different

quality criteria (SNR, MSE, mutual information, etc.) depend

on the channel response matrix H(n) only through the chan-

nel correlation matrix defined as RH(n) = HH(n)H(n) [7].

Taking this into account, a possible strategy consists in apply-

ing a differential quantization exploiting the intrinsic geome-

try of the set of positive definite Hermitian matrices by means

of the use of geodesic curves, as suggested in [2].

The fundamentals of the algorithm proposed in [3], which

are summarized here, are based on a differential quantization

of the channel correlation matrix RH(n). The objective is to

minimize the cost function as presented in section 2, which

can be related to the quality measure of the system and, there-

fore, the receiver has to know which kind of design will be

applied by the transmitter. If a more general setup is to be

applied so that the feedback can be used for any transmitter

design, another cost function could be added which is sim-

ply the geodesic distance between the actual channel correla-

tion matrix and its fed back estimate, i.e., d(R̂H(n),H(n)) =

dg(R̂H(n),HH(n)H(n)).
The differential quantization algorithm for the feedback

of the channel correlation matrix is an iterative procedure. At

each iteration n the initial situation is described as follows:

the receiver has a perfect knowledge of the current channel

matrix H(n) and both the transmitter and the receiver know

which is the last estimate of the channel correlation matrix

sent through the feedback channel R̂H(n − 1). A possible

initialization of the algorithm would correspond to starting

the run of the algorithm from the cone vertex before the first

iteration: R̂H(0) = I.

At each iteration n, the following steps are followed (all

these steps are represented conceptually in Fig. 1):

• STEP 1: Both the receiver and the transmitter gener-

ate a common set of Q random Hermitian matrices us-

ing the same pseudo-random generator and the same

seed. Then, these matrices are orthonormalized using

the Gram-Schmidt procedure [9] according to the de-

finition of scalar product presented in section 3, pro-

ducing the set {Ai}
Q
i=1. Finally, each matrix Ai is re-

scaled individually so that Ci = R−1/2AiR
−1/2 has

a norm equal to ∆ (‖Ci‖F = ∆) which is, in fact, the

quantization step.

• STEP 2: Both the receiver and the transmitter use

the previous matrices to generate a set of Q geodesic

curves {Γi(t)}
Q
i=1, all of them having the same initial

point R = R̂H(n − 1) and with orthogonal directions:

Γi(t) = R̂
1/2
H (n − 1) exp

(
tCi

)
R̂

1/2
H (n − 1).

• STEP 3: Each of these geodesic curves is used to gener-

ate two candidates for the feedback in the next iteration

R̂H(n) corresponding to Γi(−1) and Γi(1).

• STEP 4: The receiver evaluates the cost function for

each of the candidates (there are 2Q candidates), and

sends the selected index iFB through the feedback

channel to the transmitter. This index is the one for

which the corresponding candidate minimizes the cost

function. According to this, the number of feedback

bits per iteration has to be higher than or equal to

log2(2Q). The matrix corresponding to the selected

candidate will be used for the transmitter design and as

the starting point in the next iteration.

All the previous steps are represented graphically in Fig.

1 for the case of a feedback using 2 bits and taking as opti-

mization criterion the minimization of the geodesic distance

to the actual channel correlation matrix RH(n). Starting from

R̂H(n − 1), the algorithm generates 2 orthogonal geodesic
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Fig. 1. 2-bit differential quantization in the space of channel

correlation matrices.

routes Γ1(t) and Γ2(t) with velocity matrices A1 and A2,

producing four quantization candidates, all of them at dis-

tance ∆ from the initial point. At the receiver, each candi-

date is compared to the actual RH and the one with smallest

distance (in this example candidate 3) is chosen. That is, its

index iFB = 3 is sent to the transmitter through the feedback

channel and R̂H(n) = R̂
(3)
H (n). The next iteration starts

from this point, generates 2 orthogonal routes and 4 quanti-

zation candidates, selects the closest candidate to RH , and so

on.

4. REAL CHANNEL MEASUREMENTS

Realistic MIMO channel measurements have been obtained

using Eurecom’s MIMO Openair Sounder (EMOS) [5, 6]. In

this section we first describe the hardware of the EMOS plat-

form and the channel sounding procedure and then the mea-

surement campaign that was carried out for this paper. The

obtained measurements are used in the next section to evalu-

ate the previous feedback quantization technique from a real-

istic point of view.

4.1. Platform description

The EMOS is based on the OpenAirInterface hardware/soft-

ware development platform at Eurecom.3 It operates at 1.900-

1.920 GHz with 5 MHz channels and can perform real-time

channel measurements between a base station and multiple

users synchronously. For the base station (BS), a workstation

with four PLATON data acquisition cards (see Fig. 2(a)) is

employed along with a Powerwave 3G broadband antenna

(part no. 7760.00) composed of four elements which are

arranged in two cross-polarized pairs (see Fig. 2(b)). The

user equipment (UE) consists of a laptop computer with Eu-

recom’s dual-RF CardBus/PCMCIA data acquisition card

3http://www.openairinterface.org

(a) Server PC with PLATON boards (b) Powerwave Antenna

(c) Dual-RF CardBus/PCMCIA Card (d) Panorama Antennas

Fig. 2. EMOS base-station and user equipment [10].

S
C

H

BCH Guard Interval
(8 OFDM Symbols)

...
48 Pilot Symbols

Frame (64 OFDM Symbols)

Fig. 3. Frame structure of the OFDM Sounding Sequence.

The frame consists of a synchronization channel (SCH), a

broadcast channel (BCH), and several pilot symbols used for

channel estimation.

(see Fig. 2(c)) and two clip-on 3G Panorama Antennas (part

no. TCLIP-DE3G, see Fig. 2(d)). The platform is designed

for a full software-radio implementation, in the sense that all

protocol layers run on the host PCs under the control of a

Linux real time operation system.

Sounding Signal. The EMOS uses an OFDM modulated

sounding sequence with 256 subcarriers (out of which 160 are

non-zero) and a cyclic prefix length of 64. One transmit frame

is 64 OFDM symbols (2.667 ms) long and consists of a syn-

chronization symbol (SCH), a broadcast data channel (BCH)

comprising 7 OFDM symbols, a guard interval, and 48 pilot

symbols used for channel estimation (see Fig. 3). The pi-

lot symbols are taken from a pseudo-random QPSK sequence

defined in the frequency domain. The subcarriers of the pilot

symbols are multiplexed over the transmit antennas to ensure

orthogonality in the spatial domain. We can therefore obtain



Fig. 4. Map of the measurement scenario. The position

and the opening angle of the BS antenna are also indicated.

The users were driving in cars along the indicated routes (the

colors show the received signal strength in dBm along the

routes).

Parameter Value

Center Frequency 1917.6 MHz

Bandwidth 4.8 MHz

BS Transmit Power 30 dBm

Number of Antennas at BS 4 (2 cross polarized)

Number of UE 1

Number of Antennas at UE 2

Table 1. EMOS parameters.

one full MIMO channel estimate for one group of a number of

subcarriers equal to the number of transmitter antennas. The

BCH contains the frame number of the transmitted frame that

is used for synchronization among the UEs.

Channel Estimation Procedure. Each UE first synchro-

nizes to the BS using the SCH. It then tries to decode the

data in the BCH. If the BCH can be decoded successfully,

i.e., the cyclic redundancy check (CRC) is positive, then the

channel estimation procedure is started. The channel estima-

tion procedure consists of two steps. Firstly, the pilot sym-

bols are derotated with respect to the first pilot symbol to re-

duce the phase-shift noise generated by the dual-RF Card-

Bus/PCMCIA card. Secondly, the pilot symbols are aver-

aged to increase the measurement SNR. The estimated MIMO

channel is finally stored to disk. For a more detailed descrip-

tion of the synchronization and channel estimation procedure

see [10, 11].

4.2. Measurements

The measurements were conducted outdoors in the vicinity of

Eurecom in Sophia Antipolis, France4. The scenario is char-

acterized by a semi-urban hilly terrain, composed by short

buildings and vegetation with a predominantly present LOS.

Fig. 4 shows a map of the environment. The BS is located

at the roof of Eurecom’s southmost building. The antenna

is directed towards Garbejaire, a small nearby village. The

measurement parameters are summarized in Table 1.

In this paper we use two different sets of measurements.

In measurement 1, the UE was placed inside a standard pas-

senger car which was being driven with an average speed of

50km/h along the routes shown in Fig. 4. The channel condi-

tions are changing between line of sight (LOS) and non-LOS

(NLOS). In measurement 2, the UE is more or less stationary

on the parking lot in the bottom right corner of Fig. 4. This

scenario is LOS.

5. REAL CHANNEL PERFORMANCE

In the simulations, we consider the particular real channel

measured as commented in section 4 with 4 transmit and 2

receive antennas. Note that for the evaluations in this paper

we have selected only one subcarrier to mimic a narrowband

system. We show results for three cases: perfect CSI at the

transmitter, non-differential Grassmannian packaging [4], and

differential quantization of the channel correlation matrices

RH(n) using geodesic curves [3]. In all the cases, simula-

tions were performed using the optimum strategies to maxi-

mize the mutual information and the SNR. The strategy that

maximizes the mutual information corresponds to a waterfill-

ing distribution of power over the eigenmodes of the chan-

nel, and the strategy that maximizes the SNR uses only the

strongest eigenmode of the available channel response.

We considered two cases for the feedback. In the first case

the quantized CSI is transmitted instantaneously from the re-

ceiver to the transmitter. That is, the transmitter had knowl-

edge of the quantized version of the current channel matrix. In

a real situation, however, the transmission delay through the

feedback channel is not zero and this affects the performance

of the system. Therefore we also studied the case where we

introduce delay in the feedback channel.

5.1. Feedback with no delay

As shown in Fig. 5, the differential strategy exploits the time-

correlation of the channel and converges to perfect CSIT case,

while the performance using the non-differential quantization

is lower, even when using more feedback bits. Also note

that the differential quantization works better in more slow-

varying channels and worse in the scenarios of high mobility

4Eurecom has a frequency allocation for experimentation around its

premises.
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Fig. 5. Different feedback techniques in realistic channels.

where the channel is fast-fading.

5.2. Delay in the feedback channel

The simulations corresponding to Fig. 6 analyze the impact of

the feedback delay on the performance of the system. The plot

shows the averaged SNR and mutual information (MI) for the

high mobility and low mobility scenarios described in section

4 versus the delay measured in frames (e.g., a delay equal to

10 means that the delay is equal to 10 frames). For the simu-

lations a window containing frames from 500 to 520 was used

to calculate the average SNR and mutual information. Three

situations are compared: perfect CSI at the transmitter, differ-

ential feedback with no delay, and differential feedback with

different values for the delay in the feedback link. The main

conclusion is that the performance rapidly decreases when the

delay exceeds a threshold.

6. CHANNEL PREDICTION

In order to reduce or compensate the effect of feedback de-

lay, channel prediction strategies can be used. If the receiver

can predict the behavior of the channel response matrix and

knows the value of the delay in the feedback channel, it is

possible to send through the feedback link a quantized ver-

sion of the prediction of the CSI. This way, the transmitter

will receive the prediction of the current channel instead of

the delayed CSI.
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Fig. 6. Effects of feedback delay in realistic channels.

6.1. Algorithm description

The algorithm described in this section predicts each compo-

nent of the channel response matrix H(n) separately using

a Wiener predictor; this means that nRnT predictors will be

used. The objective of the Wiener predictor [12] is to mini-

mize the quadratic error. The N predictor coefficients gij for

the ij component of H(n) are defined as:

gij = argmin
gij

E[|eij(n)|2] ∈ C
N . (10)

For a filter order N , and a prediction of L delay intervals,

the error at time instant n is defined as

eij(n) = xij(n + L) − gH
ij xij(n), (11)

where the vector of samples xij(n) is

xij(n) =




xij(n)
xij(n − 1)

...

xij(n − N)


 ∈ C

N and xij(n) = [H(n)]ij .

Then the quadratic error can be written as

|eij(n)|2 =gH
ij xij(n)xH

ij (n)gij + |xij(n + L)|2

− gH
ij xij(n)x∗

ij(n + L) − xH
ij (n)gijxij(n + L).

(12)



The predictor vector gij that minimizes the average of ex-

pression (12) can be easily proven to be [12]:

gij =
(∑

xij(n)xH
ij (n)

)
−1 (∑

xij(n)x∗

ij(n + L)
)

,

(13)

where the sum is applied to the set of data that is available

for the calculation of the predictor. This way, it is possible

to predict the CSI with a delay of L time instants and design

the transmitter based on the quantized version of the predicted

CSI.

6.2. Simulations in real channel

The impact of channel prediction to compensate for the feed-

back delay will be analyzed in this section, using the realis-

tic channel measured with EMOS. The same realistic channel

studied in section 5 is used for this analysis. The simula-

tions corresponding to Fig. 7 show the impact of prediction

in a system with feedback delay. The plot shows the averaged

SNR and mutual information for the high mobility and low

mobility scenarios versus the delay measured in frames. For

the simulations a window containing frames from 500 to 520

was used to calculate the average SNR and mutual informa-

tion. Three situations are compared: perfect CSI at the trans-

mitter, differential feedback with no delay, and differential

feedback with different values for the delay in the feedback

link using a Wiener predictor of order 10.

It can be seen from Fig. 7 that there is no substantial im-

provement when compared to the simulations without predic-

tion from section 5.2. It would be interesting to observe the

performance of the predictor in a channel that can be pre-

dicted more accurately, for example a channel that follows an

autoregressive (AR) model. This case will be studied in the

following section.

6.3. Simulations in an AR channel

The predictor will now be tested on a synthetic channel gen-

erated using an autoregressive (AR) model of order Q. An

AR model is described by the following equation [13]:

H(n) =

Q∑

q=1

aqH(n − q) + W(n), (14)

where aq are the autoregressive coefficients and the compo-

nents of matrix W(n) are Gaussian, independent and with

variance such that E
[
|[H(n)]ij |

2
]

= 1.
Note also that the predictor equals the coefficients of the

AR model if the delay is 1 frame, but this is no longer the case

for larger delays. In this last situation the coefficients should

be computed as described in section 6.1.

In Fig. 8 we show the results of the differential feedback

scheme using an AR model of order 10. Note that the predic-

tor works best up to a delay of 10 frames, which corresponds
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Fig. 7. CSI prediction used to reduce the effect of feedback

delay in realistic channels.

to the order of the AR model. After that point, the gain de-

creases slowly.

7. CONCLUSIONS

This paper has presented an evaluation of differential and non-

differential feedback strategies in realistic MIMO systems.

The main objective has been the study of the impact of such

techniques using real channel measurements performed with

the EMOS for high and low mobility scenarios and under dif-

ferent situations of delay in the feedback link.

The differential feedback strategy performed much better

than the non-differential strategies like Grassmannian pack-

aging in low mobility channels, while in high mobility chan-

nels the performance was similar. Simulations using realis-

tic channel data showed that a delay in the feedback chan-

nel affects specially high mobility channels because they vary

faster. For small amounts of delay (less than 20 frames) the

performance loss was around 10% in high mobility channels

and less in the slow-varying cases.

The proposed technique to reduce the effect of feedback

delay based on channel prediction performed well using a

synthetic channel model. However, it was not able to com-

pensate the delay in the measured channels. This showed that

channel models are often too simplistic and do not provide

realistic performance results.
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Fig. 8. CSI prediction used to reduce the effect of feedback

delay in an AR(10) channel.
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