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Résumé

Chapitre | Introduction

L'intérét pour les protocoles et algorithmes autgamisants qui s'est manifesté notamment
avec la popularité des services de partage desfiffile sharing tels que NapstérGnutellg,
KaZaA® et Morpheud concerne maintenant un plus large domaine d'agiidics. En
particulier, il a favorisé I'essor des servicesstickage pair-a-pair (WudlaAllMyData Tahoé
et UbiStorag. Ces services permettent I'utilisation efficace tdut espace disque libre et
inexploité pour construire un systéeme de stockaded, disponible, passant a I'échelle et avec
des co(ts d'entretien réduits.

A. Cas du stockage pair-a-pair

L'avancement des technologies de l'informationaguit par 'accroissement de la quantité
de données disponibles et produites dans nos sgstanformatiques. Toutefois, ceci
occasionne des défis complexes par rapport a liogedu stockage des données, stockage qui
peut étre réalisé en mettant en application delsnigoes d’auto-organisation. Les données
peuvent étre stockées d’'une maniére coopérative mlsieurs pairs éparpillés dans le réseau
pair-a-pair. Ces derniers doivent garder les donsémckées jusqu’a ce que leurs propriétaires
viennent les réclamer. Un tel systéme de stockéfge une solution fiable et robusteq single
point of failurg, sans pour autant nécessiter une infrastructtded et chére come c’est le cas
avec des centres de donnéistd centers

L’'approche pair-a-pair a déja été appliqué a desces de sauvegarde de données ([Cox et
Noble 2002] et [Lillibridge et al. 2003]) et a dsgstemes de fichiers ([Druschel et Rowstron
2001], [Kubiatowicz et al. 2000] et [Dingledine 2P Le stockage pair-a-pair est aussi
intéressant pour les réseaux tolérants aux ddlEidl§), puisqu'il peut étre utilisé pour livrer
les messages des nceuds en dépit de leur mobili® Idaréseaustore-carry-and-forward
paradigmde [Zhao et al. 2006]). Les services contextuels/pnt tirer un bénéfice du stockage
pair-a-pair afin par exemple de déplacer des danréatives a une application pour suivre le
mouvement de son utilisateUddsktop teleportingBennett et al. 1994], [Pham et al. 2000]).
Les données stockées peuvent étre aussi contestumimme par exemple dépendantes de
I'emplacement ([Marmasse et Schmandt 2000], [Huangl. 1999], [Dey et Abowd 2000],
[Beigl 2000]).

B. Les enjeux de sécurité

Une application de stockage pair-a-pair se basd'éthange volontaire et équitable des
ressources de stockage entre des pairs autonometand il y a une tension inévitable qui régit
ces pairs qui doivent trancher entre leur ratis@ahdividuelle et le bien-étre collectif. Cette

! http://www.napster.com/

2 http://www.gnutella.com/

® http://www.kazaa.com/

4 http://www.morpheus.com/
> http://wua.la/en/home.html

® http://allmydata.org/

" http://www.ubistorage.com/
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tension qui menace la viabilité de I'applicatiort &s résultat d'un dilemme social qui peut
mener a une tragédie des biens commtiagédy of commor{siardin 1968]).

Concevoir un systeme de stockage pair-a-pair fiablir présente un défi important du fait

de la nature ouverte, autonome, et fortement dymaendes réseaux pair-a-pair. Tout effort
pour protéger ce type de systéme devrait asswwebjectifs suivants :

Confidentialité et intégrité des donnéed.es données traitées dans un systéme de
stockage pair-a-pair sont généralement personnf@lesppartiennent a un groupe) et
sont stockées chez des pairs qui ne sont a pagride confiance. C'est la raison pour
laquelle les données devraient étre protégéesidolsur transmission et de leur stockage
chez un pair. Typiqguement, la confidentialité aitdégrité des données peuvent étre
assurées en utilisant les moyens cryptographigabguels tels que des méthodes de
chiffrement symétriques, et les fonctions de cosdgan bashing, et de somme de
contrdle thecksum

Anonymat :L'anonymat peut étre une condition nécessaire pourcertain type
d'application de stockage pair-a-pair qui a pouredaff d'empécher la censure de
l'information par exemple. L'anonymat peut se raigpaa l'identité du propriétaire des
données stockées, a lidentité du pair de stoclagaux détails d'interaction entre les
deux. En outre, 'anonymat permet d'éviter desgatta ciblées ou l'attaquant vise tous
les pairs qui stockent la méme donnée afin deniéker complétement du systéme. Les
systemes de stockage qui visent a fournir I'anonymilzsent souvent des infrastructures
a base de couches anonymes comme le routage diaigns [Goldschlag et al. 1999].
Identification : Dans un environnement distribué et ouvert, ilpestsible que la méme
entité physique apparaisse sous différentes idantiCe probléme peut mener a des
attaques de type Sybil [Douceur 2002], et ainsianenles méthodes de réplication de
la donnée qui se basent sur l'idée que les paistatkage sont physiquement distincts.
Ce type d'attaque ne peut étre éliminé qu'avecéldalement d'une autorité centrale de
certification comme démontré dans [Douceur 2002kt @bjectif peut limiter
anonymat. Alternativement, l'autorité peut imposk paiement d’honoraires
d'adhésion. Cependant, cette approche réduit leendécentralisée des systémes pair-a-
pair et ou un point d’étranglement. Sans tiercdigoaie confiance, une autre option est
d'appliquer des sanctions a tous les nouveaux venunspair peut coopérer avec des
étrangers avec une probabilité donnée (comme daiherBent [Piatek et al. 2007]), ou
un pair peut joindre le systéme seulement si ureaadir I'invite [Lesueur et al. 2008].
Autre approche plus appropriée dans un réseauagzair, les opérations acceptables
peuvent étre limitées si on observe des liens Wiraeec trop d'identités éphémeres et
peu fiables [Yu et al. 2006]. Cette option semldpendant freiner la mise a I'échelle du
systéme et dégrade aussi le bien étre social [FeldshChuang 2005].

Contrdle d'acces Le manque d'authentification peut étre surmontélgalistribution
des clefs nécessaires pour accéder aux donné&gesto®es listes de contrdle d'accés
ou des capacités peuvent étre associées aux dopaéésurs propriétaires originaux,
comme dans [Srivatsa et Liu 2005].

Mise a I'échelle :Le systéme de stockage pair-a-pair doit pouvoirefface a la
participation d'une grande population de pairs guparticipent (mise a I'échelle
horizontale). Puisque la plupart des fonctions irtgries du systéme sont exécutées par
les pairs, le systéme devrait alors pouvoir facdetrtraiter des quantités croissantes de
messages de contrble d'une complexité accrue paugelstion des pairs et des
ressources. Le systéme peut étre géré par desegragpnme c'est le cas des réseaux
sociaux, ce qui réduit la charge supportés pgpaes.
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- Fiabilité des données Généralement, la fiabilité d'une donnée est assydr la
redondance de la donnée stockée a plusieurs endtaits le réseau. Les données
peuvent étre simplement répliquées. Le facteur éidication devrait étre maintenu
pendant la durée entiére du stockage. Ceci impliguéparation des données détruites
ou corrompues, ce qui peut s'effectuer périodiquenoel peut étre déclenché par des
événements comme la détection de fautes avec descples de vérification de la
donnée a distance. D'autres approches de redonganeent étre aussi employées, par
exemple le codage d'effacement qui fournit le méiweau de fiabilité des données mais
avec des colts de stockage inférieurs a ceuxmpliaation.

- Survie a long terme des donnéeka longévité des données stockées dans certaines
applications comme la sauvegarde distribuiseKup est trés critique. Le systéme doit
s'assurer que les données seront conservées deérengr@rmanente (jusqu'a leur
récupération par le propriétaire). Les techniguemsedlondance des données améliorent
la longévité des données, mais ces techniques rtodee régulierement ajustées pour
optimiser la capacité du systéme. Généralementmdthode d'adaptation utilisée est
basée sur des protocoles de vérification de laepogs de la donnée chez le pair de
stockage. Par ailleurs, des mécanismes d'incitatiota coopération doivent étre
employés pour encourager les pairs de stockagésamer les données.

- Disponibilité des donnéesLes systemes de stockage doivent assurer queoteses
stockées sont accessibles et utilisables sur demad les pairs autorisés. Les
vérifications périodiques des données stockées lesgzairs de stockage permettent un
contrdle régulier de cette propriété. La connexiotermittente des pairs peut étre
mitigée en appliquant un « délai de grace » ouvéatficateurs tolérent I'absence de
réponse du pair de stockage pour un nombre dédidiéfis avant de déclarer que le pair
est non coopératif.

Dans cette thése, nous nous focalisons sur les dainiers objectifs décrits ci-dessus :
comment réaliser un stockage fiable et disponibtng terme dans le contexte d'un systéme de
stockage pair-a-pair a grande échelle. Ces trgectts sont souvent ignorés dans les systemes
de partage de fichiers qui suivent plutét des agi@e sous obligation de moyefest effork
Cette thése suggeére la nécessité d'effectuer ddatons cryptographiques périodiquement
pour permettre I'évaluation du statut de sécurité données stockées dans le systeme et la
conception de mécanismes d’incitation a la coop#ratdaptés qui préservent les propriétés de
sécurité des données sur le long terme.

C. Objectifs de recherche

L'étude des systemes auto-organisants méne vesieyns défis de sécurité stimulants. En
premier lieu, ces systémes sont caractérisés pagrande échelle allant de centaines a des
milliers de pairs, une grande dynamicité, et uatifiehnonymat des pairs participants. Ainsi, la
coopération volontaire est difficilement réalisabiefait du manque de confiance. La confiance
peut étre réalisée d’'une maniére statique (basééidentité par exemple) ou d’une maniere
dynamique (auto-organisante). La confiance stataumsiste en un rapport de fidélité qui reste
le méme jusqu'a ce quil soit retiré, tandis que ctanfiance dynamique montre des
caractéristiqgues d’'auto-apprentissagelfflearning et d’auto-élargissemensdlf-amplifying.

La confiance se construit en se basant sur degati@ls de comportement dans le systeme et
change en conséquence sans interruption.

La dimension temporelle doit étre prise en comipés. interactions coopératives entre pairs
sont généralement considérées en tant qu'opérasitimiques, ce qui est une hypothése
acceptable pour une application de routage de pmglams un réseau ad hoc ou de partage de
fichiers dans un réseau pair-a-pair ; ce n'estlpasas d’'une application de stockage ou de
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sauvegarde de données. Cette derniére exige uneaoutype de primitives qui permet
I'évaluation « ponctuelle » de la coopération dasspde stockage. Cette primitive vise a
vérifier périodiquement la présence des donnéeskéts sur le long terme dans le but de
fournir des évaluations a court terme de la codpérales pairs de stockage. En se basant sur
ces évaluations, des mécanismes d'incitation sodgération sont construits pour stimuler la
coopération des pairs et assurer I'équité de mnibutions respectives.

Les mécanismes d'incitation a la coopération supmodes pairs stratégiques et rationnels.
Par conséquent, les modeéles théoriques les pluptéadajui permettent de valider ces
mécanismes utilisent la théorie des jeux. Il existegrand nombre de modéles théoriques de
jeux qui peuvent faconner le systeme de stockageagaair. Nous nous concentrerons en
particulier sur les jeux non coopératifs répétésvetutionnaires.

Chapitre Il Architecture : éléments pour un stockage de données pair-
a-pair sécurisé

Un systéme de stockage pair-a-pair s’appuie sgptgpération des pairs pour fonctionner
correctement.

Pour permettre une architecture simple et modulaigles proposons une organisation sous
forme de couches. Les couches sont superposésdsssur les autres et chaque couche peut
utiliser des éléments fournis par les couches basse

- Couche d'infrastructure basique

- Couche de gestion des pairs et des ressources

- Couche de gestion de la confiance et de la codp@rat
- Couche applicative

A. Couche d’infrastructure basique

Notre travail se concentre en particulier sur keedl pair-a-pair. Le réseau pair-a-pair est un
paradigme de communication qui permet I'échangectides ressources entre les pairs a la
place d’'un échange a travers une entité centratiaés le paradigme client/serveur. Chaque
pair peut agir en tant que serveur s'il veut partalgs ressources, et en tant que client s'il veut
demander des ressources d'autres pairs. Tous les gant égaux et ont les mémes
responsabilités et privileges. Puisqu’il n'y a pbentité centralisée, les colits administratifs et
opérationnels sont réduits, permettant au réseaomtenir une grande population de pairs.

Les objectifs de sécurité nécessaires a réalises da systéme de stockage pair-a-pair
peuvent étre assurés avec un environnement deanogfiCe type d’environnement permet aux
utilisateurs d'étre confiants sur l'intégrité etfiabilité de leurs propres dispositifs et d'autres
dispositifs sur le réseau. Il fournit un environmarnprotégé d'exécution qui ne peut pas étre
manceuvré ni observé par un adversaire. Un envimenede confiance existe dans divers
facteurs de forme allant des dispositifs de confiadédiés dans un réseau aux plateformes de
confiance intégrées a des appareils pas forcéneenbufiance. Une tierce partie de confiance
(trusted third party est une entité responsable et admise pour uraidanconvenue par tous
les utilisateurs. Les fonctions de la tierce padé confiance peuvent étre assurées d'une
maniére distribuée en utilisant des modules de T/gid (Trusted Platform Modu)epour cartes
a puce. Ces derniers sont des composants mafgasdss et programmables qui possédent un
systeme d'exploitation. La machine de [I'utilisatepeut aussi disposer d'un systéme
d'exploitation de confiancetrgsted operating systenqui est un systéme actif concu pour
garantir la confidentialité, l'intégrité et la dispbilité des informations, des systémes et des
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ressources. Les utilisateurs ou les processusastmitisés a effectuer seulement les actions qui
leur sont permises.

B. Couche de gestion des pairs et des ressources

Les systémes implémentés sur un réseau pair-sspairen général tres dynamiques : les
pairs peuvent joindre le systéme et en partir Artmment. Déployer un réseau de superposition
offre un bon substrat pour la gestion des pairgest ressources du systéme. Le réseau de
superposition peut étre réalisé d’'une maniere aksde par laquelle la gestion dans son
ensemble se fait a travers un serveur centraliségapde la métadonnée correspondant aux
ressources du systéeme et facilite la découvelterecherche de ses ressources par les pairs. Le
réseau de superposition peut étre également débsétrLes services de découverte et de
recherche des ressources se font par des techmjatges a des topologies différentes. Dans
le cas d'une topologie plate du systéme, les ghieschent par eux-mémes les ressources qu'ils
sollicitent en inondant par exemple le systéme &vecs requétes comme dans Gnufellaa
topologie du systéme peut étre aussi hiérarchiqoeaans FastTrack [Liang et al. 2006] ou la
gestion du systéme se fait essentiellement a sales super-pairsyper-peersqui assistent
les pairs ordinairesofdinary-peer$ dans leur recherche des ressources. La topoldgie
systéme peut aussi étre structurée sous formebtis tde hachage distribuéels(ributed hash
tableg qui attribuent uniformément des identités aléatoiaux pairs. Des marques uniques,
dites clefs, sont aussi attribuées aux ressouroes lds métadonnées seront stockées par les
pairs. Ces messages se trouvent dans le méme ebpdissage que les clefs.

Identification des pairs

L'identification des pairs dans le réseau est yauede sécurité trés important puisque le
systeme risque des attaques de type Sybil sides pont libres de choisir leur identifiants.
[Douceur 2002] démontre que ce type d’attaque @siptetement éliminé s'il existe une entité
de certification dans le systéme qui fournit demntdiants fortement liés aux identités réelles
des pairs. D'autres alternatives limitent 'attagams pour autant I'éliminer et se basent sur des
tests de ressources, comme par exemple des purgfgegraphiques dans [Vishnumurthy et
al. 2003] ou la vérification d’adresse IP. Pareaits, SybilGuard [Yu et al. 2006] utilise des
liens sociaux déja existants entre les pairs péteater des attaquants de type Sybil.

Gestion de la métadonnée

La métadonnée renseigne sur les attributs d’unedm(par exemple nom, taille, propriété
et type), sa structure (par exemple, longueur aingls), son emplacement, ses droits d’acces et
les clefs associées, et contient éventuellement daseription courte de leur contenu. La
métadonnée peut étre stockée par le propriétaite dennée, rendue disponible par une entité
centralisée, ou distribuée aux pairs du réseagéneint cette information a travers un réseau de
superposition structuré ou non structuré.

Sélection aléatoire de pair

Dans un réseau de superposition centralisé, lecte#lealéatoire des pairs peut étre
simplement effectuée en choisissant un sous-engegiéatoire de la liste des pairs enregistrés.
Dans un réseau de superposition non structuré&ldeton aléatoire peut étre obtenue en se
basant sur la marche aléatoirandom walk [Zhong et al. 2008]. Finalement, un réseau de
superposition structuré permet avec une valeurt@téadans |'espace d'adressage de
sélectionner aléatoirement les pairs qui se trauaevoisinage de cette valeur.

8 http://www.gnutella.com/




C. Couche de gestion de la confiance et de la coopéoat

La confiance entre les pairs peut étre réalisé@gstanent ou dynamiquement (la Fig. 1
décrit la terminologie utilisée pour la confianc&ans le premier cas, les pairs ont des rapports
de confiance antérieurs basés par exemple suretisssiociaux existants. Dans les réseaux ami-
a-ami (riend-to-friend, les pairs interagissent avec les pairs qu'ittnegssent. Turtle [Popescu
et al. 2004] est un systéeme anonyme de partag®rdiations qui construit un réseau de
superposition pair-a-pair sur des relations d'a@nitiéexistantes entre les pairs. Ces relations
d'amitié sont définies comme commutatives, maistramsitives. [Li et Dabek 2006] a proposé
un systéeme de stockage sur un réseau ami-a-amip&@éma un systéme ouvert de stockage
pair-a-pair, l'approche proposée réduit le tauxédication des données stockées puisque les
pairs sont seulement sujets a des pannes et [Egosine ou a la malveillance et l'intérét est
donné plus a la préservation des données qu'a daponibilité. Cette approche n'aide
cependant pas a construire des systéemes a gradmelieéo/ec une large réserve de ressources.

La confiance peut étre assurée en utilisant uneritéitde confiance comme dans le cas
d’UbiStoragé. Ce service propose un systéme de fichiers quiast sur une infrastructure de
confiance distribuée établie au-dessus d'un rédeapairs. En effet, le service distribue des
terminaux dédiés, appelés « néobox », aux pairs.t€einaux sont utilisés pour stocker en
sécurité les données d'autres pairs.

Confiance
|
A 4 A 4
Confiance statique Confiance dynamique
(confiance a priori) (confiance non a priori)
e.g., réseaux sociaux (F2H I
A\ L4
Confiance a long term Confiance a court terme
(confiance a posteriori) (confiance non a posteriori
mmmmmm---—oo-< l _______________ Fl"ﬂ -
1Incitation a la A ; . !
I L Réputation Echange Paiement ||!
1cooperation '
\
4

Fig. 1 Taxonomie de la confiance

La confiance dynamique évalue les interactions pi#iss et se construit suite a cette
évaluation. L'évaluation du comportement des paertg étre effectuée a différentes fréquences.
L'évaluation immédiate du comportement du pairsestement possible si sa contribution se
produit dans un temps trés court (atomique) comoue le routage ad hoc ([Michiardi 2004] et
[Buttyan et Hubaux 2003]) ou I'échange de fichieagr-a-pair. L'opération de stockage s'étend
sur une période temporelle généralement longuejuiceécessite I'utilisation de protocoles qui
fournissent des preuves de possession de donnéesiliEant un de ces protocoles, le pair de

° http://www.ubistorage.com/
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stockage démontre au vérificateur (peut étre Ipnpttaire) qu’il posséde les données stockées
chez lui. Ces preuves peuvent étre maintenues aéeraaconfidentielle par les vérificateurs
comme elles peuvent étre distribuées au reste dies. a distribution peut se faire d'une
maniére centralisée ou suivant un réseau de suggopostructuré [Kamvar et al. 2003] ou non
structuré [Anceaume et Ravoaja 2006]. L'informatisar le comportement d'un pair en
particulier est utilisée pour déduire si ce pairriteéd’avoir une bonne réputation ou a
alternativement étre rémunéré pour sa contributguivant le mécanisme d'incitation a la
coopération en vigueur. Le modéle d'incitation &dmpération peut utiliser un historique des
actions passées des pairs (réputation) ou une peentie récompense ou de punition financiére
(paiement). Il peut se baser sur I'échange symériogpmme dans le systéme de partage de
fichiers BitTorrent’. Dans BitTorrent, les pairs téléchargent des dichivers d’autres pairs qui
leur fournissent une bande passante éleité®i(-tat).

Le déploiement d’'un environnement de confiance peumettre la gestion de 'information
de la réputation des pairs et méme assurer I'éehaqgitable entre pairs de la rémunération
contre contribution dans le cas d’'un mécanismeciation basé sur le paiement.

D. Couche applicative

La couche du niveau applicatif est concernée pgefdion individuelle du service installé
sur chaque machine. Chaque pair doit stocker Ieaéls d'autres pairs du réseau et garantir la
disponibilité et la fiabilité du stockage.

Structure multiservice

Il est possible de concevoir une structure généiadehange de ressources ou les pairs
peuvent échanger plusieurs types de ressourceg entx. Cette structure s’avére étre
intéressante dans le cas ou les pairs ont desnmsthétérogénes et des besoins différents.
Chaque pair participe donc a une collection deisesvdont certains sont utilisés pour sa
consommation personnelle et d’autres pour sa ¢arion a la collectivité.

La rémunération (argent réel ou virtuel) peut éoesidérée comme une contrepartie neutre
qui peut étre échangée pour n'importe quel secaopératif. Par conséquent, un systéme basé
sur des incitations & base de paiement peut peemattx pairs d’accéder d'une maniére
simultanée a des services coopératifs. L'évaluationcomportement des pairs devrait étre
exécutée séparément et indépendamment pour chagiees Cependant, la rémunération pour
un service rendu peut étre effectuée de la ménman fpour tous les services. Par exemple, la
rémunération peut employer des enchéeres (commeKiaR8A [Vishnumurthy et al. 2003])
pour faire face a l'effet des changements ded'afrde la demande sur les prix.

Un systéme d’exploitation de confiance incorporésdéa machine de chaque pair doit
contréler l'accés du pair aux ressources et awicesret peut également servir pour stimuler ou
méme forcer le pair a coopérer avec le systémeedmaniére équitable. L'incitation a la
coopération peut se résumer a une différentiatiosatvice recu par le pair; un pair coopératif
aura une bonne qualité de service contrairemenh dgair non coopératif. La fonction du
systéeme d’exploitation est de permettre I'évaluatiopartiale des actions du pair et de modifier
ses droits d'acceés sur les ressources du systéerfumetion de cette évaluation. En particulier,
la différentiation de service peut miser sur unétigoe de sécurité contextuelle qui peut étre
renforcée avec une architecture de sécurité conane Hlask [Spencer et al. 1999]. Ce type
d’architecture permet la révocation systématiquedtsits d'acces précédemment accordés.

10 http://www.bittorrent.com/
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Chapitre Ill Vérification de la possession de la donée a distance

Le premier objectif du stockage de données pamiagst de garantir la survie a long terme
des données stockées. Cet objectif exige des pramiparticulieres qui permettent d'assurer la
vérification de cette propriété. Contrairement aartréles simples d'intégrité, la vérification de
I'intégrité des données stockées doit prendre esidération le fait que le pair de stockage peut
étre défectueux mais aussi malveillant. De plusque les données sont stockées a distance, la
vérification ne devrait pas exiger le transfert deanées dans leur intégralité. La dynamicité du
systeme due notamment a la connexion intermit@egeoairs suggére de distribuer la charge de
la vérification sur plusieurs pairs dans le résdhwest nécessaire que ces Vérificateurs ne
gardent pas toute la donnée pour la vérifications npdutét une information de petite taille
(comparée a la donnée). Les vérificateurs ne s@# forcément de confiance, donc
I'information qu’ils stockent pour la vérificatione doit pas étre une information secréte par
rapport au pair de stockage. En tenant compte dedeeiéres conditions, le protocole de
vérification est donc délégable.

A. Obijectifs de sécurité

Le mécanisme de vérification doit adresser leqjaéta potentielles suivantes auxquelles le
systéme de stockage est exposé :

- Détection de destruction de donnédsa:destruction ou la corruption des données peut
étre due a un pair défectueux ou malhonnéte. btgole de vérification doit assurer
cette fonction.

- Résistance a la collusionLes pairs possédant les répliques de la méme dgeéent
entrer en collusion en détruisant toutes les raplqsauf une qui est utilisée pour
répondre correctement aux vérificateurs. Une smutbntre ce type de collusion se base
sur la personnalisation des répliques de donnkepropriétaire conserve des répliques
qui sont personnalisées pour chaque pair de steckag

- Prévention contre l'attaque par le milieu (man-hetmiddle): L'attaquant peut
prétendre étre & la fois le pair propriétaire dddanée et le pair qui garde cette donnée
en se placant entre les deux lors d’'un échange efsages. La réplication peut étre
perturbée par cette attaque puisque le propriétaigeie de stocker sa donnée chez le
méme pair. Une maniére typique de résoudre ce gmublest d'ajouter une étape
d'engagement dans les messages échangés entmailesde telle maniere que
I'attaquant ne puisse pas ouvrir ou produire cegmgements.

- Prévention contre le déni de service (denial oviee) : Un pair de stockage peut étre
inondé de requétes de vérification. Un attaquanit @eissi rejouer un message de
vérification ou de réponse valide afin de pertutbgarocessus de vérification.

Ce chapitre présente trois protocoles de vérifioatjui cherchent a répondre aux exigences
de construction, de performance et de sécuritéutfies ci-dessus en proposant différent
compromis.
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B. Protocole de vérification Probabiliste

Le premier protocole de vérification vise a uneedtbn de destruction de donnée
probabiliste. La donnée est stockée sous formeatgnints avec leurs signatures respectives
gui sont générées par le propriétaire de la donAéehaque opération de veérification, le
vérificateur demande un fragment dont l'index elbisi aléatoirement avec sa signature.
Lorsqu'il recoit la réponse du pair de stockage/deficateur teste si la signature correspond au
fragment demandé. Le vérificateur réalise ce testtdisant la clé publique utilisée lors de la
signature des fragments.

Le vérificateur évalue la présence d'un fragmemzcle pair de stockage. Mais, puisque le
fragment est choisi aléatoirement, le pair de stgekdoit garder toute la donnée stockée pour
pouvoir répondre correctement a toutes les requiiiegérificateur. Par contre, si le pair de
stockage détruit une fractioth des fragments, le vérificateur doit effectuer désifications
multiples pour réaliser une certaine probabilitéddtectionpyetecion LE NOMbre de vérifications
c est dérivé comme suit:
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Fig. 2 Nombre de vérifications nécessaire pour as®r une certaine probabilité de détection de la desiction

La Fig. 2 démontre que méme avec un nombre deoaiifnsc modeste, il est possible de
garantir une probabilité de détection de la maede du pair de stockage proche de 100%.

C. Protocole de vérification déterministe restreint

Le second protocole de vérification vise a unefie@ation a distance sur toute la donnée
stockée mais avec un nombre limité d'opérationsvéefication réalisables. Le protocole
proposé se base sur la notion d'unicité de laisalatu probléme d'interpolation de polyndme.

Le propriétaire de la donnée génére des polyndrpastid de valeurs déduites des fragments
de la donnée et des valeurs aléatoires pour asgueerles défis construits soient aussi
aléatoires. Il utilise pour cela la formule de Lamge comme méthode d'interpolation de
polyndme. A partir des polyndbmes générés, le pétqure calcule des points particuliers. Ces
points sont envoyés au vérificateur avec les vala@liatoires utilisées constituant ainsi une
métadonnée pour la vérification. Le pair de stoekggi posséde les fragments de la donnée
recoit périodiguement du vérificateur une valeuéasdire qu'il utilise pour générer un
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polyndme. Ce polyndme est construit a partir destpaconstitués par les fragments de la
donnée et le point qui consiste en la valeur aléatecue comme défi. Le pair de stockage
produit une réponse unique au défi en calcularpiaint particulier du polynbme généré. Cette
réponse est ensuite envoyée au vérificateur quotapare a la valeur qu'il stocke comme
métadonnée.

Le vérificateur peut effectuer un nombre limitétdst sur la donnée stockée a distance. Ce
nombre est défini par le nombre de défis pré-cékel stockés chez le vérificateur. Augmenter
la fréquence de test contraint le vérificateurakleer une métadonnée de plus grande taille. La
taille d’'un défi est déterminée par la taille (mmale) d’'un fragment de la donnée. Diminuer la
taille des fragments (i.e., augmenter le nombréragments de la donnée) diminue en méme
temps la taille de la métadonnée stockée chezriice¢eur. Cependant, ceci affecte la sécurité
du schéma puisque les points a partir desquelsolgn@me est généré par interpolation
deviennent aussi de petite taille et donc la smhytiroduit beaucoup plus de faux positifs.

D. Protocole de vérification déterministe

Le protocole de vérification proposé se base saryptographie des courbes elliptiques. Le
propriétaire de la donnée génére une courbe glliptisur I'ensemblé&, avecn est choisi
comme un modulo RSA tel que=pg ou p et g sont deux nombres premiers. L'ordre de la
courbe est gardé secret par le propriétaire. [Kayatal. 1991] démontre que résoudre |'ordre
sans connaitrp et g revient a factoriser le modulo RSAqui est conjecturé comme étant un
probleme difficile. La donnée est associée a ureuveentiéred. Le propriétaire génére la
métadonnée qui consiste en un polidd.P ou P est un générateur de la courbe. Cette
métadonnée est stockée chez le vérificateur. Rérifier la présence de la donnée chez un pair
de stockage, le vérificateur lui envoie le pd@#r.P avecr un entier choisi aléatoirement. Le
pair de stockage répond a ce message en caldRdan®. Le vérificateur teste finalement si
cette égalitdr=r.T est vérifiée.

Le pair de stockage ne peut qu'utiliser toute lard® pour pouvoir répondre correctement
au vérificateur car il devrait sinon déduire laewalder der.P ou connaitre I'ordre de la courbe
elliptique N, pour garder justd mod N,. Le premier cas correspond au probléme du logaeth
discret d'une courbe elliptique et le second albléme de factorisation d’'un modulo RSA ; les
deux problémes sont conjecturées comme étantitdiffia résoudre.

Dans ce protocole, le pair de stockage doit fame epération de multiplication sur toute la
donnée qui peut étre assez colteuse en termesateirees de calcul et de temps. Pour alléger
cette opération, on propose de diviser la donné&agments et d’augmenter la taille de la
métadonnée stockée chez le vérificateur. Chaqueeéliede la métadonnée correspond donc a
un fragment de la donnée plutdt qu'a toute la den®énsi, le pair de stockage effectue une
opération de multiplication sur juste un fragmdtdur permettre la vérification déterministe de
la donnée, le vérificateur doit constituer en ples un générateur de valeurs aléatoirsmse()
qui sont utilisées pour relier les points obtenadadmultiplication de fragments avec le point
inclus dans le défi du vérificateur.

La littérature regorge de propositions pour deis@s qui permettent la vérification de
l'intégrité des données a distance ([Ateniese eR@D7], [Deswarte et al. 2004], [Sebé et al.
2007], [Filho and Barreto 2006], [Schwarz and MilgD06], [Chang and Xu 2008], [Juels and
Kaliski 2007]). Ces propositions sont assez progosts en termes de performance, sauf
gu’aucun de ces protocoles ne suggére la délégad¢ida tache de vérification a plusieurs pairs
pas forcément de confiance (méme si certains ptassont délégables). Notre protocole est le
seul qui est construit autour de cette propriéiéegtid’'un grand intérét pour un réseau pair-a-
pair dynamique.




XV

Chapitre IV Stockage et maintenance sécurisés de moées pair-a-pair

Les protocoles de vérification de données a distgpermettent au vérificateur de détecter
(de maniéere déterministe ou probabiliste) si lasndes stockées sont détruites ou non. Afin de
préserver la fiabilité des données dans le systeEnuiétection de toute destruction ou corruption
de ces derniéres devrait déclencher leur restaoraflette charge ne peut pas étre accomplie
seulement par le propriétaire des données, puisugl’'participe pas souvent a la vérification.
Les vérificateurs et les pairs de stockage devigiemdt coopérer pour restaurer les données en
générant une nouvelle copie des données qui elésta@hez un nouveau pair. Cette nouvelle
copie doit étre personnalisée pour le nouveau gmistockage ; en outre la génération de la
nouvelle copie ne doit pas exiger la transmisdiem données plusieurs fois de suite notamment
le transit & travers un vérificateur.

Dans cette section, nous présentons une nouvetleodede stockage et de maintenance des
données qui se base sur le protocole déterministeopé précédemment et qui permet de
restaurer les données détruites sans avoir reaaysopriétaire.

A. Attaques

Les différentes attaques auxquelles le protocolstdekage et de maintenance de données
est exposé sont détaillées dans la section prédsative aux attaques contre un protocole de
vérification de données a distance. Notre progmsititroduit cependant de nouvelles menaces
en particulier liées a la phase de restauration:

- Attaques en Déni-de-Service (DOS)es vérificateurs malveillants peuvent inonder le
réseau avec des messages inutiles pour la réparafia d'empécher ce type d'attaques, un
seuil t de vérificateurs honnétes est défini : il devsaiavoir au moins un nombrede
vérificateurs qui détectent un probléeme de destmcte données dans la phase de
vérification avant de produire une nouvelle cops données.

- Données faussesDurant la phase de réparation, les pairs de speckauvent tricher en
effectuant la régénération de données faussesvédrdicateurs peuvent également jouer un
réle dans ce type d’attaques.

B. Etat de l'art des approches existantes

Le protocole de stockage et de maintenance defdsrdevrait consister en cing phases: les
pairs de stockage potentiels sont élus par le j@taine durant une phase de sélection, ces pairs
stockent les données du propriétaire durant lagpbasstockage. Le propriétaire nomme alors
des vérificateurs pour vérifier I'intégrité et leépence des données stockées durant la phase de
délégation et ces vérificateurs effectuent périogigent cette tache durant la phase de
vérification. Si les vérificateurs détectent latdastion ou la corruption des données, la phase
de réparation est activée durant laquelle les igatdurs produisent une nouvelle copie des
données avec l'aide des pairs de stockage enc@wenps dans le systeme.

Sélection :Le but de cette phase est de choisir un ensemsbaids qui peuvent maintenir la
fiabilité et la disponibilité des données. Il y aud techniques possibles pour la sélection des
pairs de stockage. Une sélection discriminatoiterd@ne les pairs d’'une maniére spécifique
par exemple parce quils satisfont une contrairf@ingledine 2000]) ou partagent des
caractéristiques identiques a celles du propreégfdiroka et Michiardi 2008]). En revanche, la
sélection aléatoire est généralement employée g@wimplicité puisqu'elle consomme moins
de bande passante par pair. TotalRecall [Bhagwah 2004] se base sur des tables de hachage
distribuées distributed hash tablgsgpour choisir aléatoirement les pairs de stockf@edfrey
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et al. 2006] a analysé les stratégies de sélediopair et a prouvé l'intérét de la sélection
aléatoire. Aprés que les pairs de stockage sorisishde propriétaire peut directement les
contacter. Il existe plusieurs techniques pourtémies attaques de type Sybil [Douceur 2002],
(se référer a [Levine et al. 2006]) par exemplepaiss qui joignent le systéeme devraient en
premier lieu fournir quelques ressources (cryptezpas dans [Vishnumurthy et al. 2003]).

Stockage Une fois que des pairs ont été sélectionnés gostockage par le propriétaire, ce
dernier envoie ses données a ces pairs. La diEpiendes données peut étre assurée avec de la
redondance. Avec la réplication, une simple come données est distribuée a chaque pair
choisi. Par contre avec le codage d'effacemerats(ire codes les données sont divisées en
plusieurs blocs qui vont produire des blocs suppléaires pour permettre la reconstruction des
données a partir d'un nombre de blocs seuil. Ldicaon, qui a été la plupart du temps
employée dans les tables de hachage pour sa siptiffre un compromis moins intéressant
entre les frais de stockage et de bande passantdgpmaintenance et la tolérance aux fautes
par comparaison aux codes d'effacement. C'est pouri y a plusieurs systémes de stockage
qui ont opté pour le codage d’effacement comme WhallIMyData Tahoé?, UbiStorag&’, et
TotalRecall [Bhagwan et al. 2004]. Dans le casadeggplication, puisque la taille des données
est en général grande, les pairs de stockage peaneer en collusion et tricher en stockant une
seule copie des données. La personnalisation dpielapie pour son détenteur a été présentée
comme une solution a cette menace (comme préseitédemment dans la description des
protocoles de vérification, ainsi que dans [Lilidge et al. 2003]). Ce type de collusion peut
également surgir avec le codage d'effacement qilaiigwienne problématique seulement si le
nombre de pairs en collusion excede le nombre atss ldriginaux.

Délégation :Comme précédemment décrit, le protocole de stecklegrait assurer que les
données sont toujours disponibles. Les réseauxagadir étant trés dynamiques, le propriétaire
n'est pas toujours en ligne ce qui implique quevdaification de données doit encore étre
assurée par des délégués du propriétaire. Le ptapé fournit a ses délégués des métadonnées
qui sont des informations sur les données stoclketegli servent comme base a la vérification a
distance.

Vérification : Des protocoles cryptographiques permettent aws pla stockage de prouver
a distance l'intégrité des données qu'ils stockpat exemple, les protocoles de vérification
proposés précédemment, [Deswarte et al. 2004]¢[8elal. 2007], et [Ateniese et al. 2007]).
Cependant le manque de réponse de la part d'undpastockage est ambigué parce gu'il ne
permet pas de savoir si le pair est défaillant alveillant, ou bien s’il est juste déconnecté et
peut revenir avec les données intactes. Ceci pieuténtourné en considérant un certain délai
au cours duquel le vérificateur défie le pair declsaige plusieurs fois avant de décider que ce
pair est malveillant.

Réparation :Détecter qu'un des pairs de stockage a trichédéaiencher une opération de
restauration afin d'assurer la disponibilité deardes. Etant donné la nature dynamique des
réseaux pair-a-pair, une telle opération ne pewt ga baser seulement sur I'effort du
propriétaire qui peut étre déconnecté lors deétedion de la destruction des données. Cette
opération doit plutot étre effectuée par les Vvéaieurs et les pairs de stockage qui gardent
encore les données stockées. Les résultats deasiomutle [Bhagwan et al. 2004] démontrent
que la réparation retardée des données détrlieg (epai) est plus efficace en termes de
compromis entre la disponibilité des données etdéss d’'une telle opération que la réparation
immédiate éager repai) pour des données de grande taille et un systé&seynamique.

Y http://wua.la/en/home.html
12 http://allmydata.org/
13 http://www.ubistorage.com/
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C. Protocole de stockage et de maintenance de donnéesé sur le codage
d’effacement

Le protocole proposé emploie le protocole de @atfon déterministe basé sur les courbes
elliptiques proposé a la section 1lI.D. Il suggénessi I'utilisation du codage d'effacement
linéaire et aléatoire [Acedaki et al. 2005]. Avec un tel codage, les entréedadmatrice
génératrice des blocs codés sont choisies aléateirt.

Dans le protocole proposé, les pairs de stockagesstectionnés aléatoirement. Ces pairs
vont ensuite stocker les blockYi<i«m qui sont des blocs codés par le propriétaire awvec
codage d'effacement linéaire et aléatoire Zuet utilisant les blocs originaux des données
{d} <« Le propriétaire choisit aussi des vérificateurs gont assignés chacun a un ou
plusieurs pairs de stockage et vont donc recev@rmétadonnée correspondant au bloc stocké
par le pair de stockage. Par exemple, le vérificatssigné au pair qui stocke recoit la
métadonnéd;=h,.P. Chaque vérificateur teste I'intégrité et la pré&sedu bloc d’'une maniére
périodique en se basant sur le protocole de vatidia décrit au Ill.D de ce chapitre. Si au
moins t vérificateurs détectent un probléme chez un paistdekage, ils décident alors de
reproduire un nouveau bloc et de le stocker chezauveau pair. La décision de déclencher la
phase de réparation revient donc a plusieurs gatéfurs pour éviter des attaques de déni de
service flooding attacl. Les vérificateurs se mettent d’accord sur un lnemaléatoires qui va
étre utilisé comme un générateur de coefficiergatalres €} 1<« lls sélectionnent aussi un
nouveau pair qui va recevairavec un nombré de blocs provenant des pairs de stockage
restants. Le nouveau pair reproduit un bloc doden utilisant les blocs recusst

k

b’=chxbtl

=1

Ce nouveau bloc peut s'écrire aussi en fonctionbitess originauxd; ; est une entrée de la
matrice génératrice utilisée par le propriétaire):

k

k

[

b—E chxa’tl'}' Xd]
=1

=1

Le nouveau bloc est donc bel et bien un bloc ca@égénération du nouveau bloc a
nécessité la transmission Heblocs ; bien que ceci puisse encore étre réduittdéisant par
exemple le codage d'effacement hiérarchique [Dunorand Biersack 2008]. Les vérificateurs
gui vont étre responsables de ce nouveau pairdaj@ent une nouvelle métadonriBea partir
des métadonnées des autres vérificateurs ®t de

k

T' = ECIXTLLI

=1
Cette métadonnée peut s’écrire aussi en fonctiamodueau bloc. En effet,
k k

T = Z o X Ty, = E(Q X by,).P = b'.P
=1

=1
Donc, T'est une métadonnée de vérification pour le nouvglaa b'. Pour éviter que les
pairs n’envoient des informations fausses, soumdode blocs ou de métadonnées, chaque
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information doit étre accompagnée par la signatiurepropriétaire. Le protocole peut méme
utiliser des signatures homomaorphiques (par exemplee signature algébrique [Schwarz and
Miller 2006]) pour permettre au nouveau pair dera@dpire une nouvelle signature pour le
nouveau bloc généré pour attester de sa validiééty@e de signature permet la vérification
suivante :

k k

SigNowner b = Z X btl = HSignowner(btl)cl

=1 =1

Le protocole de stockage et de maintenance deédsna distance proposé est auto-
organisant puisqu’il fait participer les vérificate et les pairs de stockage et non plus le
propriétaire. La distribution de la plupart de fmsctionnalités a ces pairs permet de limiter a la
fois la connexion intermittente des pairs et leatumillance potentielle.

Chapitre V Incitations a la coopération basées suraudit

Le protocole de vérification de présence de la dena distance constitue une primitive
d’évaluation du comportement des pairs de stockagen nomme audit. A partir de cet audit,
des mécanismes d'incitation a la coopération peué&ea établis pour générer de la confiance
dynamique entre les pairs. On distingue des appsotiasées sur la réputation et d'autres
basées sur la rémunération.

A. Approche de réputation

L'approche de réputation estime le degré de coofiades pairs en s'appuyant sur
I'expérience et I'observation de leurs comporterngratssés.

Attaques
Les pairs ne sont pas nécessairement honnétesnatnpe¢romper le systéme de réputation
pour gagner un avantage personnel non mérité.

- Mensonge Un menteur est un pair qui dissémine des obsenaincorrectes sur d'autres
pairs pour augmenter ou diminuer leur réputatioes Imenteurs peuvent s’entendre et
conspirer contre un ou plusieurs pairs dans leatésmn leur affectant injustement une
mauvaise réputation ou au contraire en affectaatréputation excessivement élevée aux
membres de leur groupe.

- Collusion entre le propriétaire et le pair de stagle : La collusion vise a augmenter la
réputation du pair de stockage chez les vérificatéwnnétes. Le propriétaire stocke des
données factices chez le pair de stockage.

- Collusion entre le pair de stockage et le vérifmat: Le but d'une telle collusion est
d’augmenter la réputation du pair de stockage theropriétaire sans pour autant garder sa
donnée. L'effet de ce type de collusion est lingtdce a la distribution de la tache de
vérification & des pairs multiples ; le propriétapeut se fier & 'ensemble (par exemple a
travers un vote) de leurs résultats comme il p&aldment vérifier par lui-méme le
stockage.

- Blanchissement (whitewashindgs pairs peuvent sortir du systéme et le rejeindus tard
avec une nouvelle identité afin d'effacer leurddits.




XIX

- Attaque de type SybilSi les pairs peuvent produire des nouvelles it volonté, ils
peuvent employer certaines d'entre elles pour antgnia réputation des autres.

Description

Nous proposons que les pairs soient organisésarpgs ou seules les interactions intra-
groupes sont autorisées. Ainsi, les pairs étalslissee estimation rapide de la réputation des
autres membres de groupe. Les groupes de pairscegég d'une facon centralisée par une
autorité (comme [Lillibridge et al. 2003]) ou détmtisée qui misent sur des protocoles de
distribution de clef de groupe (par exemple, [Leal €2006], [Lesueur et al. 2007]).
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Fig. 3 La qualité d’observation en variant le nombe de pairs dans le groupe pour notre approche(dits) et
une approche de réputation indirecte feputation).

Le modéle de confiance est basé sur les listestanvhite-listing qui sont similaires a la
stratégie d'ceil pour ceil dans BitTorrent [Piatelle2007] sauf que les vérificateurs tiennent en
plus en compte les résultats de vérification daméles des autres pairs. Les pairs inconnus
d'un pair particulier sont ajoutés a sa liste bland’une maniére probabiliste. Chaque pair
accepte de servir seulement des pairs inclus @alistes blanche.

Les pairs sont structurés sur une table de hactiiatidouée dont on suppose qu’elle offre
une recherche de clefs sécurisée ([Sit and Mof@2Pand [Castro et al. 2002]). Pour prévenir
des collusions potentielles entre pairs visanbaper le systeme de réputation, la sélection des
vérificateurs et des pairs de stockage se faitedinaniére aléatoire dans la table de hachage.
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Fig. 4 Ratio des propriétaires en fonction de leustratégie avec une composition initiale : 40% coopéteurs,
30% pairs égoistes passivepdssively selfis)) 30% pairs égoistes actifsactively selfish.




XX

La qualité de l'observation a été calculée analgigent pour un systéme utilisant
I'approche basée sur l'audit et une approche deuta@ipn traditionnelle basée sur les
recommandations. La Fig. 3 démontre que I'apprgmbposée est plus adaptée a un ensemble
de pairs de petite taille puisqu’il affiche une benqualité d'observation comparé a une
réputation typique qui se base sur des informatindigsectes.

Le systeme de stockage qui utilise I'approche baméel’audit a été simulée dans un
environnement constitué de pairs avec des stratégimportementales persistantes. La Fig. 4
qui est un résultat de cette simulation illustrefileage des pairs égoistes du systeme de
stockage en se basant sur notre approche de iéputAprés cette phase, les pairs aptes a
stocker des données dans le systéme sont legpsdnsi€oopératifs.

B. Approche de paiement

L’approche de paiement proposée combine la suawedl périodique du stockage de
données aux paiements des pairs qui les stockdetsatérificateurs.

Attaques et problemes
Les pairs doivent participer au systéeme conforméraerprotocole de paiement ; cependant
les pairs peuvent se conduire d’une maniére ma#tenn

- Attague de type Sybil Lattagquant peut tromper le systéme en s'aidamcaplusieurs
identités générées par lui-méme. Par exempleelt pbuser des pairs de stockage en
refusant de les payer et en prétextant de quelgérficateurs qui les as fabriqués pour
justifier son comportement.

- Personnification :Un pair ne doit pas étre capable de personnifieautre pair, parce que
sinon il peut utiliser son argent.

- Contrefacon :Des pairs sont généralement payés avec des jéogsnt virtuel, crédit,
cheque, etc.). La contrefacon se résume a repeoftainduleusement un jeton.

- Double dépense Le jeton peut étre dépensé numériqguement une usiepks fois. Il y a
deux solutions a ce probléme : le bénéficiairefita validité du jeton avec la banque a
chaque fois qu'il est payé, ou bien le fait de aé&ee un jeton plusieurs fois expose
I'identité de l'attaquant.

- Echange équitable Les protocoles d'échange équitable permettentadantir que deux
parties échangent un service contre paiement sgagayne partie ne gagne un avantage
sur l'autre.

- Famine :La famine est l'incapacité d'un pair de participeisystéme parce gu'il n'a plus de
jetons a dépenser ([Weyland et al. 2005]).

Description

Notre approche de paiement se base sur KARMA [\ighurthy et al. 2003]. KARMA
propose de substituer a la banque (autorité dearmd) un ensemble de pairs aléatoirement
attribués pour chaque pair, appeléank-set Ces banques réparties sont collectivement
responsables d'augmenter et de diminuer le soltgatit des pairs auxquels ils sont assignés.
Les paiements se font sous forme de chéques élapias certifiés par les banques.

Avant de joindre le systéme, les pairs doivent uds® un puzzle cryptographique. Ceci
contrecarre les attaques de type Sybil contred&sye de stockage.

Les pairs sont donc organisés dans une table deafpacdistribuée dont le service de
recherche est supposé sécurisé. Les pairs de gesckénsi que les vérificateurs sont choisis
aléatoirement dans la table pour limiter des cmhs potentielles entre eux.




XXl

Le calcul des prix du stockage de donnée et deélification s’effectue sous forme
d’enchéres afin d'atténuer les phénoménes de fai@seprix sont calculés en fonction de la
guantité d’argent que le pair posséde : un pairadogaucoup d’argent propose des prix élevés
alors qu'un pair pauvre propose des prix bas peoir @lus de chance d'étre choisi.

Une simulation du systéme de stockage utilisampfache de paiement a été réalisée. Le
résultat de la simulation est décrit dans la Figubdémontre qu’'avec notre approche basée sur
I'encheére, le systéme continue de fonctionner peindae longue durée. Ceci est du au fait que
les pairs ont un risque réduit de tomber en famine.
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Fig. 5 Quantité de données stockées dans le systéenevariant le poids de I'enchérav (w=0 signifie pas
d’enchére). Composition initiale : 40% coopérateurs30% pairs égoistes passives, 30% pairs égoistetifa.

Puisque le stockage est une opération de longainkalon propose de mettre en séquestre
les paiements dus aux pairs pour empécher les gainsettre des chéques a découvert. Le
propriétaire de la donnée stockée doit dés le délbguer la quantité nécessaire pour payer les
pairs de stockage et les vérificateurs. Les parstdckage doivent aussi mettre en séquestre
une quantité d'argent qui correspond a la rémuinéraiue le propriétaire obtient si la donnée
est détruite.
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Fig. 6 Ratio des propriétaires en fonction de leustratégie avec une composition initiale : 40% coopéteurs,
30% pairs égoistes passivepdssively selfis)) 30% pairs égoistes actifsactively selfish.

Etant donné que le nombre de paiements recus p@ales est proportionnel au nombre de
vérifications a effectuer, le protocole de vérifioa peut se baser sur un protocole qui utilise
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des défis pré-calculés. Le vérificateur possedenambre limité de défis et leurs réponses
respectives qu’il emploie un par un pour testemptésence de la donnée chez le pair de
stockage. Cette vérification permet au vérificateuau pair de stockage d’étre payés. C'est
pourquoi la métadonnée stockée chez le vérificatemsiste en des réponses hachées. Les
réponses obtenues du pair de stockage peuvenutsujtre testées mais permettent en elles
mémes de déchiffrer des chéques recus du propeiégiile pair de stockage a gardé toute la
donnée intacte, lui et son vérificateur sont récemsgs. Par contre, si le pair de stockage a
détruit la donnée, il sera détecté par un nombfiisant de vérificateurs. Ces vérificateurs
gardent des parts d’'un cheque électronique au nonprdpriétaire : celui-ci représente la
punition du pair de stockage en cas de défailla@es. parts sont envoyées au propriétaire et
posséder un nombre suffisant de ces parts permebrdgruire le cheque et de I'encaisser au
prés de sa banque.

La Fig. 6 est le résultat de la simulation du systede stockage basé sur I'approche de
paiement et illustre la convergence du systéme uar®tat ou seuls les pairs coopératifs
peuvent stocker leurs données. La convergence pirendrtain temps (comparé a la réputation)
pour atteindre une population de propriétaires 1@@4pératifs du fait de la grande taille du
systeme (nombre de pairs=10000).

Chapitre VI Validation par la théorie des jeux

Le réle d'un mécanisme d'incitation a la coopénatiést de motiver les pairs rationnels qui
accomplissent des actions stratégiques a coop&esr l@s autres pairs. |l s'avere que la
démonstration qu’'un mécanisme satisfait cet olfjesti possible avec les outils de la théorie
des jeux. Les jeux non coopératifs répétés sorglams pour valider les incitations de
coopération qui régissent les interactions entriespaien définis et donner ainsi une vue
microscopique du mécanisme; par contre |'utilisatit® jeux évolutionnaires qui décrivent
I'évolution des stratégies chez plusieurs populatide pairs permettent de saisir une vue plus
large et plus dynamique du probléme.

A. Jeu non coopératif répété

Le premier modéle de jeu proposé pour le systemestdekage pair-a-pair basé sur
I'approche de paiement est un jeu non coopératifyetétrique qui se joue entre deux pairs : le
propriétaire de la donnée et le pair qui stocketecatonnée. Le propriétaire vérifie
périodiquement la présence de sa donnée chezedwipair.

Le modele de jeu de la Fig. 7 est un jeu séqueatiet une distribution asymétrique
d'information, puisqu’on considére que le propiiétae connait pas le type du pair de stockage
qui peut étre coopératif ou égoiste ou méme défdillToutefois, le propriétaire a la possibilité
de déduire le type en se basant sur les résukat@rification de la donnée a distance. Aprés
chaque vérification, le propriétaire met a jourcsayance sur le type du pair de stockage selon
la formule de Bayes. Ces vérifications sont appsekignaux et le jeu est dit jeu a signaux
(signaling gamg Un signal réussi (résultat de vérification pfjsitveut dire que le pair de
stockage est coopératif ou égoiste car il a pundi@ocorrectement (avec une probabidjiéa
un défi de vérification parce qu'il a gardé unetjoor de la donnée (qui correspond a I'ensemble
d’'information IIl). Un signal erroné (résultat dérification négatif) signifie au contraire que le
pair de stockage est défaillant ou égoiste (quiespond a I'ensemble d'information IV). En se
basant sur ces signaux, le propriétaire a le abiatise récompenser, punir ou ne rien faire contre
le pair de stockage.
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La solution du jeu est de trouver I'équilibre. Ligiiore de Nash se résume a la non
coopération des deux parties : le pair de stockhgésit d’'étre égoiste et le propriétaire de le
punir. L’équilibre Bayesien parfait est plus ada@tée type de jeu avec information incompléte
et réussit a produire la coopération des deux pams avec des conditions qui lient les
paramétres du jeu (les valeurs de récompensepiriion par exemple).

o s H  Nature H £ o
(R-D,G-R) —¥ @ O o 9 (0,0

p \ / n

(-R'-D,R) (R, R)

(R-aD, -R) (-R"-qD,R) (gD, 0) (-R-qD,R)
Fig. 7 Jeu & signaux

Le jeu proposé est répété plusieurs fois avec uoleapilité d’'arrét de jep. Le jeu peut
aussi étre arrété par le propriétaire qui choisipdnir le pair de stockage. Les profils d'action
considérés sont les suivants :

a) (signal réussi, récompense), (signal réussi, réeoss), (signal réussi, récompense), ...
b) (signal réussi, récompense), ..., (signal réusspmgense), (signal erroné, punition)
c) (signal erroné, punition)

Le résultat de l'analyse du jeu répété prouve dtérdtion du jeu (valeur basse @
favorise la coopération du pair de stockage etrdprgtaire. De plus, I'analyse démontre que
la coopération du propriétaire est stimulée en migant les valeurs de la récompense et de
punition et en maximisant le gain gu'il obtientstockage a distance.

B. Jeu évolutionnaire

Le deuxieme modéle de jeu du systeme de stockaig&-pair basé sur I'approche de
réputation décrit I'évolution des stratégies desutaiions d'individus suite a des interactions
locales multiples entre des individus choisis aiéament. Un individu joue contre un autre
joueur aléatoirement choisi avec le but de maxinssa utilité {ithesg dans ce jeu.

Le jeu évolutionnaire proposé est similaire a celams [Brandt et Sigmund 2006] ou les
joueurs ont chacun un role défini: soit donateamit récipiendaire. Le donateur gagne un
avantage d’un récipiendaire & un col(t-€hez ce dernier. Le propriétaire, le pair de stgeka
et le vérificateur sont des roles qui sont jouaplsn’importe quel pair. Le propriétaire est un
récipiendaire dans la terminologie de [Brandt gn&ind 2006], et les pairs de stockage et les
m vérificateurs sont des donateurs. Le propriétaagngb si au moins un pair de stockage
donne a un colt-; néanmoins si aucun pairs de stockage ne dotors,la propriétaire peut




XXIV

gagnerpb si au moins un vérificateur donne a un ceitt (v<1) pour chaque vérificateur. Le
dernier cas correspond a la situation ou le vétiéiar coopératif informe le propriétaire de la
destruction de la donnée, le propriétaire ayansdibopossibilité de maintenir le méme taux de
réplication de sa donnée dans le systeme.

Les donateurs ont le choix entre donner (coopéemas. Le travail d'analyse se porte sur
les stratégies des pairs suivants:

- Toujours coopérer le pair est altruiste et donne toujours lorsgedt dans le réle du
donateur.

- Ne jamais coopérerle pair ne donne jamais dans le r6le du donateur.

- Discriminer : le discriminateur donne selon des conditions digcriminateur donne
lorsqu’il ne connait pas le joueur d’en face owsdpie ce joueur a déja donné dans un jeu
précédent dans lequel le discriminateur était daits le rdle du propriétaire, soit dans le
réle du vérificateur (il était observateur). Cetteatégie s'apparente a la stratégie ceil pour
aeil ¢it-for-tat) mais difféere par le fait que non seulement leppédaire tient compte des
actions du pair de stockage, mais aussi que léficaéeurs considérent ces actions dans
leurs interactions futures.

La dynamique du jeu évolutionnaire se base suytemiique de reproduction de génes qui
définit le taux de croissance de la population dérspavec une stratégie déterminée est
proportionnelle a la valeur d'utilité acquise parstratégie. Ainsi, la stratégie qui rapporte plus
d'utilité que I'utilité moyenne du systéme augmenddors que celle qui rapporte moins d'utilité
diminue en taille de population.
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Fig. 8 Fraction des trois stratégies dans le temp(t) pour les altruistes,y(t) pour les non coopérateurs ex(t)
pour les discriminateurs.

La Fig. 8 montre la convergence du jeu évolutiormaérs un équilibre ou les altruistes sont
éliminés du jeu et les non coopérateurs et lesridistateurs coexistent. L'analyse du jeu
permet de déterminer les valeurs des paramétresysteme ; m, b, c) pour lesquelles les
discriminateurs, qui emploient le modéle de répamabasé sur l'audit, peuvent gagner contre
les non coopérateurs. En effet, augmenter le nombreérificateursn permet d’accroitre la
fréquence des discriminateurs a I'équilibre. Urtlsige colteux ou un taux de réplication
élevéréduit cette fréquence.




XXV

Chapitre VIl Conclusion

Les systémes pair-a-pair ont émergé comme un naupasadigme intéressant pour le
stockage distribué qui vise a profiter des ressmuiidbres et inexploitées des pairs d’'une
maniére efficace et équitable. Externaliser leksige de données chez des pairs d’'un réseau est
probablement I'unique solution qui permet la dispdité et la tolérance aux fautes des données
tout en garantissant une croissance a grande édftein réduisant ou méme supprimant les
co(ts d'entretien du stockage. Dans cette thésis, anmns traité les probléemes de sécurité et de
coopération auxquelles une telle application p&et@nfrontée une fois efficacement déployée
dans le réseau.

Résumé et contributions

Tout d’'abord, nous avons examiné les questionsédarisé liées au stockage de données
pair-a-pair. L'opération correcte d'un systéemetdekage pair-a-pair se base sur la coopération
équitable et efficace des pairs. Malheureusemestpairs peuvent étre malhonnétes de diverses
maniéres. Les pairs de stockage peuvent préteridokes des données qu'ils ont en fait
détruites. Pour les approches basées sur la rémlictes pairs peuvent s'entendre pour stocker
une seule copie des données défaisant de ce $aihdeanismes qui assurent la fiabilité des
données. La collusion peut ne pas étre la manigip@ de faire ainsi, puisque les attaquants
Sybil peuvent produire plusieurs identités et leployer d’'une maniére frauduleuse.

Nous décrivons des éléments d'une architecture lamioelppour un tel systéme fournissant
les mécanismes de sécurité et de coopération réesspour assurer l'opération correcte et
sécurisée d'un systétme de stockage de données-paiir- Nous détaillons comment un
environnement de confiance peut empécher des coempents malhonnétes, en particulier
concernant l'identification des pairs, la vérificat de I'intégrité des données, et la gestion de la
confiance.

Les actions dissimulées des pairs non coopératifsremt étre dévoilées en utilisant un
nouveau type de protocole que nous qualifions diication de possession de données. Ces
protocoles permettent a un vérificateur de détesitedes données qui sont stockées a distance
ont été corrompues ou détruites sans les trangté&gu'au vérificateur. Nous proposons trois
différentes constructions pour de tels protocolex alifférentes options pour la vérification, en
particulier concernant la délégation.

Le comportement des pairs de stockage peut étheééea se basant sur les résultats obtenus
avec de tels protocoles. L'audit forme la bases#olmation pour les mécanismes d'incitation a
la coopération que nous proposons pour stimuleotgération et motiver les comportements
corrects. L'originalité de ces mécanismes provient'évaluation optimiste du comportement
des pairs, suivant ainsi une approche trés difféereamparée aux incitations a la coopération
dans les réseaux mobiles ad hoc (MANET) : tandie Bucomportement d’'un pair peut
seulement étre décidé a la fin de la période dekage, I'audit peut étre exécuté de facon
réguliere et nous considérons qu'un pair se comden tant qu'aucune corruption de données
n'est détectée. Nous proposons deux mécanismeastation a la coopération, un basé sur la
réputation et l'autre sur la rémunération. Les dméganismes sont congus pour encourager un
comportement coopératif et également pour établicdnfiance, détecter et punir les pairs
malhonnétes.

L'efficacité de nos mécanismes basés sur l'audieenes de sécurité et de coopération est
démontrée par des modeéles théoriques de jeu ngréd. Nous évaluons d'abord l'efficacité
des incitations avec diverses primitives d'obsémmaprobabilistes et déterministes. Des jeux
évolutionnaires sont également présentés afinldévies équilibres macroscopiques réalisés.
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Perspectives

Notre travail a présenté des primitives pour évalaecomportement des pairs en ce qui
concerne le stockage. La réaction qui résulte testévaluations sert principalement a des
mécanismes d'incitation a la coopération. Cepentianpairs, en particulier les propriétaires de
données, doivent également adapter leurs stratdgiswockage basées sur de telles évaluations.
Détecter un défaut de stockage devrait déclenaheracessus de régénération de données pour
assurer la fiabilité a long terme du stockage dandes. Cependant, l'efficacité d'un tel
processus dépend non seulement de la disponithilittEnombre suffisant de pairs de stockage,
comme nous l'avons modélisé, mais également dustempessaire pour le transfert des blocs
de données entre les pairs. Une analyse de perioemd'un tel processus apporterait
certainement des évaluations plus réalistes qudat largeur de la bande passante et aux
conditions de dynamicité d'une application de shgekpair-a-pair.

Les mécanismes de sécurité développés dans cesie tht en particulier les incitations a la
coopération, sont cruciaux pour estimer le degrécdefiance d'un pair et stimuler sa
coopération. Bien gu'ils aient été congus pourttekage de données pair-a-pair, d'autres
applications pair-a-pair (e.g. la téléphonie pajrair sur IP) tireraient certainement bénéfice de
tels mécanismes de sécurité et de coopératiorexeanple, les fournisseurs d’'Internet peuvent
déployer des relais Wifi pour la téléphonie sura¥ec la coopération des utilisateurs qui
acceptent de configurer leurs boites ADSL pour maeth ceuvre ce service. En échange, ces
derniers disposent d'un accés au service qu'ildritmrent a déployer. Une gestion plus fine et
auto-organisante pourrait étre réalisée, en péidiclavec des incitations basées sur la
rémunération. Wuala par exemple a commencé a d&pkmnn infrastructure de stockage de
données avec une telle approche. Les incitatiolas cbopération basées sur la rémunération
préparent également le terrain pour des architestqui offrent des services multiples et qui
permettraient par exemple a des plateformes hédesg de coopérer efficacement et
d’échanger de la bande passante pour du stockage.

La protection contre des attaques de type Sybildet attaques de blanchissement
(whitewashergest une question centrale dans beaucoup d'apptisgair-a-pair. Il convient de
noter que les approches compléetement auto-organiséavent seulement atténuer de telles
attaques tout en appliqguant une sanction contrepé@s honnétes. Nous avons discuté de
l'utilisation d’'un environnement de confiance comsmdution possible. Bien que codteux en
termes de déploiement, un environnement de corigeat en effet fournir une solution a ce
probléeme qui permet aussi la scalabilité. En paligc, I'architecture TCG qui est de plus en
plus déployée dans les équipements d’entreprisaresaindidat intéressant. Par exemple, les
mécanismes d'attestation anonymes et direlitecf anonymous attestatippeuvent lier des
données a une plateforme unique tout en présefvamité de la plateforme. Il y a également
une tendance de fond a établir la confiance dynaenispsée sur des rapports existants de
confiance et statiques, bien illustrée par I'afijgarides services basés sur les réseaux sociaux
(Skype, Facebook, hi5, LinkedIn, MySpace). Dangetie systémes, de petits groupes de pairs
peuvent facilement étre établis. La régle de Dumigaermine qu'un pair donné peut maintenir
des rapports sociaux stables avec au plus 150sapmés. Ceci peut signifier que les
applications pair-a-pair pourraient a l'avenir mentdes topologies trés différentes de celles
utilisées dans le partage de fichiers pair-a-pairsdequel un pair peut se relier a 3000 autres,
comme dans leswarmsde BitTorrent par exemple. La mise a I'échelleaes cependant un
défi de recherche important dans de tels systémegeaut encourager le développement de
protocoles plus efficaces pour contréler l'intereexion de multiples groupes reliant des pairs.
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Abstract

Self-organizing algorithms and protocols have rdgemeceived a lot of interest in mobile
ad-hoc networks as well as in peer-to-peer (P2Btems. The latter in particular suggest that
decisions and operation, instead of being concextran a relatively low number of specific
devices (e.g., routers, gateways, servers, cetiific authority), may use the computing power,
bandwidth, or disk storage space of end-user devitghe network. Such techniques have
proven most successful to implement cost-effective reliable applications to be deployed on
a large scale, as illustrated by file sharing, @idadio streaming, or VolP. P2P storage,
whereby peers collectively leverage their storagmurces towards ensuring the reliability and
availability of user data, is an emerging fieldagplication. P2P storage however brings up far-
reaching security issues that have to be dealt with

Providing assurances in P2P storage systems requiteonly ensuring the confidentiality
and privacy of the data storage process, but disointroduction of proper security and
cooperation enforcement mechanisms for thwartingoua peer misbehaviors. Indeed, the
delegation of data storage mechanisms to autonopeeIs raises new concerns, in particular
with respect to peer selfishness, as illustrateddsgalled free-riding attacks: the attacker may
consume storage resources without contributindaitsshare, or may even corrupt or destroy
the data that it has promised to store while pditenit did its share of work. Systems
vulnerable to free-riding either run at reducedacity or collapse entirely because the costs of
the system weigh more and more heavily on the m@ngihonest peers, thus encouraging them
to either quit or free ride themselves. Additiopal new form of man-in-the-middle attack may
make it possible for a malicious peer to pretenteaastoring data without using any local disk
space. New forms of collusion also may occur whereblica holders would collude to store a
single replica of some data, thereby defeatingdtta redundancy requirement. Finally, Sybil
attackers may create a large number of identitres @wse them to gain a disproportionate
personal advantage.

Whilst many aspects of P2P applications have beerotighly researched, security within
these applications still remains a challenge. Atad infrastructure that offers an interesting and
powerful set of security features may be employedoider to act in response to such
challenges. We provide an architectural descriptiith a layered organization to handle the
operation of the P2P storage system in a secure\Wayshow the different ways whereby such
architecture may be enhanced by judiciously intoimiy a trusted infrastructure. However, with
a trusted infrastructure, it is difficult to ensuselarge scale P2P storage system with low
administrative attention. The security assurandesich system should be provided by relying
solely on peers themselves.

The continuous observation of peer behavior anditoimg of the storage process is an
important requirement to secure a storage systebse®ing peer misbehavior requires
appropriate primitives like proofs of data possassa form of proof of knowledge whereby the
holder interactively tries to convince the verifthat it possesses the very data without actually
retrieving them or copying them at verifier's memoiWe present a survey of such techniques
and discuss their suitability for assessing rent#& storage. We also propose a new data
possession verification protocol through which fieastion can be handed over to volunteer
peers from the network. There is a potential irtieia delegation method for verification,
mainly because the owner or the holder may beneffliuch that they are not able to catch each
other for the interactive verification protocol. (d) the owner holds interest in delegating the
verification task to one or multiple verifiers; tihgh multiple verifiers’ case is more desirable to
avoid Byzantine failures of verifiers or even pdigncollusion between a verifier and the
holder.

Cooperation is key to deploying P2P storage salstiget peers in such applications are
confronted to an inherent social dilemma: shouklythontribute to the collective welfare or
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misbehave for their individual welfare? So-callambgeration incentive schemes provide an
answer to such dilemma by promoting ways of martpgimd organizing resources and dealing
with the new security challenges that traditionatwsity approaches cannot cope with. We
review several incentive mechanisms that have pbegposed to stimulate cooperation towards
achieving a resilient storage. We also propose arésms enforcing cooperation by means of
proofs of data possession periodically deliveredsbhyrage peers. This approach makes it
possible to change the purpose of cooperation tivesnfrom stimulating cooperation among
peers to enforcing that cooperation and increasémgirness.

The effectiveness of such incentive mechanisms imeistalidated for a large-scale system.
We approach this assessment with game theorete@hniques: cooperation incentive
mechanisms are proven to be effective if it is destrated that any rational peer will always
choose to follow mechanism directives whenevaertériacts with another peer. We illustrate the
validation of cooperation incentives with non-co@tive one-stage and repeated Bayesian
games and evolutionary games.




XXIX

Table of Contents

Table Of CONENES ... e XXIX
IS o T [ (=2 PP XXX
LISE Of TADIES ... XXXVII
L. INEOAUCTION ... 1
1.1. A case for P2P StOrage .......cociuuiiiii et ee e e e e e 1
1.2.  Security issues related t0 P2P StOrage .......ccveeviieeiieiiiiiieiie et eeeeaii e e 2
1.3. P2P storage applications: A brief state of the art............cccoeeiviiiiii e, 4...
1.4, ReSearch ObJECHIVES. ........ci oo e e e e e e 6
1.5, ThesSiS OrganiZation...........oiieeeuuuiiieeiieeeee e et e e e e es e e e eea e e e eeraeeaeran e eaees 6

2. Architecture: elements of a secure P2P data storagstem

2.1. Basic iNfrastruCture [AYEr..........cooiiiiiiiiii e e eaaans 8
2.1.1. NEtWOTrK INFFASIIUCTUIE ......eeeie i eceee et 8
2.1.2. SECUNLY INFrASITUCIUNE ... ..ueice it a e e e e e e e 10

2.2.  Overlay managemeNnt [AYer .......ccoouuiiiiiii e e 13
2.2.1. ClaSSITICALION .....eeieiiiiiie ittt e e e be e e e e e e e e s e e bt abeaeeeeees 13
2.2.2. Metadata usage and ManagemMEeNt ...........ccccuiririiieeee e e 15
2.2.3. Peer identifiCation ............ooi i e e 16
2.2.4, Peer random SEIECHON .........uiiiiiiiii e e e 17

2.3.  Trust and COOPEratioN laYEr ........cieeieiiiiiieee e e e e aeeeeeens 17
2.3.1. ClaSSITICALION .....eeteiiiiiie ittt e e e e e e e e e s e s e et eeeeeees 17
2.3.2. P eI ASSESSIMENL.....ciiiiiiiiiitit et e e e e e e n e e e e e aaneeees 19
2.3.3. COOPEratioN INCENLIVES ......eiiiiiiiiiie e ieereeti ettt rb e e e ee e e e 21

P A o] o] o= 11 (0] g N F-\ V= S 27
2.4.1. Shared storage ManagemENTt ................ o seeseeeeeesaaeeserreaesrersennn o 27
2.4.2. Multi-Service frameWOrK ............oiiiiii e 28

P28 TR S T U T 1 ] 0= o PP 30

3. Remote data posSession VErifiCAtiON ........ e ceeiaiiiiiiiiiiiiie e 32

3.1, Problem StatemMent ........cooiiiiiiiiiiiii e 32
3.1.1. 1O 10 F= T a1 2= L4 o) o 1S 32
3.1.2. [ o= o YO 33
3.1.3. TRPEAL MOUE ....ciiieii e e e e e e nnbre e e e 34

3.2. Probabilistic verification protoCol.............ocveiiiiiiiiiiiii e 34
3.2.1. [ o] (o Teto] o [T o] 1] ) ([0 ] o IS
3.2.2. Security evaluation ...........cccccevveiereceen

3.2.3. Performance evaluation ......................
3.2.4. Countering additional attacks




XXX

3.3. Restricted deterministic verification protocol ...........cccoceveeviiiiiiiiiiiiiee e, 39.
3.3.1. Lagrange interpolation polynomial...........ceeeeeeeeeiiisiiiiiiiein e e sraneer e e 39
3.3.2. [ o] (o Teto] o [T o] 1] ) (1] o S 39
3.3.3. SECUNILY EVAIUALION ... commmm e e e e s e e e e e e es s eraeeeeeees 40
3.3.4. Performance eValUation ..................oo e ee oottt et re e e e e e e e s e aanees 40

3.4. Deterministic verification protoCol............ccueeiiiiiiiieciiiii e 41
3.4.1. SeCUrity BACKGIOUNG ........ooe i e e e e e 42
3.4.2. Protocol description: data-based VEISiON ...ccee.vevvevieiiiiiiiiiiieiieee e ceeeeeeeneeeann 42
3.4.3. Protocol description: chunk-based VErsioN ..........cccviiiviiiiiiiee e e 43
3.4.4. SECUNLY ANAIYSIS 1.iiiiiiieiieiiiiiiiiirer e e e e s e e e e e e e e e aeteettaeeeaeeeaeeansannesnnnnnan 44
3.4.5. Performance @nalySiS ...........coiuuiiuiiicec e e e e e 45
3.4.6. Protocol refiNEMENt...........uviii i e 45

3.5.  Existing verification pProtoCoIS..........ccoiiiiiiiiiiiiii e 46

I 2N G U 0] 0= T Y 2P 50

3.7.  Relevant publiCatioN ...........cccuuiiiiiii et e e e e e e e 51

4. Secure P2P data storage and Mainte€NanCe .......cccc.ovvveeiiiiiiiieieieeiieieeieeeienenenes 52

O I o (=T L 4T To [ P 52

4.2.  An overview of existing approaches..........cccccci i 52
4.2.1. ST =T (o] o TP PP PP PPPP PRI 53
4.2.2. 0] = 1o [ USSP 53
4.2.3. = 1= o = 4o o SR 54
4.2.4. VEITICALION ...ttt e e 54
4.2.5. =] 0 1= 1 USSP 54

4.3.  An erasure coding based data storage and maintenam@rotocol ....................... 55
4.3.1. =T ox 01T o SO 55
4.3.2. SECUNILY EVAIUALION ... et e e e e s e e e e e ea e ereeeaaeees 59
4.3.3. Performance eValUation .................ooo oo e ettt e e e e e e e eanees 60

4.4. An analytic model for P2P data storage and mainten@e.............cccceeeeeeviiieeees 60
4.4.1. Model of P2P data storage without data maintenance..............ccccceevvevvvvvviiinnnnnnd 61
4.4.2. Model of P2P data storage with data maintenanCe . ...ccccveeevviiiiciiiiiiieceee e 62
4.4.3. NUMeEriCal SIMUIALION .........eeiiiiiiiei e 63

T U 1 101 4= o PP 64

5. Audit-based cooperation INCENLIVES ..........ccccciiiiiiiiiiiiee e 66

5.1. Cooperation incentives for P2P Storage ........cceevviiiiiiiiiiiii i 66

5.2.  Reputation-based approach ..............uuuuiimciiiii e 67
5.2.1. TRIFEALS ...ttt ettt e e oottt et e e e e e e e s a bbb aebeeeaaaaeeaeaeanan 67
5.2.2. ReputatioN-DASEU SIOTAQE ......uuveieieee e e e e s et te e eeeaeeeesessstntnrerreeeeesesennnnens 68
5.2.3. ANAIYEIC EVAIUALION .....evviiiiiiit e e e e e e 70
5.2.4, SIMUIAtioN EXPEIMENES ...iiiiieeiii i e er e e e e e s e e e rrnrer e e eeaeaees 74

5.2.5. SECUNLY CONSIAEIALIONS ....vvviiieiiiiiisimmmmmer s e e eeetebb b s e s e e e e e e e eaetaaaaaneaeeeseeseesnnnns 77




XXXI

5.3.  Remuneration-based approach .............iiieeeerieeiiiiin e eeeeevien e 1
5.3.1. LI L= L5 SRR 78
5.3.2. Enabling MEChaNISMS ......ccooii i e 78
5.3.3. Payment-based StOrage.........cuvuviiiiiiiieeeecee e e 81
5.3.4. SiMUulation EXPEIMENTS ........coiiiiiiieee e e e e e e 86
5.3.5. SECUNitY CONSIAEIALIONS ... ..vvviiiieieie e e eccmce ettt e e e e e e e e e e s e ee e e e e s e nenenreneeees 91

L S B T 1Yol U == o] o 92

D . SUMIMIAIY ..ttt et e e e et e e e e e e e et e e 93

5.6.  Relevant publiCatioN ...............uuiiiiiietim e eeei e e e e e ee e 94

6. Evaluating cooperation incentives using game theory.................euvvvveviiivennnnnns 95

B.1.  PrelimiNariES. .. ....oi i
6.1.1. Definitions .....cvveeeeeeieiciieee e
6.1.2. Related work

6.2. Repeated signaling game of payment-based inCeNtiVeS...........cccceeeeeeveviineeeenn, 99
6.2.1. GAME ElEMEBNES .. ..o it e e s e e e e e e e e e eaaeaeteeeeaessaaernnennas 99
6.2.2. (7= 10 0 L= 13T T 1= RS 99
6.2.3. o [0 11 o = P SEPURR 102
6.2.4. REPEALEA GAMIE .. it eerrer e e 103

6.3. Evolutionary game model of reputation-based incenties..............c.ccovviieneennnns 108
6.3.1. (€ T= g 011 4o To [ PR 108
6.3.2. (0] 01T 4 7= 140 ] o 1S 110
6.3.3. L= 111
6.3.4. RePliCatOr AYNAMICS ...cooeeiieieiee e e a e e e e e e e e e e 112
6.3.5. Evolutionary stable Strategy.........cocciieiriiee e 112
6.3.6. NUMeEriCal EVAIUALION ...........coviiiiiiieis e e e e et e ettt e en e e e e e e e e e aaaaaeees 113

R T YU |1 0] 0 1= 1Y PP 118

6.5.  Relevant pUDIICAtION ..........oiiiiiiii i ee e e e e ee s 118

7. Conclusion and fULUrE WOTK ............uurririimmmmnneieeis e e e e e e eneas 119

Appendix A Diffie-Hellman based deterministic verification............................ 123
Appendix B Managing WhiteWashers .............c.ouiviiiiieeeeeniviiiiiiiiiiiiiniineinnennnns 127
Appendix C  Dissymmetric peer defeCtion ...........oooo v eeeeeeiiiiiiiiiiiiiiiiiieiiienees 135

1] o][oTe] =1 o] o | V2SR 139




XXXII




XXX

List of Figures

Figure 1 Architecture of the P2P storage SYSteml...........uuiiieiieiiiiiiiiiiiiiieeeeeeeee e e e 7
Figure 2 Network communication models: data excleahgough (a) client/server and (b) P2P
40 o 1= L3 9
FIgure 3 ACCESS CONIOI MEALIIX......eeuuu s e e e e e ettt s e e eeeat s e e aeeate e e eesaneeeeeaenaaeeeeennnnns 11
Figure 4 Decentralized overlay: (a) flat topolodip) hierarchical topology, and (C) DHT-

(o= 7= T0 I (o] o] (o o | /AP 15
FIQUre 5 TrUST taXONOMY ...uuuiiiiiii e et ceemmm e e et e e e e e e e e e e e et e e e e e et e e e ennn s e eeearaan e eeeenenas 18
Figure 6 The feedback 100p Of AYNAMIC trUST ceeeeeevvvviiiiiii e 19
Figure 7 Reputation: diagram Of OPerationsS. . e ..vvvveiiieiiiiiii i eee e 23
Figure 8 Payment: diagram of Operations .......cccceevvviiiiiiiiiiii i eee e 26
Figure 9 Multi-service framework based on payment...............coviiiiiiiiiien e, 29
Figure 10 The Flask security arChiteCture ....cccce....oveiieiiiiiiceieie e 30

Figure 11 Verification protocol in 3 phases: (1etbwner requests storage from 2 holders, (2)
owner delegates the verification of its data tee@ifiers, and (3) the verifiers periodically check

the behavior Of NOIAEIS........coooui e e e e 33
Figure 12 Probabilistic verification ProtoCol .....c.uivieriiiiiiii e, 35
Figure 13 Number of challenges required to achigyeobability of detection of holder’s
(0018 o<1 oAV o ] PRSP 37
Figure 14 Restricted deterministic verification Irool .............c.ccoeeeiiiiiiiii e e, 40
Figure 15 Deterministic verification protocol: dataased version ...............cccoeviiiiiinnnnnn. 43
Figure 16 Deterministic verification protocol: chkxibased version...........ccccoovvevevviiiienens 44
Figure 17 Data storage and maintenance Phases.........ccovevveiiiiiieiiiiiin e eenns 55
FIQUre 18 StOrage PRASE ......ccuvuiiieieeet s et e e e ae st e e e eees e s e eeaat s eennan s e eeeananneeeeerenns 56
Figure 19 Delegation PhaSe .........ccouuii i e e e e e e e 57
Figure 20 Verification Phase ..........coviuiceeeii e e e e 57
Figure 21 Repair phase: (a) construction of a neaed block and (b) construction of the
COrrespoNdinNg MELATALA. .........ccuuuiieeteeem e e e e e tre e e e et e e e e anra e eeaee 58
Figure 22 State model of data storage without negiance ...............ooevvvveeiieeiiein e, 61
Figure 23 State model of data storage and mainte@an................cccceeeiiiiieeeeeiiiericeeeeennn. 62
Figure 24 Number of holders. r=30, k=5, v=10, k'=d56.94x10* 1=0.0167,/’=0.0044

(rates per MINULE (IMN)). coivueei e ieeiie e e e e e et s e e e e et e e e e ee it s e e e ee s eaeeesanaeeeeesenaaeaeennes 63
Figure 25 Number of online holders. r=30, k=5, v5K=7, d=6.94x10* 1=0.0167,

W W00 (o (=R o 1= o 12 o) TR 64
Figure 26 Whitelisting MOdEl. ..........ooiiiii e e e 70
Figure 27 Average observation quality: (a) varymgnd (b) varying m. n=100,=0.2, y=0.3,
I=3, M=5, W=0.5,7770.3. oo et e e 72
Figure 28 Average observation quality varying treefion of malicious peers. n=10050.2,
P=0.3, 1=3, M5, WE0.5. oo e 73
Figure 29 Average observation quality varying thenter of peers for (a) r=3 and (b) r=10.
2=0.2,y=0.3, M=5, W=0.570.3. ... 73

Figure 30 Averaged ratio of owners per strategy368, r=3, m=5, P=0.01, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 3086aly selfish peers. ...........ccceeeeeen 5




XXXIV

Figure 31 Averaged ratio of holders per strategy300, r=3, m=5, P=0.01, p=0.2, g=0.2,
40% cooperators, 30% passively selfish peers, 30@6dly selfish peers. ........................ 75
Figure 32 Average amount of control messages fgestiored (in KB). n=1000, r=3, m=5,
P=0.01, p=0.2, g=0.2, 40% cooperators, 30% passiadlfish peers, 30% actively selfish

Figure 33 Fraction of cooperative owners varying firobability of newcomer’s acceptance P.
n=300, r=3, m=5, p=0.2, q=0.2, 40% cooperators, 3@fassively selfish peers, 30% actively
SEIfISN PEEIS. ..o e e e 76
Figure 34 Average amount of data stored per peeying the probability of newcomer’s
acceptance P. n=300, r=3, m=5, p=0.2, g=0.2, 40%perators, 30% passively selfish peers,
30% actively SelfiSh PEEIS. .....c.uue e e e e e 77
Figure 35 KARMA framework: 1) payee sends a transfguest to its banker set; 2, 3) after
confirming the transfer from the payer’s banker, g¢fpayee’s banker set will send back

[Tot =] o O (o I d =N o= NV R 80
Figure 36 Used verification protoCol.........coceciiiiiiiiii i e e 81
Figure 37 ESCrOWING CrediS .....uuuiiiiiii i ce e et e e e et e e e e et e e e e e e e e 83
Figure 38 Payment ProtOCOL.............oiuvimmme e e et e e e e et re e e e et e e e e e rra e 85
Figure 39 Averaged ratio of owners per strategy1@60, r=3, m=5, w=0.5, p=0.2, q=0.2,
40% cooperators, 30% passively selfish peers, 3086aly selfish peers. ...........cccceee. 81
Figure 40 Averaged ratio of holders per strategyl®00, r=3, m=5, w=0.5, p=0.2, g=0.2,
40% cooperators, 30% passively selfish peers, 30@aly selfish peers. ..............oo...e. 81

Figure 41 Averaged ratio of cooperative owners uagyprobability of participation p and
probability of achieving promise g of actively sfpeers. n=1000, r=3, m=5, w=0.5, 40%
cooperators, 30% passively selfish peers, 30% algtiselfish peers. ...........ccoveviiiviennnnnn. 88
Figure 42 Averaged ratio of owners that switch tistiategy at time=45 days (marked by the
red dashed line): (a) from cooperation to passieishness, or (b) from passive selfishness to
cooperation, or (c) from active selfishness to @ation. n=1000, r=3, m=5, w=0.5, p=0.2,
g=0.2, 40% cooperators, 30% passively selfish, 2@%vely selfish peers. ...........ccc........ 89.
Figure 43 Average amount of control messages feestiored (in KB). n=1000, r=3, m=5,
w=0.5, p=0.2, q=0.2, 40% cooperators, 30% passiadifish peers, 30% actively selfish peers.

Figure 44 Average peer rate of file storage andIpsr hour. n=1000, r=3, m=5, w=0.5,

p=0.2, g=0.2, 40% cooperators, 30% passively selfisers, 30% actively selfish peers......... 90
Figure 45 Averaged amount of data stored in théesgs/arying the weight w. n=1000, r=3,
m=5, p=0.2, g=0.2, 40% cooperators, 30% passivel§ish peers, 30% actively selfish peers.

..................................................................................................................................... 91
Figure 46 Modeling the holder Strate€gy ......cuemeeeerierieiiiiiieiriiir e 101
Figure 47 Modeling the OWNer Strategy ........uceeviuiirierieiiiii e 101
Figure 48 Payoffs of H with type “S” and “C” (trurated) varying p and q. G=30, R=20, R’=5,
D00, ettt —————— 4444ttt bttt n e et e ettt ettt e et e e aeaaeaas 105

Figure 49 The minimum value for p(C) acceptable@dio continue the game varying p and q.
G=30, R=20, R'=5, D10, ..uuuuuuuiiiiiiiiiiieiiieeae e e e e e e e e e e e s e s s et eanen e e e e eeneeees 106




XXXV

Figure 50 The minimum value for p(C) acceptable@dio continue the game varying R and R’.

G=30, D10, GT0.5. it et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e a e 107
Figure 51 One-stage game MOEL...........uicceeeeii i e e 109
Figure 52 SysStem AYNamICS .....uucceiiiii i eeeeeiee e e e e e e e e tre e e e aaa e e e e e anaanaas 110
Figure 53 Frequency of cooperators vs. defectoes time. m=5, r=34=0.1, a=20.10°,
A=10/month, N=1000y=3 files/day, b=1, ¢=0.01, x(0)=0.8, y(0)=0.2, az{0)=0............... 114
Figure 54 Frequency of the three strategies owaetim=>5, r=3,6=0.1, =20.10°,

A=10/month, N=1000y=3 files/day, b=1, ¢=0.01, x(0)=0.6, y(0)=0.1, az¢0)=0.3. ........... 114
Figure 55 Frequency of discriminators at equilibriwarying z(0). m=5, r=34=0.1, ¢=20.10

® J=10/month, N=1000y=3 files/day, b=1, c=0.01, X(0)=0. .........eveeeeeerrererrerererrreranenns 115
Figure 56 Frequency of discriminators at equilibriwarying r. m=54=0.1, ¢=20.10°,
A=10/month, N=1000y=3 files/day, b=1, ¢=0.01, x(0)=0, y(0)=0.5, and)2£0.5. .............. 115
Figure 57 Frequency of discriminators at equilibriwarying m. r=34=0.1, ¢=20.10°,
A=10/month, N=1000y=3 files/day, b=1, c=0.01, x(0)=0, y(0)=0.5, and3€0.5. .............. 116

Figure 58 Frequency of discriminators at equilibmriwarying the average storage rate
#file/hour. m=5, r=3,4=0.1, a=20.10°, /=10/month, N=1000, b=1, ¢=0.01, x(0)=0, y(0)=0.5,
oo I (0 O 8T 116
Figure 59 Frequency of discriminators at equilibriwvarying the arrival raté in
#newcomers/hour. m=5, r=3=0.1, ¢=20.10°, N=1000,)=3 files/day, b=1, c=0.01, x(0)=0,

Y(0)=0.5, and Z(0)=0.5. ..ouuei i aaaa 117
Figure 60 Frequency of discriminators at equilibmiwvarying the ratio c/b. m=5, r=73=0.1,
=0.001,4=0.01, 6=0.05, b=0.05, x(0)=0, y(0)=0.5, and z(0)=0.5. uu-rrrrrrrrrrrrrrrrrrrrerne. 117
Figure 61 Tree-based number generation. Z2...........c.ccveviveoeeeeeeeeeeeeee e, 123
Figure 62 Deterministic verification protoCol..............coovviii i 124
Figure 63 Frequency of defectors and discriminatans5, r=3, =0.1, a=20.10°,

A=10/month, N=1000y=3 files/day, b=1, ¢=0.01, y(0)=0.5, and z(0)=0.5............cceeee..... 129
Figure 64 Frequency of discriminators at equilibmiwarying their initial frequency. m=5, r=3,
$=0.1, 0=20.10° A=10/month, N=1000y=3 files/day, b=1, c=0.01... ....130

Figure 65 Frequency of discriminators at equilibriwarying their probablllty of cooperatlon
with strangers p. m=5, r=33=0.1, a=20.10°, /=10/month, N= 1000y=3 files/day, b=1,
€=0.01, y(0)=0.5, @nd Z(0)=0.5. ... .uuutitriiiririiiiiiiiiiei e 130
Figure 66 Frequency of discriminators at equilibriwvarying the probability of whitewashing
w. m=5, r=3,4=0.1, =20.10°, 1=10/month, N=1000y=3 files/day, b=1, ¢=0.01, y(0)=0.5,
oo I (0 O 8T 131
Figure 67 Social welfare at equilibrium varying @&e probability of cooperation p, (b)
probability of whitewashing w, and both of them.5n=3, =0.1, ¢=20.10°, 1=10/month,
N=1000,y=3 files/day, b=1, ¢=0.01, y(0)=0.5, and z(0)=0.5.........ceevrrrirreirrriirrrerreriaeen, 132
Figure 68 Social welfare at equilibrium varying (@plication rate r (m=5) and (b) verification
distribution factor m (r=3)=0.1, a==20.10° 1=10/month, N=1000y=3 files/day, b=1,

¢=0.01, p=w=0.5, y(0)=0.5, and z(0)=0.5.......cummeerrrireeerrrriiirereeiiiinee e s rreeeeeann 133
Figure 69 Social welfare at equilibrium varying tbleurn/. m=5, r=3, 4=0.1, a=20.10°,
N=1000,y=3 files/day, b=1, ¢=0.01, p=w=0.5, y(0)=0.5, an{3=0.5...........ccceeeeerrrrrrrrr.... 133

Figure 70 Frequency of strategies over time. m=3,15=0.1, a=20.10° /=10/month,
N=1000,y=3 files/day, b=1, ¢=0.01, x(0)=0.3, y(0)=0.3, az)=0.4..............cevrrrcerrerrrrrn.. 136




XXXVI




XXXVII

List of tables

Table 1 Summary of resource usage consumed bydbahilistic verification protocol
(variable n and m respectively correspond to déa and the number of chunks).................. 38
Table 2 Summary of resource usage consumed beshécted deterministic verification

protocol (variable n and m respectively correspémthe number of data chunks and the

number of pre-computed ChallENgES)........uucceeeri i e e 41
Table 3 Summary of resource usage of the deteiginirification protocol (variable n and m
respectively correspond to data size and the nurabelnunks) .............cccccii e 45
Table 4 A comparison of existing verification piis (variable n and m respectively
correspond to data size and the number of Chunks)...........cccccoeviiiiiie e 49
Table 5 Comparison between the proposed reputdtased and remuneration-based

=T ] 0] (0= T 4 L= TS 93
Lo L G L] 7= o] L PP 100
Table 7 Normal form of the game Of FIQUIE 46 . .cooovviiiiiieiiici e 102
Table 8 Finding the equilibrium for X=070, Z£0. ......cooiii i 113

Table 9 Summary of resource usage of the detetiginirification protocol (n corresponds to
(o F= = IR 4= ) PP 125




XXXV




Chapter 1

Introduction

Peer-to-peer (P2P) networks have first emergetigniate 90's as specialized systems and
protocols to support file sharing. They became \mogular thanks to services like Nap§ter
Gnutelld®, KazaA'® and Morpheus, and particularly thanks to the legal controversyarding
their copyrighted contents. Since then, the pofiylaf P2P systems has continued to grow
such that the self-organization of a service basedhe contributions of its users is now
regarded as a general-purpose and practical apgprdst can be applied to designing
applications for sharing any resource. In this eghtresources may include the exchange of
information, processing cycles, packet forwardimgl aouting, as well as cache and disk
storage. In this sense, an increasing number sfcesrranging from telephony or audio/video
streaming to ad hoc networking or nomadic compudirggbound to use such architectures. P2P
storage services have more recently been suggastadew technique to make use of the vast
and untapped storage resources available on péisamauters. P2P data storage services like
Wuald® AllMyData Tahoé®, UbiStorag®’, or Cuckd" have received some highlight. In all of
these, data are outsourced from the data ownee plageveral heterogonous storage sites in the
network, in order to increase data availability agléability, to reduce data storage maintenance
costs, and to achieve a high scalability of theesyis

1.1.A case for P2P storage

Innovation and advancement in information technplogs spurred a tremendous growth in
the amount of data available and generated. Thistgin has resulted in new challenges
regarding the need for scalable storage manageri®it can only be addressed by
implementing storage applications in a self-orgadiand cooperative form. In such storage
applications, peers can store their personal datmé or multiple copies (replication) at other
peers. The latter, which we call ddtalders should store data until tr@vnerretrieves them.
Such P2P storage aims at maintaining a reliableaggowithout a single point of failure,
although without the need for an expensive andggrepnsuming storage infrastructure as
offered by data centers (currently a lot of effast® being undertaken to make these data

1 http://www.napster.com/

15 http://www.gnutella.com/

16 http://www.kazaa.com/

7 http://www.morpheus.com/
18 http://wua.la/en/home.html

19 http://allmydata.org/

20 http://www.ubistorage.com/
2L http://www.cucku.com/




centers efficierit). Peers volunteer for holding data within theirmostorage space on a long
term basis while they expect a reciprocal behav@n other peers.

It has been some years now that P2P storage hapleEsented as a solution for data backup
([Cox and Noble 2002] and [Lillibridge et al. 2003s well as for a new generation of
distributed file systems ([Druschel and RowstrorDH0 [Kubiatowicz et al. 2000], and
[Dingledine 2000]). P2P storage aims at a free mnce importantly more resilient alternative
to centralized storage, in particular to addressféitt that storage can still be considered as a
single point of failure. Additionally, P2P storageay also be attractive in wireless ad-hoc
networks or delay-tolerant networks (DTNs), notabigce mobility introduces a store-carry-
and-forward paradigm ([Zhao et al. 2006]) to delipackets despite frequent and extended
network partitions. The cooperative storage of otiweles’ messages until their delivery to their
destination thus might become an important featireuch networks. Context- or location-
based services may also benefit from P2P storagektbp teleporting ([Bennett et al. 1994],
[Pham et al. 2000]) for instance aims at the dycamapping of the desktop of a user onto a
specific location. Teleporting may benefit from soeaching by using the storage offered by
surrounding nodes at the new user location, depgndn the network topology. Location-
aware information delivery ([Marmasse and Schm&@fi0], [Huang at al. 1999], [Dey and
Abowd 2000], [Beigl 2000]) is another context-awagplication. Each reminder message is
created with a location, the message being deliveteen the intended recipient arrives at that
location,. In such an application storing messagde®des situated nearby the location context
rather than at the mobile nhode may make sensecialipef only intermittent connections of
the mobile node are possible.

Though the self-organization introduced by P2Pagferpromises to produce large scale,
reliable, and cost-effective applications, it exgmshe stored data to new threats. In particular,
P2P systems and even more so P2P storage systegnsbemaubject to selfishness, a
misbehavior whereby peers may discard some datapt@mised to store for other peers in
order to optimize their resource usage. Maliciossria the P2P context would simply consist
in peers destroying the data they store in ordeedlice the quality of service of the system.
Because of the high churn and dynamics of peeeskihg that some data have been stored
somewhere is quite more complex than checkingatraute has been established with another
node in multi-hop MANETS for instance. In additi@uch verifications cannot be instantaneous
but have to be repeatedly performed. All these lprob contribute to the difficulty of properly
determining the actual availability of data sto@@to unknown peers. Countermeasures that
take into account the fact that users have fulharitly on their devices should be crafted to
prevent them from cheating the system in order &gimize the benefit they can obtain out of
peer cooperation.

1.2.Security issues related to P2P storage

A P2P storage application takes advantage of tlistimy and spare disk space at peers
allowing the latter to leverage their collectivewms for the common good While the
fundamental premise of this is voluntary storagmuece sharing among individual peers, there
is an inherent tension between individual ratidgadind collective welfare that threatens the
viability of these applications. Selfish behavidiexsmedfree riding are the result of a social
dilemma that all peers confront and may lead toesy<ollapse irthe tragedy of the commons

2 The Green Grid is an association of IT profesd®eaeking to dramatically raise the energy efficie
of data centers: http://www.thegreengrid.org/




[Hardin 1968]: the dilemma for each peer is to@itbontribute to the common good, or to free
ride (shirk).

Achieving secure and trusted P2P storage presquastiaular challenge in that context due
to the open, autonomous, and highly dynamic naitifef2P networks. We argue that any effort
to protect the P2P storage system should ensufeltbeing goals:

Confidentiality and integrity of dataMost storage applications deal with personal (or
group) data that are stored somewhere in the nktabipeers that are not especially
trusted. Data must thus be protected while tramschito and stored at some peer.
Typically, the confidentiality and the integrity stored data are ensured using usual
cryptographic means such as encryption methodslaecksums.

Anonymity: Anonymity can be a requirement for some type ofagie applications that
aim at preventing information censorship for insgrhowever it may not be a targeted
objective for all of them. Anonymity may refer toetdata owner identity, the data holder
identity, or the detail of their interaction. Anamity permits to avoid attacks whereby the
data of a given user are specifically targetedritento destroy them from the system.
Systems that seek to provide anonymity often empidsastructures for providing
anonymous connection layers, e.g., onion routingd&€chlag et al. 1999].

Identification: Within an open environment like P2P networkss ipossible for the same
physical entity to appear under different idengitiparticularly in systems with highly
transient populations of peers. This problem mayl I the problem of “Sybil attacks”
[Douceur 2002], and may also threaten mechanisicis as data replication that rely on
the existence of independent peers with differdantities. Solutions to these attacks may
rely on the deployment of a trusted third partyiractis a central certification authority,
yet this approach may limit anonymity. AlternatiyeP2P storage may be operated by
some authority controlling the network through gagyment of membership fees to limit
the introduction of fake identities. However, theiproach reduces the decentralized
nature of P2P systems and introduces a single pbifetilure or slows the bootstrap of
the system if payment involves real money. Withetitusted third party, another option
is to bootstrap the system through penalties impaseall newcomers: an insider peer
may only probabilistically cooperate with newcomélike in the P2P file sharing
application BitTorrent [Piatek et al. 2007]), orepg may join the system only if an
insider peer with a limited number of invitatiomkets introduces them [Lesueur et al.
2008]. The acceptable operations for a peer maylaslimited if the connection of too
many ephemeral and untrustworthy identities is olese[Yu et al. 2006]. This option
however seems to be detrimental to the scalalfitthe system and it has even been
shown that this degrades the total social welf&@&dman and Chuang 2005]. Social
networks may also partially solve the identificatissue.

Access controlEncryption is a basic mechanism to enforce acocassol with respect to
read operations from one single reader. In the cheaultiple readers, the distribution of
the keys necessary for accessing the stored datese readers should be enforced in
order to prevent denial of service attacks agaih& storage peer launched by
unauthorized readers. For instance, access cdistiolcan be assigned to data by their
original owners through the use of signed certiisaCapability-based access control can
be also employed like in [Srivatsa and Liu 2005¢ld2e operations have to be especially
controlled because of their potentially devastaéng result.

Scalability: The system should be able to scale to a largelgtiqu of peers. Since most
of the important functions of the system are penfedt by peers, the system should then
be able to handle growing amounts of control messdgr peer and storage resource
management and an increased complexity in a grlacefuner. The system may also be
clustered into small groups with homogeneous swrageds which may reduce the load




over peers. Another important issue associated R&R applications is the fairness of
resource allocation (e.g., storage, bandwidth) betwpeers. Generally a quota system
introduced within a cooperation incentive mechanisrmut in place to regulate resource
sharing. The role of such system is to adjust peasumption to their just contribution:
no peer has the right to sponge off other peers.

- Data reliability: The common technique to achieve data reliabilitieseon data
redundancy at several locations in the network. d&ie may be simply replicated at a
given redundancy factor. The redundancy factor lshba maintained during the entire
duration of the data storage. The rejuvenatiorhefdata may be carried out either in a
periodic or event-driven fashion. For instancehia latter approach, one or multiple new
replicas should be generated whenever a certaimeuai replicas have been detected as
destroyed or corrupted. Other redundancy schemes bmaused instead of merely
replicating the data into identical copies; fortamgee erasure coding provides the same
level of data reliability with much lower storagests.

- Long-term data survivabilityThe durability of storage in some application® llkackup
is very critical. The system must ensure that #ia evill be permanently conserved (until
their retrieval by the owner). Techniques such ata deplication or erasure coding
improve the durability of data conservation butstheechniques must be regularly
adjusted to maximize the capacity of the systemoterate failures. Generally, the
employed adaptation method is based on frequertkshever the data stored to test
whether the various fragments of a data are heldsdyarate holders. Moreover,
cooperation incentive techniques must be used ¢cowrage holders to preserve the data
they store as long as they can.

- Data availability: Any storage system must ensure that stored dataaressible and
useable upon demand by an authorized peer. Datkla holders allow the regular
verification of this property. The intermittent awettivity of holders can be tolerated by
applying a “grace period” through which the veri§ietolerate no response from the
checked holder for a given number of challengesrbedeclaring it non cooperative.

The rest of this thesis especially details howdbieve the last three objectives above: high
reliability, availability, and long-term durabilitgf data storage in the context of a large scale
P2P storage system. These three objectives ame igiered in P2P file sharing applications
which rather follow best effort approaches. Periagnperiodic cryptographic verifications
makes it possible to evaluate the security stafuidata stored in the system and to design an
adapted cooperation incentive framework for segudata storage in the long run.

1.3.P2P storage applications: A brief state of the art

P2P storage applications have become famous imael@mains: file sharing is the flagship
of such applications that it now accounts for ain@®96 of total traffic [Bolton and Ockenfels
2000]; yet P2P file systems or file backup systamesalso available.

PAST [Druschel and Rowstron 2001], which is based Rastry, and OceanStore
[Kubiatowicz et al. 2000], which is based on Tapesire well-known file systems that make
use of DHT (Distributed Hash Table)-based overlatyworks. Both PAST and OceanStore aim
at ensuring a high data availability of files byaganteeing the geographical separation of
replicas: this is achieved by means of file repicoa and random distribution of the
identification numbers to peers. Both PAST and @&tare rely on remuneration means as
cooperation incentives. Each OceanStore peer s to pay a fee to one particular provider
who buys storage space from and sells it to otheviglers. Legal contracts and enforcement




can be used to punish peers that do not keepehdiof the bargain, based on planned billing
and auditing systems. On the other hand, PASTsreliethe use of smart cards to ensure that
peers cannot use more remote storage than thgy@arieling locally. Smart-cards are held by
each PAST peer and issued by a third party, ang shpport a quota system that balances
supply and demand of storage space in the systetin.fidéd quotas and expiration dates, peers
are only allowed to use as much storage as theyilootre.

The file systems described so far are not commiardiastructures, on the contrary to the
Wualg? start-up. Wuala is an online storage and fileisigasystem that offers tosécurely
store and back up files online, access them fropwarre, and share photos, videos, and music
with friends and family®’. In Wuala, users may choose whether to have 1GReefstorage at
Wuala’s servers or trade their computer’'s spacetioer Wuala members’ space. User files are
split into 500 encrypted fragments, each of whishstored onto other Wuala members’
computers. To our knowledge, the selection of gwraeers is performed randomly and
centrally by Wuala. Wuala introduces an originach@nism for storage trading in that it takes
into account peer availability in the network: tfened storage space is equal to the contributed
data storage space times the actual availabilitygméage of the peer.

Pastiche [Cox and Noble 2002] is a storage systawse primary function is data backup
and which is based on Pastry for locating peemxptoits excess disk capacity to perform P2P
backup with no administrative costs. Each Pastipeer minimizes storage overhead by
selecting peers that share a significant amourttatd. It replicates its archival data on more
than one peer. Most of these replicas are placedbypeto ease network overhead and to
minimize restoration time. To address the probldrataring data on malicious peers, Pastiche
uses a probabilistic mechanism to detect missicgumstate by periodically querying peers for
stored data. However it sacrifices a fair amountpafiacy because peers can grab some
information about the backup data.

The latter issue is less critical for the Coop&mtnternet Backup Scheme [Lillibridge et al.
2003] where fragments of a file are stored at diffé geographical locations, and partners are
tracked by a central server. Each peer has a sgtagfraphically separated partner peers that
collectively hold its backed up data. In returrg fieer backs up a part of its partners’ data. To
ensure a high reliability, the scheme adds redundthwough Reed-Solomon erasure correcting
code.

AllMyData Tahoé® also uses Reed-Solomon redundancy to provide atéshonline file
backup. The file fragments are redundantly dissetath into the network of storing peers in
such a way that only a small percentage of thenfeads must be recovered in order to fully
restore the file. The file is identified using a ItRat includes the rights (read/write) to the data
yet such capability-based access control requifels tb always be kept secret (which is still an
open issue for AllMyData).

AllMyData does not consider any cooperation incadifor thwarting free-riding, whereas
in [Lillibridge et al. 2003], peers are periodigalchallenging each of their partners by
requesting them to send a block of the backed tg dan attack can then be detected and the
data blocks of the attacker that are stored inattecked peer are consequently dropped. The
scheme then uses a sort of tit-for-tat (TFT) (s to BitTorrent [Cohen 2003]) strategy
whereby each peer takes note of its direct expegievith a partner. If this partner does not
voluntarily cooperate or is estimated to coopebaiew some threshold, the peer may decide to
dump it from its partner list.

2 http://wua.la/en/home.html
#*\Wuala also provides typical Web 2.0 features di#taborative tagging, sharing, comments, etc.
% http://allmydata.org/




1.4.Research objectives

The study of P2P systems raises several stimula@gurity challenges owing to the
intricate issues that are associated with selfriegdion in such systems. First of all, these
systems are inherently large scale, highly churaet] and relatively anonymous. This all
renders volunteer cooperation hardly achievabldowit some trust referential. Trust can be
achieved statically (based on identity for instgrmedynamically (self-organized trust). Static
trust refers to a statement of trustworthiness thatains the same until it is revoked, whereas
dynamic trust exhibits self-learning and self-affiytig characteristics. The latter arises from
behaviors experienced in the system and continyaiiginges accordingly. An entity trusts a
peer more when it has direct or indirect informatabout that peer that prove its trustfulness.
Such information may consist in the collection ¢ past behavior (reputation) or in a
commitment of financial reward or punishment if theer cooperates or not (payment).
[Carbone et al. 2003] for instance introduces sttniodel that does not only concentrate on the
content of evidence but also on the amount of swatence.

The temporal dimension should also be taken intwsideration. Cooperative interactions
between peers are generally understood as atorgiatigns which may be deemed to be
acceptable in the case of packet-forwarding or $itearing; however such an assumption
definitely does not hold for distributed storage ageration that can certainly not be considered
as instantaneous. The latter application requireseva primitive that allows an immediate
evaluation of peer cooperation, and that we malbfs of data possessiofhe primitive aims at
periodically checking the actuatorage at a holder in order to proviteort-termassessments
of holder’'s cooperation. Based on such primitivepgeration incentives are introduced to
establisHong-termtrust between peers, to stimulate their cooperatiad to ensure the fairness
of their respective contributions.

To overcome the free-riding problem and to encoairgpgers to cooperate, incentive
mechanisms assume “strategic” peers with “ratiofmhavior. This generally represents a
worse situation than reality as file-sharing amdliins have shown. Game theoretical models
are the most efficient tool to evaluate whetherhsumechanisms will be followed by any
rational peer whenever it interacts with anotheerp&here are a large number of game
theoretical models that can fashion the P2P stasggfem, each one providing a different view
of the problematic and challenging facets of thsteay. We will particularly focus on non-
cooperative one-stage, repeated and evolutionanegalt should be noted that this rational
behavior assumption does not take into accounthpumalicious behaviors that have to be
addressed by some other means.

1.5.Thesis organization

The remainder of the thesis will be structured @lovvs. Chapter 2 describes a secure
architecture that attempts to fulfill the securggals of a P2P storage system. We show the
extent to which such an architecture may benddiinfa trusted environment in order to realize
several critical functionalities instead of lettitite peers realize them themselves. In Chapter 3,
we present two protocols that may be used to rdyngt@ve data possession: the first one
achieves a probabilistic proof for the sake ofdrgtierformance, whereas the second one allows
the prover to provide a deterministic and compédtestation of data possession. Based on such
primitives, mechanisms for enforcing cooperatioa iresilient and secure way are introduced in
Chapter 4. Finally, Chapter 5 validates such mesh@has cooperation incentives for rational
peers using game theoretical models.




Chapter 2

Architecture: elements of a secure P2P data storagystem

In a P2P storage system, data are distributeds@faorganizing manner to multiple peers
instead of using a central storage outsourcingeseBuch a P2P storage system is however like
any P2P application more complex and chaotic thkssical distributed systems. The
organization and control that the system shouldrdfis provided by the peers themselves.
These peers should organize themselves in a way piltaides security, scalability, and
reliability of the storage. We define in this chapthe features of a secure architecture that
coordinates the system while attempting to meekersdvsecurity goals. These goals are
presented and discussed beforehand. We suggesiizingathe various functionalities offered
by a P2P data storage application along sevetabgonal overlays. In addition, we present two
architectures, one based on self-organized pebes,other one making use of a trusted
infrastructure with the aim of enforcing systemuséy.

A P2P storage system relies on the cooperation esfrspto properly operate. Such
cooperation is controlled in a distributed fashiynpeers themselves and whose role is critical
to achieving the overall requirements of a sectioeage system. In the following, we will
describe each of these blocks specifying how therkwand how they are connected to meet the
requirements of the P2P storage system (discussk@).

: Application layer :
!
! Shared storage :
: management !
!
! [
Trust & cooperation layer :
Peer Cooperation :
assessment incentives [
1
|
Overlay management layer

] 1
! 1
: Peer Peer random Metadata :
: identification selection management :
| )

Basic infrastructure layer

Peers (“untrusted”)  Security infrastructure (trusted)

S ——————

Network infrastructure

Figure 1 Architecture of the P2P storage system.




The proposed architecture follows a layered orgdinm for the sake of modular
development and separation of concerns such tledit leger may use elements produced by
lower layers. Wherever their functions can onlyito@lemented in a self-organizing manner,
layers are implemented by overlays on top of a R&Rork. Our architecture proposal consists
of four layers (depicted in Figure 1):

- Basic infrastructure layer:The layer defines the communication paradigm tisat i
employed in the storage system and that partiguildstrates the direct exchange of
messages and resources between peers. It alsduot® a security infrastructure with
various forms that can be deployed within the nétwo order to carry several security
functions of the storage system.

- Overlay management layefhe layer provides the organization model of peserd
resources in the system.

- Trust and cooperation layeiThe layer comprises the tools required to guaratitee
well operation of the system that relies essegtiali the fair and large cooperation of
peers.

- Application layer:The layer is concerned with managing the serviéered to the user.
The service is generally associated with the resouooperatively exchanged between
peers notably the distributed storage facility.

2.1.Basic infrastructure layer

This section describes the network infrastructbes ts used in the storage system. The main
characteristics of the infrastructure are discusgedticularly demonstrating that the peers
representing the network can handle all functidiealiof the storage system (explained in detail
in the following sections). Yet, some functions dahanded out to a security infrastructure
that can be deployed within the network. Such siftacture is also described in this section.

2.1.1.Network infrastructure

There are three models for the computer networleidipg on how resources are exchanged
between computers (depicted in Figure 2): clientissemodel and peer-to-peer (P2P) model.

- Client/server:In the client/server model, computers are dististyed between client
computers and server computers. The client requeste information from the server
that holds such requested information and transintts the client (e.g., HTTP, FTP).
Servers make use of dedicated server operatingmsgsthat are designed to handle the
load when multiple client computers access serased resources. Moreover, servers
may employ trusted computing forms thus providindrested environment for the
system to handle several of its functionalities ecure and protected way.

- P2P: In the P2P model, each computer can act as arsérvéhas some resources to
share, and can act as a client if it wants to reigs@me resources from other computers.
Computers, termed peers, have equal roles and neiglities. The communication
model relies on the direct exchange of resourcésdam peers (e.g., file sharing, IP
telephony, publish/subscribe system).
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Figure 2 Network communication models: data exchargthrough (a) client/server and (b) P2P models.

Our work focuses on storage systems built over ltteer type of networks: the P2P
communication model. We may assume in some casesssied in this chapter that the network
further relies on a trusted environment based asted devices integrated within computers or
dedicated systems disseminated into the netwoskdare applications.

P2P networks abide by a communication paradigm #flaivs the direct exchange of
resources between peers rather than being exchahgmrdyh a centralized entity, the server.
Each peer provides an equivalent functionality amab equivalent responsibilities and
privileges. Due to the lack of dedicated servdrs,control and management of such networks is
handled by peers themselves. P2P applications dghbut be built talking into consideration
self-organization as the main feature charactegigirch type of networks.

Because of the absence of a centralized serveg th@o bottleneck in the network and the
architecture achieves minimal administrative andrafional costs which render it particularly
scalable with a large population of peers.

However, the P2P network model is prone to pedurfaiand unpredictable peer departures
from the network. Such a model is highly dynamiaature in the sense that peers randomly
join and leave the system at any time and concthyrefthout any central coordination (churn).
This may cause the partition of the network intcaken fragments sometimes leading to an
impossible communication between peers. Althougl® RBfstems have received a lot of
attention in the past few years, they have alsmeshra lot of criticisms for their high
maintenance cost in the presence of high churnctsired P2P networks (see next section) in
which peer organization is handled by all peersugh exchanged control messages constitute
an example of efforts to cope with that issue. Astlaer example, [Zhao et al. 2006] suggests
the use of “throwboxes” to improve the connectiafyP2P applications deployed on top of an
ad hoc network based on the “store-carry-and-fadivaaradigm. Such throwboxes are trusted
devices disseminated within the network.

Robustness of applications built upon P2P netwdisksndermined by the potential peer
churn or failure. Peers are also heterogeneousrinst of the quality and quantity of resources
they offer, their connectivity, and behavior. Flgalthe geographical and topological
distribution of peers generally prevents estalbtighiany correlation between their
disconnections, departures, or failures. With sueterogeneity and behavior independence, the
robustness of applications relying on the netwoderp is enhanced just by distributing
application functionalities to multiple peers. Setyumechanisms and primitives required to




10

ensure the security and protection of the P2P gtosgistem should not just fulfill the objectives
discussed earlier, but they also should cope vatr phurn and failure.

2.1.2.Security infrastructure

A security infrastructure can be deployed into starage system; thus allowing to resolve
several problems notably related to self-organimati he security infrastructure provides strong
authentication mechanisms for peers; it may evenseel to assess their behavior. Moreover,
trust among peers that have no relationships mayediablished thanks to the security
infrastructure.

The security infrastructure exists in various fdaotors, from dedicated trusted devices in a
network to trusted platforms integrated within usted devices. Their purpose is to achieve
confidence towards the integrity and reliabilityosfe or several platforms in a network.

The security infrastructure may be used to cotyeictentify peers (see Section 2.2.3) or
assess their behavior (see Section 2.3.2). Addifignit may manage reputation ratings of
cooperating peers in reputation approaches orfoathe correctness of the fair-exchange and
handle payments in remuneration-based approacbesSgsction 2.3.3). A trusted third party
may handle these functions. Techniques based stettwperating system, trusted platform
module or smart cards may provide also these sanatidnalities but in a distributed fashion.

Trusted third party

A trusted third party (TTP) is an established aesbonsible entity (e.g., dedicated server)
accepted by all users as the authority for perfogna given function (e.g., certification
authority, fair exchange, etc.). A TTP facilitaieteractions between different parties with no
prior trust relationships, but which all trust th&P and use this trust to secure their own
interactions between them. A TTP is termed onlingenvit is involved in an electronic
transaction between peers, the transaction beisgilde only if it does not fail. Such a TTP
also constitutes a single point of failure in tbase. Most protocols assume that a TTP will not
misbehave or collude with one of the transactingigm (e.g., [Cox et al. 1995]) whereas some
assume that the TTP is only semi trusted (e.gandin and Reiter 1997]). Some protocols on
the contrary rely on offline TTPs that are usedase of a dispute over the results of a protocol
Finally, as explained below, tamper resistanceprawide the necessary basis for implementing
online authority in a distributed fashion and desghurn, thanks to the local availability of a
protected execution environment that cannot be pudatied nor observed by an adversary.

Trusted operating system

A trusted operating system (trusted OS) (called aéure operating system) is designed so
that agents (users or processes) can only perfotiona that have been allowed. The primary
objective is to preserve and protect the confiddityj integrity, and availability of information,
systems, and resources. This involves specifying iamplementing a security policy: “A
security policy is a statement of what is, and wkatot, allowed” [Bishop 2003]. A security
policy enables the proper managing and gainingsacte information, systems and resources.
Security policies must be applied within accesstrebrmechanisms that are based on several
underlying concepts and principles.

Let us first define some aspects of access cotgrohinology. The entity that requests
access to a resource is called subject. A sulgjes iactive entity because it initiates the access
a resource. The requested resource is called alfitioe access, and it is the passive part of the
access. So, access control is the process by whipérmit or deny the use of an object (such as
information, system, or resource) by a subject {sas user or process). Access control
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techniques are concerned with whether subjectsacaess an object and how this access can
occur. A trusted OS involves each object beinggated by an access control mechanism.

Generally, access control techniques are categbaszeeither discretionary or mandatory.
Alternative approaches are role-based access tonti®-based access control, or domain type
enforcement.

Discretionary access control (DAC) is a securityigyothat allows the owner of the
information to decide who can read, write, and ate@ particular object. DAC is based
on the idea that the owner of data should determim® has access to them.

Mandatory access control (MAC) is a security polidyere access is determined by the
system, not the owner. Administers and overseeirtogities pre-determine who can
access an object. MAC assigns security label (lef/eknsitivity) to objects and subjects,
limiting access across labels. Examples of seclaligls are: unclassified, sensitive but
unclassified (SBU), confidential, secret, and teprst; you can see more examples of
classification with their description in [SolomondaChapple 2005]. Security labeling
confers to MAC the aspect of focusing on informatmonfidentiality, and it is often
associated with Bell-LaPadula confidentiality modBiba model developed a similar
method as Bell-LaPadula model, but it aims at fhiog information integrity.

Role-based access control (RBAC) or task-basedsaamntrol is a security policy that
requires that access rights be assigned to rdlesrrthan to individual subjects. Subjects
obtain these access rights by virtue of being assignembership in appropriate roles.
Domain type enforcement (DTE) is an access coné&ahnology that restricts subject
accesses according to a specific security policf.EDis an extension of Type
Enforcement (TE) and is itself extended into Dymaffiyped Access Control (DTAC).
Implementing TE gives priority to MAC over DAC.
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Figure 3 Access control matrix

An access control system comprises an access tantrchanism and all information
required to take decisions. An access control mdttepicted in Figure 3) characterizes the
rights of each subject with respect to every objacthe system. The redundancy of access
modes and complexity of matrix management rendenrbdel subject for theoretical analysis
only. In practice, there are two implementatiorierahtives for access control matrix that have
been developed: capabilities and access conttsl lis

Capability list (CL) lists objects and rights assted with each subject. A capability is a
reference to an object, which allows the subjea$spssing it, to interact with an object in
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certain ways. It refers to a value that referertbesobject along with an associated set of
access rights. Thus, capabilities encapsulate bidiectity and its location in memory.

- Access control list (ACL) lists subjects and righssociated with each object. ACL is a
concept of privilege separation in which each abis@ssociated with a set of doubles,
each containing a subject and a set of rights.liBhés a data structure (usually a table)
which contains entries that specify subjects’ sglor a specific object.

For centralized systems, the trusted OS assurdattdgrity of CL and subject identification
in ACL. For distributed system, user managemenrfleisible in CL if revocation operation
which is difficult is not considered; however useanagement is complex in ACL although it
allows a better resource control.

More sophisticated policies have been also suggesieh as usage control [Sandhu and
Park 2003] that extends traditional access comiadels: a usage decision is particularly made
by policies of obligations and conditions. Obligais are actions that are required to be
performed before or during the access process. itmmslare environment restrictions that are
required to be valid before access or during access

Access control is certainly the core function dfwested OS. The trusted OS has the role of
enforcing such control. There is generally a refeee monitor that checks each subject’s
permission when it requests access. Permissioraigegl to the subject according to a security
policy defined by the access control mechanism.

Trusted platform module

The TCG® (Trusted Computing Group) consortium, formerly ea@mTCPA (Trusted
Computing Platform Alliance), founded in October9®9by Intel, IBM, Compaq, HP, and
Microsoft, aims to “develop and promote open industtandard specifications for trusted
computing hardware building blocks and softwareerifisices across multiple platforms,
including PC's, servers, PDA'’s, and digital phoneBfusted environment can be established
using its trusted platform modules (TPMs).

A trusted platform is “a platform that can be tedsty local users and remote entities to
always behave in the expected manner for the istbmadirpose”. To form a trusted platform,
TCG's specifications define three components: afedl Platform Module (TPM), a Core Root
of Trust for Measurement (CRTM), and a Trustedfptat Support Service (TSS).

- The TPM is a hardware chip that is separate frommnttotherboard. TPM is a passive
component, i.e. slave device that only performgacivhen asked (by operating system
or application), and it does not have access téesygesources. The TPM offers a
physical true random number generator (RNG), cigmatphic functions (i.e., SHA-1,
HMAC, RSA encryption/decryption, signatures and gewyeration), and tamper resistant
non-volatile memory (mainly used for persistent keéyrage). The TPM provides a set of
platform configuration registers (PCRs) that areduso store measurements of hash
values of the system/platform. The content of theggsters can only be modified using
the extending operation:

PCR,; — SHAY(PCR|M)

with PCR the previous register value, PGRhe new value, M a new measurement and ||
denoting the concatenation of values. The initiatfprm state is measured by computing

% https://www.trustedcomputinggroup.org/
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cryptographic hashes of all software componentdddaduring the boot process. The
Stored Measurement Log (SML) (also called the Eveng) is responsible for
maintaining an ordered database for all the eviemtgvery PCR. SML may be stored
outside the TPM because it can potentially grow Varge. Another possible usage of the
TPM is key storage: key and other data will be yoied by a secret key only known to
the TPM (binding storage), and the sensitive daia lze bound to a certain platform
configuration i.e., encrypted data with a referetmethe configuration then only the
platform in this configuration can read data (séat®rage).

- CRTM is the first code the platform executes whda booted. The task of the CRTM is
to compute a hash of the code and parameters aeddethe first PCR register with this
measurement. In this way a chain of trust is eistadgdl from the CRTM to the operating
system and potentially even to individual applicas.

- The TSS offers “low level” API for applications aptatforms. It is responsible for all
kinds of functions that are necessary for commuigicavith the rest of the platform or
other platforms

Smart cards

A smart card is a programmable device that hadl aferating system in the dimensions of
normally credit card size (ID-1 of ISO/IEC 7810rslard’). Therefore, applications can be
managed and nowadays the preferred language t@nmepit the application is Java Card, a
subset of the Java language. A smart card hasathe functionalities as a TPM (key storage,
key generation, cryptographic engine). Additiondikg a TPM, a smart card is a slave device,
which is however portable. With this latter partamunomadic feature, a smart card typically
belongs to a certain user, contrary to TPM thgthgsically bound to a computing platform.
There are two broad categories of smartcards. Mgicends contain only non-volatile memory
storage components, and perhaps some specificityelngic. Microprocessor cards contain
volatile memory and microprocessor components.

2.2.0verlay management layer

Given that P2P systems are highly dynamic netwarkgeers, organizing peers and
resources in such networks requires deploying war&toverlay that offers a good substrate for
peer and resource management. An overlay netwdokvalconnecting peers by virtual or
logical links built on top of a physical network tehich the overlay is generally totally
unrelated.

2.2.1.Classification

Overlays have been originally designed for filerstpapplications to provide index storage
as well as discovery and lookup services for peetent. Overlays can be classified based on
their degree of centralization that illustrates gxtent to which such overlays rely on one or
more servers to facilitate the interaction betweeers.

Centralized overlay

Centralized overlays, also termed “peer-through*pee “broker mediated”, rely on a
centralized server that maintains the metadatarirdtion. Content discovery and lookup are
performed on the central server, and the end-toresource transfers are made between peers

" |ISO/IEC 7810 in Wikipedia : http://en.wikipediagtwiki/ISO/IEC_7810
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themselves. The Napstearchitecture, which consists of a central indexeseto which peers
logged in and uploaded metadata, is a perfectritisn of this architecture. The centralized
approach quickly and efficiently locates data tus ivulnerable to the flash crowds, whereby
popular data become less accessible because loithef the requests on the central server, or
plain denial of service. The server thus constitateingle point of failure that is vulnerable not
only to technical failure or malicious attack, lalgo to censorship.

Decentralized overlay

In decentralized overlays, peers combine the miiegrvers and clients without the need for
a central coordination of their activities. Decalifred overlays fall into two classes, depending
if they have an unstructured or structured topol@ge Figure 4).

An unstructured overlay is composed of peers jointhe network without any prior
knowledge of the topology.

- Flat topology: Gnutell&® is the first system that makes use of unstructorelays. To
retrieve data over the overlay, Gnutella floodsriggseover the network with a limited
scope. Therefore, the unstructured overlay doesecale when handling a high rate of
aggregate queries and sudden increase in the sysizenbecause peers become
considerably overloaded; even though the approackeffective in locating highly
replicated data and is resilient to peers joinind Eaving the system.

- Hierarchical topology: Another type of unstructured overlay is proposed the
FastTrack [Liang et al. 2006] two-tier architectuparticularly used in KazZa¥,
Grokstet!, and iMesff. In this architecture, some of the peers assumera important
role than the rest of the peers, acting as locatraeindexes as Napster for the data
shared by local peers. These peers, called “sugmEnsh are selected for these special
tasks and do not constitute single points of faillike in Napster, since they are
dynamically assigned and replaced if they are sttt failure or attack. However, the
architecture may create islands of sub-networks &n@ not connected to each other
which slows discovery and lookup of shared data.

A structured overlay does not place data at rangesrs but at specified locations with a
topology that is tightly controlled.

- DHT-based topologySuch structured overlays use the Distributed Hasd#le (DHT) as

a substrate such as CAN [Ratnasamy et al. 2001dydC[Stoica et al. 2001], Pastry
[Rowstron and Druschel 2001], or Tapestry [Zhaoakt2000]. DHT-based overlay
consistently assigns uniform random IDs to the afefpeers into a large space of
identifiers. Data objects are assigned unique ifiers called keys, chosen from the same
identifier space. Keys are mapped by the overlaywork protocol to a unique live peer
in the overlay network. Although structured oveslayan efficiently locate rare data items
since the key-based routing is scalable, they isigmificantly higher overheads than
unstructured overlays for popular content.

%8 http://www.napster.com/
29 http://www.gnutella.com/
%0 http://www.kazaa.com/
3L http://www.grokster.com/
%2 http:/fimesh.com
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Figure 4 Decentralized overlay: (a) flat topology(b) hierarchical topology, and (C) DHT-based topolgy.

Choosing structured or unstructured overlay foadsbrage, discovery, and lookup comes
with some tradeoffs for file sharing applicatioftowever, our considered application differs
from file sharing: in the latter, peers may notuatly know the location of the data and
therefore need to query the network overlay todedor such information; whereas in our
application, the owner may know the location ofstered data (if the ). Still, an overlay is
required to provide the storage of metadata in tewidito other services related to peer
organization like for instance the random selectibpotential holders or verifiers within the
P2P network.

2.2.2.Metadata usage and management

Metadata must be introduced into the overlay fascdbing the attributes relative to data
stored (e.g., name, size, ownership, and type); gteuctures (e.g., length and fields), their
location, or a short description of their conteMloreover, security metadata also must be
introduced specifically for data storage applicasioEach peer may store data and replicate
them at other multiple peers. The data must ihjtibe encrypted before being stored at the
holder so as to protect them. Decryption keys #terkept by the owner (single reader) or
distributed to peers allowed to access the datdtipleureaders) as metadata. Signed certificates
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in the form of capability-based access rights mag &e granted and distributed as metadata,
hence offering a low granularity of access to datgeer wanting to retrieve some data will
thus need to refer to metadata information for fifigng the location of their holders,
decrypting the data, or even for verifying theteirity.

Such metadata can be handled by the owner pe#rdtsmade available at a centralized
entity that cares about providing this type of infiation online or offline, or distributed to
peers in the network that cooperatively adminigtes information either within a structured or
unstructured network overlay. For instance, [Sdmatand Liu 2005] proposes the
LocationGuard algorithm for hiding the locationagfplication data or of an online service on a
large overlay network. The location hiding algamithuses location keys to implement a
capability-based access control mechanism whetabyoken (capability) is a pseudo-filename
generated from file’s name and its location key.

2.2.3.Peer identification

Peer identification in a P2P network is a very im@at security issue. The lack of strong
peer identities and the dynamicity of P2P netwarith arrivals and departures of peers may
lead to the problem of whitewashing whereby mishittapeers leave the system and come
back with new identities to avoid any penalty besgaof their misbehavior.

Additionally, without proper peer identificatiorhe system is vulnerable to the Sybil attack
(also formerly known as pseudo-spoofing) where @ftacker masquerades under multiple
simultaneous identities in order to gain an urdaivantage over system resources. Completely
eliminating Sybil attacks can only be provided bysted certification as proven by Douceur
[Douceur 2002]. Trusted devices associated withrspean be used as an implementation to
eliminate such attacks, even though a peer mayriiple devices and then acquire multiple
identities yet at a high cost. [Balfe et al. 20pE)poses a pseudonymous authentication scheme
for P2P networks based on TPMs. The scheme assti@®senabled peers with appropriate
Direct Anonymous Attestation (DAA) credentials. DA# an approach (supported in version
1.2 of TCG specification) that relies on cryptodraptechniques to ensure the privacy of TPM
users, without introducing the requirement for sglerusted third parties (e.g., privacy CA).
Based on DAA approach, the TPM proves that it masMedge of a specific TPM-controlled,
non-migratable secret value (the value is not rededuring the process). With the scheme of
[Balfe et al. 2005], any peer is able to verify fismudonym of another peer by challenging this
latter to supply a DAA signature on some messageh Serification allows checking that the
peer has a valid credential supplied by a particidauer and also that the pseudonym is
determined as a function of the P2P network nareerdPcan thus be authenticated without
revealing their TPM identities in the process.

Without a trusted infrastructure, Sybil attacks cauty be mitigated at best. Mitigation can
be achieved by relying on the topology, for inseatiwrough the test of a peer IP address range.
It can also be achieved more indirectly by makihg nhewcomer pay with computation
resources, bandwidth, or storage capabilities, sashfor example with crypto-puzzles
[Vishnumurthy et al. 2003]. Other techniques likgbiB5uard [Yu et al. 2006] rely on prior
trust relationships e.g., real-world friendshipvietn peer owners to detect Sybil attackers.
[Lesueur et al. 2008] even enhances the SybilGapptoach by controlling the number of peer
invitations that a group member possesses.

In the three latter methods, the costs are onlytiome paid by Sybil attackers and can be
then amortized during the rest of the system ojmerafAs discussed in [Levine et al. 2006],
such costs can be periodically paid by repeatedijopming resource testing on peers, thus
confining the potential return on investment of iBditackers to a limited time slot. Even
though all these proposed approaches for limitiglgjl&ittacks without trusted infrastructure are
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scalable compared to certification-based approacheyg incur a huge cost overhead not only
for Sybil attackers but also for honest newcometich may undermine their practicability and
tolerability in actual implementations. In thatpest, [Feldman et al. 2006] for instance shows
that imposing a penalty on all newcomers signifitadegrades system performance when the
peer churn rate is high.

2.2.4.Peer random selection

In a centralized overlay, the random selection eérp can obviously be performed by
parsing the list of peers registered to the netvaorl selecting a random subset of them. Peers
may also be organized in an unstructured or a tsiret network overlay. Both types of
overlays permit the random selection of peers.

In unstructured overlays, the random selection bepased on the random walk. To solicit
a number of random peers, the requesting peers staet random walks at a subset of its
neighbors chosen randomly, and runs them for Tithe(to live) steps. Each intermediate peer
involved in the walk forwards the query messaga tandomly chosen sub-set of its neighbors
until the TTL is reached. The final peers are cdex®d as the randomly selected peers. The
random walk approach is proven to be inherentijakba [Zhong et al. 2008] because its
communication overhead does not increase as tlworiesize grows. In structured overlay,
random selection of peers can be realized by rahdoioosing a value from the number space,
and routing to that value. However, the problenmrasfdom peer selection boils down to the
problem of assigning identifiers appropriately ire thetwork overlay. Such identification is
prone to Sybil attacks that threaten also the Selebased on the random walk.

2.3.Trust and cooperation layer

In P2P systems, peers often must interact with owknor unfamiliar peers without the help
of trusted third parties or authorities to meditte interactions. As a result, peers trying to
establish trust towards other peers generallyaalgooperation as evaluated on some period of
time. The rationale behind such trust is that pbersge confidence if the other peers cooperate
by joining their efforts and actions for a commaaméfit.

2.3.1.Classification

Trust between peers can be achieved in two eskevdigs that depend on the type and
extent of trust relationships among peers andréfict the models and trends in P2P systems
(the used taxonomy is depicted in Figure 5). Statist based schemes rely on stable and
preexisting relationships between peers, while yoatrust is relying on a real-time
assessment of peer behavior.
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Figure 5 Trust taxonomy

Among other taxonomies have been proposed, [Obreitel Nimis 2003] classifies
cooperation enforcement mechanisms into trust-bgsattierns and trade-based patterns.
Obreiter et al. distinguish between static trustréby referring to pre-established trust between
peers, and dynamic trust, by which they refer foutation-based trust. They analyze trade-
based patterns as being based either on immediate deferred remuneration. Other authors
describe cooperation in self-organized systems dnlyterms of reputation based and
remuneration based approaches. Trust establishmetther step in many protocols, easily
maps to reputation but may rely on remuneratiowels In this work, we adhere to the existing
classification of cooperation incentives in distifghing between reputation-based and
remuneration-based approaches.

Static trust

Peers may have prior trust relationships basedXample on existing social relationships or
a common authority. In friend-to-friend (F2F) netk® peers only interact and make direct
connections with people they know. Passwords oitadligignatures can be used to establish
secure connections. The shared secrets neededidaré agreed-upon by out-of-band means.
Turtle [Popescu et al. 2004] is an anonymous in&tiom sharing system that builds a P2P
overlay on top of pre-existent friendship relatiamong peers. All direct interactions occur
between peers who are assumed to trust and respettother as friends. Friendship relations
are defined as commutative, but not transitive.

[Li and Dabek 2006] proposes a F2F storage systherenvpeers choose their storage sites
among peers that they trust instead of randomlyngawed to an open P2P storage system, the
proposed approach reduces the replication rateeo$tiored data since peers are only prone to
failure not to departure or misbehavior. Howevee approach is more applicable to certain
types of storage systems like backup since it pewmvidata durability not generally data
availability: peers may not often leave the syskemthey me be offline. F2F-based approaches
ensures the cooperation of peers which resultsnimamced system stability and reduces
administrative overhead; even though these appesaclves not help to build large scale
systems with large reserve of resources.
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Trust can be established using a trusted authikéyin UbiStorag&®. Such service proposes
a file system that is based on a distributed tdustfrastructure of servers built over a network
of peers. Indeed, the service distributes dedicttadinals, named “néobox”, to peers. These
terminals are used to securely store other peats. dDedicated devices, named “throwboxes”,
are also used to increase the capacity of an adéiweork in [Zhao et al. 2006]: throwboxes
store node messages before being transmitteditadtrsination.

Dynamic trust

A P2P storage system may rely on the cooperatiorpesfrs without any prior trust
relationships. Some trust is then established as ipgeractions progress, through cooperation
incentive mechanisms. Peers describe their trugards each other either directly based on
reputation, or indirectly through payment incensiveoney being an indirect though not always
fully meaningful measure of how trusted some peightrbe. The lack of prior trust between
peers allows building open large scale systemsatfgahiccessible to the public. Storage systems
with cooperation incentives perhaps result in mowerhead than with prior trust based
approaches; but however the reliability of the ediodata is increased since data will be
generally stored in multiple copies at differentrideide locations rather than confined at one
or limited number of locations.

Inciting peers to adopt a cooperative behaviorardy achieved efficiently if peer behavior
can be correctly assessed. Therefore, cooperatioentive mechanisms should comprise
verification methods for measuring the actual peentributions to the P2P system. The
evaluation of the behavior of each peer allowsrdateéng the right incentives to stimulate its
cooperation. In turn, such incentives guide ther preeadapting its contribution level. A peer
might in particular choose the best strategy thaximizes its utility gained from the system: it
compensates the cost incurred due to its potertiatribution with the incentives received in
support for its cooperation. With such a cyclic gass, the system dynamically reaches the
status of “full” cooperation between peers.

Figure 6 depicts the feedback loop illustrating twerelation between peer assessment,
cooperation incentives and peer strategies.

Cooperation incentives
(e.g., reputation, payment)

Peer assessment
(remote data possession
verification)

Peer strategies

Contribute or not ?

Figure 6 The feedback loop of dynamic trust

2.3.2.Peer assessment

An evaluation of the peer behavior can be perforatedifferent timescales. An immediate
evaluation of the peer behavior is only possibldéf peer contribution occurs immediately like

%3 http://www.ubistorage.com/
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in packet forwarding application (e.g., [Michiardd04] and [Buttyan and Hubaux 2003]).

Otherwise, peer evaluation is deferred to the cetigai of the peer contribution as it is the case
in data storage applications. This constitutes ablpm for storage applications since

misbehaving peers are left with an extensive pesidiime during which they can pretend to be
storing some data they have in fact destroyedréa@-fiding or for purely malicious purposes.

Proof of data possession

Periodic peer evaluation can be achieved througbfpof knowledge protocols that have
been called interchangeably remote integrity chregkiDeswarte et al. 2004], demonstration of
data possession [Filho and Barreto 2006], proofdaté possession [Ateniese et al. 2007], or
proofs of retrievability [Juels and Kaliski 200@hapter 3 suggests three verification protocols
of this type with various tradeoffs.

Such protocols are used as an interactive proofdmat the holder and the verifier or
possibly the owner, in which the holder tries tavdiace the verifier that it possesses these very
data without actually retrieving them. Interactinbased on challenge-response messages
exchanged between the holder and the verifier. fidation of the holder’'s response is
permitted through some information kept at thefigrrside.

Verification protocols generally require storingceety metadata for verification purposes,
which are much smaller than data themselves, makimgssible for multiple peers to perform
periodic verifications at multiple holders. Verifiemay comprise not just the owner but also
peers from the network selected and appointed byothiner. The distribution of behavior
assessment tasks to multiple peers allows depldkimd2P storage application in a large scale.
It also allows mitigating the selfishness of vexnifi whereby they give up performing the
verification task or send bogus verification resadt the owner.

To ensure that a data is periodically verified, may rely on some trusted devices rather
than on the delegated verifiers. Distributed onlifié®s may perform the verification operations
over the data at several holders. Such TTPs maggresented as dedicated devices distributed
over the network. They have storage capability thiey are easy to deploy in the field without
access to any infrastructure. TTPs may correspoidPMs or smart cards that are held by each
peer and that periodically perform verification éer's storage. This approach reduces the
communication overhead of the verification procgisse verification messages are exchanged
between the TPM or the smart card and its holder.

However, the peer may detach such device avoidinstorage to be verified. Therefore, we
should ensure that the incentives for cooperatiostrbe enforced through the trusted device
i.e., the peer cannot use the storage system wittmntacting its device, as illustrated by
[Buttyan and Hubaux 2001]. For instance, verificatoperations whose outcome is positive
increases a counter in the trusted device, suchtepif it exceeds a certain threshold enables
the very peer to store its own data into the systddlitionally, we may resort to a trusted OS
that controls several peer functionalities such ifhever the peer selfishly disconnects from the
network the trusted OS reduces the number of st even degrades the quality of service
offered to that peer.

Distribution of peer assessment information

Verification results obtained from the periodic gindy of holders can be kept private by the
verifiers or instead distributed to peers otherntllhe data owner. Private information is
certainly objective but achieves a very local vadyout peer behavior confined to a small subset
of network peers; even though delegating the watifbn task to multiple verifiers increases the
size of such subset.

Cooperation incentive approaches have proven tmdre successful (see [Lai et al. 2003])
if they rely on an objective and shared historypeér actions to compute reputation ratings.
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Results obtained from remote data possession eatiin protocols provide such objective

evaluations of effective data storage, howeverkim@ewledge of such results, which we call

audits, are limited to the verifiers and the owokthe verified data. Verification results can be
disseminated using a centralized or decentraliaetlayy network. A centralized entity may

distribute verification results. It collects allfanmation about the behavior of peers in the
system, and then disseminates a history of peetsgbor to any peer either in a regular-basis
or on-demand. However, the centralization creatbstdeneck problem at the central entity.
The verification information can also be providedhin a structured or unstructured overlay
where peers may search for this kind of informatifam instance through a random walk to
collect the information from random peers [Anceauamel Ravoaja 2006] or through score
managers that are assigned within a DHT to traekiihavior of a given peer [Kamvar et al.
2003]. These approaches make collected informatiahmay be subjective or even incorrect
available to the other peers in the system. Ini@edh.2.3 of Chapter 5, we introduce an
analytic model that proves that this kind of indtrapproach degrades the quality of collected
evidences.

2.3.3.Cooperation incentives

Peer behavior assessment forms the basis of ameafficooperation incentive mechanism.
From such an evaluation, well-behaved peers willdearded with incentives while ill-behaved
peers will be punished. Incentives may consistxichanging identical resources (Barter), or in
conferring good reputation to the well behaved geer in providing well behaved peers a
financial counterpart for their cooperation.

Bartering

Barter based approaches do not require the integagteers to have any preset trust
relationships. They rather rely on a simultaneond eeciprocal behavior. The exchange of
resources in particular takes place if both peeaperate with each other; otherwise, there is no
exchange.

Cooperation incentives may be cheaply built ont-fotitat (TFT) strategy (“give and ye
shall receive”). The peer initially cooperates, ahdn responds likewise to the opponent's
previous action: if the opponent previously coopeitathe peer cooperates; otherwise, the peer
defects. TFT is demonstrated to be an evolutiogtalyle strategy (ESS) in game theory jargon:
this strategy cannot be invaded (or dominated)ryyadternative yet initially rare strategy.

In the Cooperative Internet Backup Scheme [Lililige et al. 2003], each peer has a set of
geographically-separated partner peers that ciidgthold its backed up data. In return, the
peer backs up a part of its partners’ data. Toctldtee-riding, each peer periodically evaluates
its remote data. If it detects that one of its pens dropped the data, the peer establishes a
backup contract with a different partner. Since shheme relies on identical and immediate
resource exchanges, peers must be able to chooserpathat match their needs and their
capabilities and that ensure similar uptimes. Tie émd, a central server tracks peers and their
partners. Decentralized methods of finding partriera Gnutella-like flooding approach are
also suggested although not evaluated in [Lillipeickt al. 2003].

However, TFT is not perfect as illustrated by ti#PHile sharing protocol BitTorrefit In
BitTorrent, unchoking a peer means that the peacégpted to upload files for it. Peers follow
a TFT strategy by unchoking peers that providehiglest throughput for them, and besides
that they use an optimistic unchoking strategy i&calrer potentially better trading peers.
However this strategy of (probabilistically) coogtng with newcomers blindly can be

% http://www.bittorrent.com/
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exploited by whitewashers (peers that repeatediytfee network under new identities to avoid

the penalty imposed on free-riders). [Piatek et2807] describes the design of BitTyrant, a
selfish client that demonstrates that BitTorremeimtives don’t build robustness. The reason is
that TFT is no longer an evolutionary stable stgrati@ the presence of whitewashers.

Reputation

Reputation relies on the evaluation of the pastabien of a peer for deciding whether to
cooperate with it. Reputation then builds a longrtérust between peers based on a statistical
history of their past interactions. This allows rpibeyond barter-based approaches (direct
reciprocity) by permitting to several peers to iedily reciprocate to the behavior of the
observed peer.

A reputation mechanism consists of three phasesnguized in Figure 7):

1. Collection of evidencePeer reputation is constructed based on the dsemvof the
peer, on experiences with it, and/or on recomméostfrom third parties. The
semantics of the information collected can be diesdralong two dimensions:

0 Specific vs. general information:specific information about a given peer relates
to the evaluation of its functionality such asdtslity to deliver a service on time,
which general information evaluates all its funotbties (e.g., measured as a
weighted average).

0 Objective vs. subjective information:objective information (also known as direct
or private information) can be obtained about aegivpeer through past
interactions, while subjective information (alsookm as indirect or public
information) refers to either listening to messageasnded for other peers or to
using the opinion of others about the peer. A ngssean also voluntarily
piggyback evaluations collected by other peers<ara éformation.
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Figure 7 Reputation: diagram of operations

2. Cooperation decisionBased on the collected information, a peer camdeshether it
should cooperate with another peer, based on thgaton of that other peer. There
exists a variety of methods for computing the rapoh of an entity such as voting,
averaged ratings, Bayesian computation ([Jgsanglemdil 2002] and [Mui et al.
2001]), or the flow model (e.g., PageRank [Pagaletl998] algorithm for ranking
Google®s web page¥ and EigenTrust [Kamvar et al. 2003]). More detaits be
found in [Jgsang et al. 2005].

3. Cooperation evaluationThe occurrence of an interaction with a peer isdamnal on
the previous phase. After interaction, the degffeeooperation of the peer involved is

% http://www.google.com

% The public PageRank measure does not fully desdBibogle's page ranking algorithm, which takes
into account other parameters for the purpose dimgat difficult or expensive to deliberately innce
ranking results in what can be seen as a formpzfrtsning"”.
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determined. Peers performing correct operatiors, i§) behaving cooperatively, are
rewarded by increasing their reputation accordinglyeer with a bad reputation will
be isolated from the functionality offered by threup of peers as a whole.

The reputation mechanism may rely on an online TdReollect auditing information,
compute the reputation of the corresponding hadaher disseminate such information to the rest
of peers, either periodically or on-demand. Howetrex approach results in a bottleneck
problem and does not scale to large populationeefs. This task of reputation collection and
dissemination can be attributed not to a single BuPinstead to several ones, even though
decreasing the total shared history of peer actidnie achieving a more scalable system.

Reputation values can be handled by peers thrdugjluge of TPMs or smart cards. These
devices would then verify the data that the devViokler has promised to store, compute the
reputation of this latter accordingly, and disttdbuhe reputation information to other peers
when requested. The computed reputation would pinevide an accurate and complete record
of all peer actions. However, this approach magtbevulnerable to attacks whereby the peer
maliciously disconnects the trusted device fromrbavork. This would however prevent the
peer from using the system and storing its datatter peers without presenting an up-to-date
reputation certified by its device. For instancepaential holder may request a data owner
reputation by selecting a random number as a ndfoen, the owner should send back its
reputation along with the nonce certified by itssted device.

Reputation may also just rely on peers themselasdompute reputation ratings for each
other peer based on their personal experienceslelneing process of such ratings may be
made fast by considering groups of peers ratherttiawhole system of peers. Group members
interact with each other and accordingly computputation ratings for each other. The
reputation approach based on this structure isritdescin more detail in Section 5.2 of Chapter

Payment

In contrast to reputation-based approaches, paybss#d incentives constitute an explicit
and discrete counterpart for cooperation and peoweans to enforce a more immediate form
of penalty for misconduct. Payment based approaotese it possible to secure short-term
interactions between peers without relying neittreprior trust nor on some long-term history.

Payment brings up new requirements regarding iheefss of the exchange itself [Asokan et
al. 1997]. This in general translates to a more glermand costly implementation than for
reputation mechanisms. In particular, payment selseraquire trusted third parties (TTP) such
as banks; these entities do not necessarily takkdmpthe online service, but may be contacted
to resolve payment litigations. Tamper proof or p@mresistant hardware (TPH/TRH) like
secure operating systems or smart cards have at®sm Isuggested as a distributed
implementation of such a TTP.

A payment scheme comprises four main phases (sugedan Figure 8):

- Negotiation: Two peers may negotiate the terms of their intevac Negotiating the
remuneration in exchange for an enhanced servigteia substantial flexibility to the
mechanism. The negotiation can be performed elibeween the participating peers or
between peers and an authority if available.

- Cooperation decisionThe peer is always the decision maker in a sg&oizing system.
During negotiation and based on its outcome, a gaeidecide whether it will cooperate.

- Cooperation evaluationCooperation is evaluated by the service requegtadgy in
terms of adequacy of the service to the requestietisas by the service providing party,
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in terms of adequate remuneration. Ensuring thendas of both evaluations may
ultimately require involving a trusted third parBepending on the service, this TTP will
ensure a fair exchange for every interaction, oy maly be involved if arbitration is
requested by one party (see below). The TTP, whialy be centralized or distributed
itself, may for instance give access to informatiamavailable to a peer, or more
generally provide a neutral execution environment.

- RemunerationThe remuneration can consist in virtual currenaigsu(a number of points
stored in a purse or counter) or real money (bankind micropayment), or bartering
units (for instance quotas defining how a certaimoant of resources provided by the
service may be exchanged between entities). Ther leaan even be envisioned in the
form of micropayments [Jakobsson et al. 2003]. R#igg real money, this solution
assumes that every entity possesses a bank acemghthat banks are enrolled in the
cooperative system, directly or indirectly througtome payment scheme. The
collaborating peer is remunerated by issuing alcloeanaking a transfer of money. In
the first case, remuneration implies that a numiifepoints are added to a counter
connected in some way with the collaborating p&ébe remuneration effectiveness may
be immediate or delayed after a certain number tepss (e.g., reservations, then
remuneration in several phases for different ses)ic

These phases can be executed repeatedly to pesfmme cooperative service on a finer
granularity basis, which may ease cooperation eafoent. In particular, micropayment is
often envisioned rather than an actual macro-paynrerremuneration based cooperation
enforcement mechanisms. With this scheme, trusibBshment essentially relies on the
presence of peers in the system, that is, thetiraoed ability to pay proves they cooperated.

Achieving an effective implementation of paymensé@d mechanism depends upon the
realization of a protocol that enforces the faickenge of the payment (credits) against some
task: “A fair exchange protocol can then be defineda protocol that ensures that no player in
an electronic commerce transaction can gain an raglga over the other player by
misbehaving, misrepresenting or by prematurely tiadgprthe protocol” [Asokan et al. 1998].
The fair-exchange may be enforced through a TTPntlagy be used online or opportunistically.
TPMs or smart cards may also be employed to cauaty o fair-exchange protocol in a
distributed fashion.

In a P2P network, TTPs may be represented as gpgees-that play the same role as an
online TTP but in a distributed fashion. One exagflsuch architecture is FastTrack [Liang et
al. 2006] which is used in P2P networks like KaZa&rokstet?, and iMesf’. These networks
have two-tier hierarchy consisting of ordinary n@d®NSs) in the lower tier and super-nodes
(SNs) in the upper tier. SNs keep tracks of ONs atier SNs and act as directory servers
during the search phase of files. Additionally, om&y of implementing a payment scheme
would be to use super-peers distributed withinRB® network as a trusted infrastructure for
payment. These super-peers would provide neutadfopins for performing an optimistic fair
exchange protocol. The use of such an infrastraatfitrusted peers, that would not necessarily
need to be related with the payment authority, male sense, in particular in relationship with
content distribution networks (CDN8) Such networks involve the deployment of managed
workstations all over the Internet, thereby praviga nice platform for payment functionalities.

37 http://www.kazaa.com/

38 http://www.grokster.com/

%9 http:/fimesh.com

0 E.g., Akamai technologies, inc. http://www.akaroain/
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Figure 8 Payment: diagram of operations

The scale of the storage system makes it necessaggort to a new type of protocols called
optimistic protocols [Asokan et al. 1997] wherebg TTP does not necessarily take part in peer
interactions, but may be contacted to arbitratgaitons between peers. In the cooperative
backup system of [Lillibridge et al. 2003], a catserver considered as a TTP tracks the
partners of each peer participating in the backygiesn. Partners of a peer are peers that
collectively hold its backed up data. In returre treer backs up a part of its partners’ data. Each
peer takes note of its direct experience with dneay and if this partner does not cooperate
voluntarily or not beyond some threshold, the peay decide to establish a backup contract
with a different partner that is obtained throulé tentral server.

TPMs supported approaches have been suggested whithi TermiNodes [Buttyan and
Hubaux 2001] and CASHnet [Weyland et al. 2005] ¢et§. Both schemes address the security
of the networking function of packet forwardingdbgh remuneration schemes. Each device
possesses a TPM that manages its account by nmivigiaa counter that is interpreted as a
currency. However, TPM-based approaches suffer fidditional attacks: if the peer device of
a non cooperative or malicious user is disconnefrtad the other peers, their credits/tokens
might not be available, which might raise starvatigssues. However, the use of secure
operating system as a TPM might make it possildieviate this problem notably by more
completely controlling and possibly reducing thevide functionalities if the peer does not
connect to the system network.
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Smart cards have been used in the P2P storagens®8T [Druschel and Rowstron 2001]
to ensure the fairness of peer contributions. Soads issued by a third party are held by each
PAST peer to support a quota system that balanggsdysand demand of storage space in the
system. Peers cannot use more remote storagehaaare providing locally. With fixed quotas
and expiration dates, peers are only allowed taagsauch storage as they contribute.

If data storage should be achieved in a large-sadeopen P2P system, designs based on a
trusted environment may be unfeasible or unmandgedb that case, implementing the
optimistic fair exchange protocol would have todmme by relying solely on peers. [Asokan et
al. 1998] describes design rules for such crypfoga protocols making it possible to
implement appropriate fair-exchange protocols. iRstance, the distribution of the banking
function to multiple peers may make easier theizatibn of a scalable system that does not
have recourse to a trusted environment. In the KARMmMework [Vishnumurthy et al. 2003],
the exchange of payment against some task is si@opby multiple peers that collaborate to
provide a fair exchange even though mitigated leyseifishness of the latter.

2.4 Application layer

The application-level layer is concerned with thevice that is installed at each peer
machine. A peer should store other peers’ datakaagd them available for them. Additionally,
it should correctly answer verifiers’ challengeséxon the stored data.

2.4.1.Shared storage management

In the proposed P2P data storage application,theed resource is the extra storage space
spared at each peer that is used to set up a relaatestorage facility.

The common technique to provide data reliabilitydalized by disseminating the data into
multiple copies in the network. Data redundancy loammplemented through either replication
or erasure coding. With replication, the copy &raple duplicate of the data. Whereas, erasure
coded copies are coded blocks such that any tHoesliped set of these blocks allows
generating the original data. Redundancy entads tive size of the actual consumed storage
space is larger than the data size. The overhéamiuted by data redundancy can however be
coped with. For instance, Wuélaeduces the remote storage space allocated temipe
exchange of an equivalent local storage space basdts probability of being online: the
unallocated storage space serves for trading spacther peers in order to achieve a redundant
storage [Toka and Michiardi 2008].

The preservation of the remote data is handledhkir tholders. The management of the
shared storage falls then directly in the individsghere of the holder, thus corroborating the
idea of peer cooperation as a requirement fortyipis of storage system.

Verifiers, which are delegates of the data own@erate a double check on the remote
storage. The data holder should correctly resporuktiodic verifier challenges and also send
back the data whenever their owner wants to regribgm.

Providing data availability and survivability is thpist the concern of their owner. Several
holders and verifiers contributed to this task. Tstribution of the work to multiple peers
limits the selfishness of holders or verifiers.

Peer cooperation in providing storage resourcesstiimulated through the trust and
cooperation layer (discussed in the previous sextibhe fairness of peer contributions is
particularly regulated by the cooperation incergitlgat work as a quota system: peers consume

“L http://wua.la/en/home.html
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storage resources from the system because theghetatsuch resources to other peers. Other
type of resource utilization (e.g., bandwidth) teth for instance to the performing the
verification task must also be stimulated and raigal.

2.4.2.Multi-service framework

There is a potential interest in providing a geh&geanework of cooperative services instead
of one specific to P2P storage, mainly in case wilsepeer desires to store data in the P2P
network without sacrificing its own storage spathis situation may be rendered possible by
just making the peer contribute to the communitypeérs with other resources that it has in
abundance. The P2P storage service may be theriremnlpith other resource sharing services
that relate for example to the bandwidth (file g, computation, or even networking. Each
peer participates to a collection of services wilfehpeer retains some of them for consumption
and others for contribution.

Payment-based approach

Remuneration (e.g., real/virtual money, token) barregarded as a neutral counterpart that
can be traded for any cooperative service. Thesefar system based on payment-based
cooperation incentives is able to allow peers diamglously accessing multiple cooperative
services (e.g., remote storage, cloud computirggriblited database).

The evaluation of the good behavior of peers shdwtd performed separately and
independently using verification mechanisms spealify designed for each service.

However, the remuneration for a service can be atpdrwith the same manner. For
instance, remuneration may rely on auctions (likthe KARMA framework [Vishnumurthy et
al. 2003]) to better cope with the effect of change supply and demand on service prices.
Each peer contributing with a service might firgstton the offered service and then supply the
service to the winning bidder. The service delideby the peer would then be checked to
evaluate whether it corresponds to the adverti$ied. Guch an evaluation permits to determine
if the service provider is worthy of the remunesatiearned in counterpart to the service (cf.
Figure 9).

Trusted OS based approach

Additionally, peer cooperation in a multi-servicarhework can be enforced through the use
of trusted OS. Each peer’s device incorporatesisted OS that controls the access of the peer
to resources and services and may exploit suchraidiet stimulate or even force the peer to
cooperate to the P2P system in a strictly fair reanfihe cooperation enforcement may be
illustrated througrservice differentiationa cooperative peer will have a good quality aofiee
(e.g., high bandwidth) and a non cooperative peéirhave a bad quality of service (e.g.,
intermittent connection to the P2P network).
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Data storage verification would thus serve twoettéht functions:

- Peer evaluationBased on peer assessments, the framework comgutemaintains a
counter that reflects the degree of peer cooperafitie counter employs different
weights for resources.

- Service differentiationThe framework makes use of the counter as anatatiof the
level of quality of service that the peer deserBased on the value of the counter, peer
services are either upgraded or degraded and sreftes differentiation is enforced
through the trusted OS.

The peer evaluation function of the framework reegmiithe employ of a remote data
possession verification protocol to check the éaid correct storage sharing between peers. The
verifier for such protocol may correspond to a Bmrvimplemented within the trusted
“userland” part (not the kernel) of the trusted OS.

To be able to design the framework, we may usecti@peration counter as a context
information modifying a dynamic access control ggliany change in the value of the counter
would result in a change in the access rightsaics granted to the user.

Alternatively, we may make use of the Flask seguaithitecture [Spencer et al. 1999] as
used in the SELinux (Security-enhanced Linux) ofregasystem to enforce the security policy
in a flexible way. Such a security architecturee($égure 10) divides the responsibility for
security into an object manager part and a secagtyer part. The object manager controls
every object invocation by checking every objecjuest through the security server. This latter
contains a complete representation of the secpaligy. With such an architecture, the security
policy is consulted for every security decisiondathus can manage the revocation of
previously granted access rights. For instanceydetonsider a user that had previously access
to a given service but who was in the meanwhileooperative. His cooperation counter will be




30

diminished until reaching the point where the asdesthe very service will be revoked to him
in its subsequent object (service) request.

Client

Object Request

Object Manager Query [ Security Server

Policy

| Security
Enforcement | |« |

Policy

Decision

Enforcement
|
Figure 10 The Flask security architecture

Policy

2.5.Summary

This chapter describes the many elements of anitectlre adapted to the secure P2P
storage problem. The most important elements &f #nchitecture are the overlay and trust
management elements. We have identified techniqliesanagement and implementation of
the blocks that make up these layers and partigutew they may be enforced with a trusted
environment.

The chapter describes several ways in which oup@&@tion incentive mechanisms may
benefit from a trusted environment in order to ioya peer behavior evaluation and motivate or
enforce the cooperation of peers and the fairnEgsed contributions.

Finally, we described how it would be possible &sign a multi-service framework based
on trusted OSes for offering peers the opportutttgelect the resources that they prefer to
contribute in order to cope with the use of hetermpus resources, capabilities, and needs.
Although the use of trusted environment may mak#ayéng our mechanism more costly, this
would of course be mitigated by the deployment oferefficient security measures. The rest of
the thesis studies how to ensure a correct oparafithe P2P storage system by relying solely
on peers, in particular based on remote data peissegerifications.
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Chapter 3

Remote data possession verification

Self-organizing data storage must ensure data abitity on a long term basis. This
objective requires developing appropriate primiiver detecting dishonest peers free riding on
the self-organizing storage infrastructure. Assggsiuch a behavior is the objective of data
possession verification protocols. In contrast vaimple integrity checks, which make sense
only with respect to a potentially defective yatisted server, verifying the data possession
remotely aims at detecting voluntary data destonstiby a remote peer. These primitives have
to be efficient: in particular, verifying the preme of these data remotely should not require
transferring them back in their entirety; it shouleither make it necessary to store the entire
data at the verifier.

3.1.Problem Statement

This section describes the requirements that shbaldnet by a self-organizing storage
verification protocol.

We consider a self-organizing storage applicationhich a peer, called the dataner,
replicates its data by storing them at severalgemiled datdolders The latter entities agree
to keep these data for a predefined period of timgotiated with the owner. Their behavior
might be evaluated through the adoption of a reutimeck through which the holder should be
periodically prompted to respond to a time-varigmillenge as a proof that it holds its promise.
Enforcing such a periodic verification of the datader has implications on the organizational
design, performance, and security of the storaggopol, which must fulfill requirements
reviewed under the following three sections.

3.1.1.0rganization

The self-organizing style of the P2P storage systrtails specific features of the verification
protocol. The protocol faces multiple requiremenggarding the large storage capacity of the
system and churn.

- Scalability: The verification protocol should scale to large wagions of data owners.
Verification information should be self-carried by data verifiers although such data
can be made available in the system in a self-@ganmanner, within a distributed-
hash-table (DHT) for instance. The latter alten@ais more robust since the information
essential to the protocol realization is relialiigred in the system rather than kept by a
single entity.

- Data redundancyThe usual technique to achieve data reliabilitieseon disseminating
the data in multiple copies to several peers (basesimple replication or erasure codes).
Such data redundancy is initially managed by thenesw however further data
rejuvenation may be initiated by the data ownepybother peers from the network. The
potential detection of data destruction followingeit verification may trigger a
restoration process of destroyed copies at newsp@&be churn out characterizing peers
may end in favor of the second option where sonegspkelp in securing the storage of
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other peers. The latter peers should also helpstniltiting the verification information
required to periodically check the presence of datae new holders.

Delegating data verificationSelf-organization addresses highly dynamic envirents
like P2P networks in which peers frequently joird deave the system: this assumption
implies the need for the owner to delegate datageoevaluation verifiers, which should
act as third parties ensuring a periodic evaluatibholders after his leave (see Figure
11). The need for scalability also pleads for disting this verification function, in
particular to distribute verification costs amonegveral entities. Last but not least,
ensuring fault tolerance means preventing the sy$tem presenting any single point of
failure: to this end, data verification should hstributed to multiple peers as much as

possible; the data should also be replicated tarenss availability, which can only be
maintained at a given level if it is possible toed storage faults.

Holder 1 Holder 2
<
A

\  — @ Datastorage
\ —> @ Verification delegation

A
[
[
I
[
[
[
[
\
-—> @ storage verification

|
|
|
|
|

% % Verifier 3

Verifier 1

Verifier 2

Figure 11 Verification protocol in 3 phases: (1) te owner requests storage from 2 holders, (2) ownédelegates
the verification of its data to 3 verifiers, and (3 the verifiers periodically check the behavior oholders.

3.1.2.Efficiency

The costs of verifying the proper storage of sorata dhould be considered for the two
parties that take part in the verification processnely the verifier and the holder.

- Storage overheadThe verifier must store a meta-information thatke®it possible to
generate a time-variant challenge based on thef pfoknowledge protocol mentioned
above for the verification of the stored data. Bime of this meta-information must be
reduced as much as possible even though the datg berified is very large. The
effectiveness of storage at the holder must alsoptienized. The holder should store the

minimum extra information in addition to the datemselves.
Communication overhead:he size of challenge response messages musttio zeol.

Still, the fact that the proof of knowledge hasbi® significantly smaller than the data
whose knowledge is proven should not significargiguce the security of the proof.
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- CPU usageResponse generation and response verificatiorctgply at the holder and
at the verifier should not be computationally exgea.

The use of a specific terminology (remote integrityecking [Deswarte et al. 2004],
demonstration of data possession [Filho and Ba2@€®], proofs of data possession [Ateniese
et al. 2007], or proofs of retrievability [JuelsdBiKaliski 2007]) has emphasized how the storage
and communication overhead requirements differ betwverification primitives for secure
remote storage and classical proof of knowledgéopods.

3.1.3.Threat model

The verification mechanism must address the folhgwpotential attacks which the data
storage protocol is exposed to:

- Detection of data destructiolhe destruction of data stored at a holder mustdbected
as soon as possible. Destruction may be due taigestegta corruption or to a faulty or
dishonest holder.

- Collusion-resistanceCollusion attacks aim at taking unfair advantadethe storage
application. Replica holders in particular may ad# so that only one of them stores
data, thereby defeating the purpose of replicatidheir sole profit.

- Denial-of-Service (DoS) preventionDoS attacks aim at disrupting the storage
application. Possible DoS attacks are:

0 Flooding attack: the holder may be flooded by verification requefitsm
dishonest verifiers, or from attackers that havebeen delegated by the owner.
The verifier may be as well subject to the samechit

0 Replay attack: a valid challenge or response message is maligioos
fraudulently repeated or delayed so as to dishgverification.

- Man-in-the-middle attack preventioithe attacker may pretend to be storing data to an
owner without using any local disk space. The &dasimply steps between the owner
and the actual holder and passes challenge-respmssages back and forth, leaving the
owner to believe the attacker is storing its dathen in fact another peer, the actual
holder, stores owner’s data. The replication majrabe disrupted with this attack: since
the owner may run the risk of storing the datania teplicas at the same holder.

The main security problem is the detection of ddgatruction combined with the risk of
collusion between holders. We propose security iixies to handle this problem based on
proofs of data possession and personalization mésha ([Caronni and Waldvogel 2003]).

Considering all these security and performancesgoa propose three different protocols: a
probabilistic verification protocol and two detemistic ones. We consider for the three
protocols an owner that wishes to store data geegeiadividual replicas for holders and that
delegates the verification to different peers (hapimethod of deterministic verification based
on the Diffie-Hellman problem is proposed in Append). Prevention means against DoS
attacks are presented in a refined version aftec barification protocols.

3.2.Probabilistic verification protocol

This section introduces a verification protocoltthows a peer to probabilistically verify
whether a data holder still possesses the datgreedto store for the originator using a secret
key and based on challenge-response messagesprotosol does not require the verifier to
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keep data or pre-computed challenges, nor the htddeerform time-consuming computations
to answer challenges.

3.2.1.Protocol description

The verification protocol is a three-party schemevhich the owner stores its data at the
holder, then delegates the verification of the waata to a verifier that will periodically check
whether the holder is still storing data.

The protocol requires two keys: the first one isci encrypt data (encryption key), and the
second one to check data possession (verificaggh k

The protocol manipulates a keyed function, denfitgdwhereKois verification secret key
only known from the owner, i.e., only the owman compute for a given fx(X). For instance,
fuomay be a symmetric encryption function or a keyad-way hash function or even a one-
way hash function with the message being concatdnaith the key.

Owner Holder
Encrypt data
Split encrypted data into chunks £} 1<
Storage Compute for eachin [1, n]: Vi=f (ci, i)
{Vi, 6} 1ci<n
s Store {Vj, G} 1<i<n
Owner Verifier
Delegation "
S L B Y Storen, fKo
Verifier Holder
Verification Choose a random valién [1, I
41
P G, Vi
Verify V _

Figure 12 Probabilistic verification protocol
The protocol comprises the following three phases Figure 12):

- Storage: The owner first personalizes the data that will dbered at the holder by
encrypting it concatenated to the identity of thelder using the encryption key.
Personalization prevents the collusion betweendnsldThe ownesplits the encrypted
data inton chunks £} 1<i<n, and then it computes for each chunk (along wilindex) its
image withfc,. The result is the setf=fxo(Ci, i)} 1<i<n (the size of one chunk must be
higher than the size of one generated verificatémnto be cost-productive). Finally, the
owner sends data chunks] <<, and the verifications tagsv{ } <<, for storage to the
holder.

- Delegation: The owner appoints a verifier for checking dataragje at the holder, and
informs it of the number of chunksstored at the holder and the functfpg with its key
Ko.

- Verification: the verifier randomly chooses a vaiua [1, n] and sends it to the holder
who responds with the corresponding coume(j). The verifierverifies if this couple is
a valid one, using the kd$p.

2 This message is not sent in clear, but encrypidtthe session key shared between the owner and th
verifier.
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In this protocol, the holdeproves that it is keeping a data segment for thaeowand
provides an evidence that attests of its origine verification process requires computational
resources consumed at the verifier, and additiostarage space together with some
computation at the prover. The extra storage ahthéer is the price to pay for a verification
process without data, or pre-computed informationesl at the verifier. Keys do not need to be
stored by the verifier if they can be generatedelasn a passphrase for instance. Such an
approach, or the use of a token, would be requioed storage application in which the owner
(or the verifier) may have completely crashed,ebgrosing any secret stored there.

3.2.2.Security evaluation

In the protocol, if the result of the verificatiois positive, then the verifielis
“probabilistically” assured that the holderssll storing the data. In reality, the verifienly
checks that the holdés keeping the chunk. Sincej is chosen randomy; the holderhas to
keep all chunks and their images to answer coyréztthallenges.

This section investigates how the probabilisticuratof the protocol makes it possible to
enforce some security. We are making the follovdaagumptions:

- The verifier is not in collusion with the holder.

- The verifier's random selection of indexes is uniipi.e., forn chunks, the probability to
pick any chunk id/n.

- Index selections are independent events.

- The holder removes a fracti@hof chunks from its storage; we temnthe misbehavior
rate of the holder.

- The verifier performs on average c¢ challenges; &n.

The probability that the holdesmnswers correctly to verifier's challenges all time is
described as:
p=(1-0°

The probability that the verifiatetects holder's misbehavior is givenm@yection
pdetection: 1- p

For a given probability of detection of misbehayidtr is possible to probabilistically
determine the average number of challenges thatvéhifier should perform to attain this
probability of detection. The number of challengesin be derived as follows:

C=|_|0gl{i(1'pdetectior)—|

The required number of challenges to acquire argprobability of detection is most of the
time not equal to 1. The verifier should therefohallenge the holdenultiple times.

Figure 13 shows how the number of challenggxreases with the probability of detection.
An appropriate value far can be chosen based on the misbehavior rate bbtder that can be
estimated thanks reputation computed from receetdntions. If the holddras bad reputation,
fewer challenges are needed to likely detect hsldrisbehavior. The opposite will be observed
if the holderhas good reputation; however, the owndr likely store more critical data at the
holderand the verifier will challenge it more frequenthus compensating the higher number

3 The selection of an indgxfor a challenge, has no impact on its probabititpe picked another time
for another challenge.
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of challenges required to detect a misbehaving ffeela misbehavior rate of 0.1, the required
number of challenges exceeds 50 to achieve a hajyapility of detection).
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Figure 13 Number of challenges required to achieve probability of detection of holder's misbehavior

In the proposed protocol, false negatives (i.erjfiation is positive when the holder
removes a given number of chunks) are possible,that occurrence can be reduced by
increasing the number of challengesFalse positives (i.e., verification is negativeen the
holderhas got all chunks) may occur and are associatddogimmunication losses. The latter
issue can be thwarted by usual measures like tt@nsenission of packets after a timeout.

While the use of a probabilistic approach mightsken as a weaker scheme, it should be
noted for instance that multimedia data, like d@igipictures or videos may support more
degradation for some chunks such as image dettaéls, for hunks with high-level description:
these data, which promise to be one major areaeninethe-field storage application will be
required, may therefore tolerate less stringentegtion mechanisms in exchange for more
performance, as it will be demonstrated in theofsihg section.

It is not a requirement for the verifier to be tad by the owner, only in the case where
function fx_ is a symmetric function. In this case, if the fieriis not trustworthy, it may

collude with the holder by divulging the verificati keyKo and thus the holder may answer
correctly to all verifiers appointed to it withohaving to keep data stored. However, if this
function fx is asymmetric (signature), the protocol does eojuire from the verifier to be

trusted by the owner, it just requires from it taspess the public key of the function. The
distribution of the verification task to severallwmateer peers mitigates the misbehavior of the
verifiers.

3.2.3.Performance evaluation

The following performance analysis shows that thebabilistic approach of the proposed
protocol allows data possession verification toléss expensive for devices with limited
resources. This approach indeed permits to tradee ssecurity, which can be measured
probabilistically, in exchange of better performanc

The suggested verification protocol consists of¢hphases, only two of them are considered
indispensable since the owner can be the verifitheodata (delegation phase is optional). The
first phase corresponds to plain data storage.vEnécation phase comprises authentication
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messages, then challenge-response messages. Ehoslyweonsider the verification part of the
protocol for our analysis.

The verifier is not required to keep the whole dataverification, it only has to keep the
verification keyKo. In counterpart, the holder keeps not only theadait some additional
information in the form of verification tags. Thénatlenge-response messages sent mainly
correspond tac data chunks and their verification tags. Tableuinmarizes the discussed
verification costs.

The probability of fault detection success increasith the number of chunksverified per
challenge sent by the verifier. However, the comication costs linearly increase with the
number of chunks challenged because the holdetchasnd all requested chunks with their
verification tags.

Table 1 Summary of resource usage consumed by theopabilistic verification protocol (variable n andm
respectively correspond to data size and the numbef chunks)

Storage overhead Computation complexity Communicén overhead
At holder O(n) o) (upstreamO(n/ir)
At verifier O(1) o(n/m) (upstream)O(1)

3.2.4.Countering additional attacks

The described verification protocol permits to detselfish holders that destroy the data
they have promised to store. However, the protatmhe is not able to defend against other
forms of misbehavior, such as denial of servicackt, man-in-the-middle attacks, or colluding
replica holders.

A flooding attack can be launched by the verifley,sending a large number of challenge
messages to a victim data holder in order to stawntil it is unusable or crashes. Although this
type of attack is unlikely to happen since the fiariperforms computational operations for
every challenge, it is possible to limit the numisérchallenges by imposing a quota on the
frequency of challenges. This solution is propoeflLillibridge et al. 2003]. Moreover, it is
possible to force the verifier to pay fees for gvehallenge it requests, for instance using a
micropayment scheme. An alternative approach igetprocate in storing data, thereby
performing symmetric verifications between the tpeers, like in [Caronni and Waldvogel
2003].

A holder can pretend to be storing data while &t faoxying in front of another data holder.
Then, the attacker simply passes data back and bmtween the originator and the holder,
making the data originator believe that it is tleadholder, and the data holder that it is the
originator of the data. This problem can be ad@wds/ having the indexfor each challenge
randomly chosen by both parties as suggested inrdhdom-read protocol presented in
[Caronni and Waldvogel 2003] in which both partiaedomly choose the offset of the block to
be checked.

When using replication mechanisms to support tlalahility of data, replica holders may
collude so that only one of them stores data, thedefeating the purpose of replication to their
sole profit. One way to counter this attack is toduce personalized replicas for each holder, as
described in [Caronni and Waldvogel 2003], by usamgencryption key (used to encrypt the
data) derived from the identity of the holder.
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3.3.Restricted deterministic verification protocol

This section presents a verification protocol lidws checking the presence of the whole
data at a remote peer without excessive overheaafyththe protocol implies that the data
checking supports only a limited number of verifica operations per verifier. The proposed
protocol relies on the unigueness of the solutibrthe interpolation polynomial problem
described in the following section. The subseqeations present the protocol operation and
its evaluation with respect to security and perfamge considerations.

3.3.1.Lagrange interpolation polynomial

The proposed protocol relies on the Lagrange iotatipn polynomial. This section
describes the polynomial interpolation problem #relLagrange solution.

For a given set ofnft1) data points o, Yo), (X1, Y1), ..., % Yn)} Where allx are different,
there is only one interpolation polynomR(.) of degree at mostthat satisfie$?(x)=y; for each
i O[O0, n].

The interpolation polynomial is computed using litsgrange form which is the linear
combination of Lagrange basis polynomials:

n

PG = )y x L)
i=0

having for eachi O [0, n]:

n

L =1
X —X]'

j=0

3.3.2.Protocol description

The verification protocol involves the owner of sodata, a potential holder of the data, and
a verifier that is assigned to periodically cheekadpresence at the holder. The protocol consists
of the following three phases (see Figure 14):

- Storage:Data are first personalized to the holder by th@ewThe data are then split
into n chunks £} 1<i<n, such that all chunks have the same EKif#he last chunk can be
padded). Each chunk is mapped to a numbeZ,ofwith a bijection, i.e., one-to-one
correspondence) where the sizepdd alsok. Chunks are sent to the holder for storage.

- Delegation:The owner generates a random numbérderivesm polynomials of degree
n: {Pj(.)} 15=m (the random numberis chosen such that the generated polynomialsliare a
of degreen). The polynomials are computed using Lagrangepotation. For eachiin
[1, m], the polynomialP;(.) is the solution of the interpolation problem givihe set of
n+1 points {(0, ri=HasH(r))} U{(i, ¢)}<i<n WhereHashis a pseudo-random one-way
function andHasH means that the functiadashis executed times. Finally, the owner
computesPj(n+1) for each in [1, m], and sends and{P;(n+1)}.4-m to the verifier. The
numberm corresponds to the maximum number of verificatiperations the verifier is
able to perform with the verification metadata reed from the owner.

- Verification: The verifier challenges the holder by sending adoam numberr;. The
random numbersr{=HasHh(r)}<-m are computed and periodically sent in the reverse
order (i.e., starting from,tor;). The holder derives the polynomR(.) using the points
obtained from the received random number and allstiored data chunks. The holder
may apply the Lagrange form to the interpolationypomial. Finally, the holder
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computes the poirR;(n+1) and sends the result to the verifier. The i&rifompares the
holder’s response to the stored value.

Owner Holder
Encrypt data
Split encrypted data intochunks £} 1<i<n
Storage such that; O Z, for eachiin [1, n]
{cit 1<i<n o
= Store {G}1<i<n
Owner Verifier
Generate a random numbel Z,
For eachj in [1, m], computeP;(n+1) such that:
Delegation| P, is a polynomial irZ, of degreen derived as
P;(0)=r; andPj(i) = ¢; for eachi in [1, n]
wherer; = HasH(r) F AP e |
Storer, {Pi(n+1)}1<m
Verifier Holder
g=HasH(r)
Verification DeriveP; as:P;(0)=g and
Pj(i) = ¢ for eachi in [1, n]
P R ComputeR= P,(n+1)
If R=P,(n+1) then “accept” else “reject”

Figure 14 Restricted deterministic verification praocol
3.3.3.Security evaluation

The proposed verification protocol relies on theglamge form of the interpolation
polynomial that shows the uniqueness of the polyabrBased on the data set of¥1) points
{(0, ri=HasH(r))} U{(i, ¢)}1<i<n, the interpolation polynomial is constructed. ®iradl points are
distinct, there is only one polynomial as soluti®n. construct the polynomial, the holder must
use all data points that include all the data ckumkhich means that the verification of the
stored data is deterministic. The generation offlsonse comprises the computation of a new
data point from the constructed polynomial. Sirttie point is derived from the interpolation
polynomial, it is then unique. The point is commhvéth a point computed in advance stored as
a security metadata at the verifier.

The holder should store all data chunks to be ableompute the unique response to the
verifier's challenge. The holder may store différéarms based on composed versions of data
chunks in order to accelerate the computation ef itlierpolated polynomial. These forms
characterize a polynomial with order so these forms have the same number and sizeas t
original data chunks. It is then still possibla¢oover data chunks from these forms.

3.3.4.Performance evaluation

The proposed protocol requires the verifier to keagata points of the same size as the data
chunks. Increasing allows expanding the verification duration of thatal stored, but at the
same time it raises the storage overhead at thievemhis increase can be compensated by
reducing the size of data chunks (snill However, very small-sized points may generate a
large number of false positives which means thathblder has more chances to guess the
response of the verifier's challenge without adfusioring data chunks. The valbeonstitutes
then a security parameter of the protocol that lshbe cared of.
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Tuning m makes it possible to achieve a tradeoff betweenattadability of the protocol
(number of verification reiteration) and the staramyverhead at the verifier (refer to Table 2).
The verifier is only able to perforrm verifications of the data storage at the holdemigh
value of the numbem permits the verifier to check the data presencesnoften; even if the
verifier must store a large set of data points. édeer, if some of the stored pre-computed
challenges are compromised (e.g., the holder maypute the reverse of a hash value), the
verifier is still able to check the data with tlemaining uncompromised values.

The owner should refresh the verifier metadata ftone to time if it wants the latter to
continue verifying the presence of the data attibkler. However, the generation of new
metadata information for verification requires npartating the data themselves; while this may
be valid if the owner simply performed a backupth@ligh he has to store the data
personalization applied to a given holder), in mgemeral storage cases, the owner has to
retrieve a copy of the data before being able toprde new challenges. Since this obligation
produces quite expensive communication costs, timber of pre-computed challengas
should be chosen as high as possible. The fordmioden of a high value afiis placed on the
verifier with an increased requirement regarding ttorage overhead. The storage of the
verification metadata can however be rendered spffcdent by relying on Bloom filters
[Bloom 1970] for instance. Another alternative falteviating the storage overhead at the
verifier is to store hash values of the verificatimetadata instead. Storage costs then become
quite modest (typically 128 to 160 bits). As dismib in [Ateniese et al. 2008], the storage
overhead is less problematic in practice. For exampss than 6MB of metadata make it
possible for the remote data to be checked evannifér 10 years.

The size of exchanged messages between the holdi¢ha verifier are unrelated to the size
of the data (they rather depend on the data chizek $\dditionally, the holder does not need to
store a large extra-storage other than the dathunks (some small information is needed e.g.,
the order of chunks).

Table 2 Summary of resource usage consumed by thestricted deterministic verification protocol
(variable n and m respectively correspond to the number of data chus and the number of pre-computed

challenges)
Storage overhea Computation complexity Communication overhead
At holder O(n) O(n) (upstream)D(1)
At verifier o(m) O(1) (upstreamO(1)

3.4.Deterministic verification protocol

The requirement of a cheap verification in termstoffage simply forbids the use of plain
message integrity codes as a protection measwrerifier peers are to submit an unlimited
number of challenges, since time-variant challengased on such primitives cannot be
constructed without the owner or without the verifstoring the entire data. This section
presents a secure and self-organizing verificgbiartocol exhibiting a low resource overhead.
This protocol was designed with scalability as aseatial objective: it enables generating an
unlimited number of verification challenges frone ttame small-sized security metadata.

The security of the storage scheme relies on thdnkas of specific problems in elliptic
curve cryptography. The protocol is also especiatiginal with respect to scalability: it both
enables data replication while preventing peerusadn, and delegation of data storage
verification to third parties.

The remainder of this section details the verifaatprotocol incrementally: essential
notions in elliptic curve cryptography and useddhamoblems are first introduced; two versions
of the security protocol are then described.
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3.4.1.Security background

The deterministic verification protocol relies dhiptic curve cryptography ([Koblitz 1987],
[Miller 1986]). The security of the protocol is leason two different hard problems. First, given
some required conditions, it is hard to find theesrof an elliptic curve. Furthermore, one of the
most common problems in elliptic curve cryptograjgyhe Elliptic Curve discrete logarithm
problem denoted by ECDLP.

Thanks to the hardness of these two problems,atexrdinistic verification protocol ensures
that the holder must use the whole data to comfh@eresponse for each challenge. In this
section, we formalize these two problems in orddutther describe the security primitives that
rely on them.

Elliptic Curves ovetz,

Let n be an odd composite square free integer and, letbe two integers itZ, such that
ged(4® + 27% n) = 1 (“gcd” means greatest common divisor).

An elliptic curveEx(a, b) over the rindz, is the set of the points,(y) O Z.XZ, satisfying the
equationy’ = x% + ax + b, together with the point at infinity denot&y.

Solving the order of elliptic curves

The order of an elliptic curve over the ridlgwheren=pqis defined in [Koyama et al. 1991]
asN, = lcm(#Ey(a, b), #E4(a, b)) (“lcm” for least common multiple, “#” means ordef ). N, is
the order of the curve, i.e., for aRy1 E.(a, b) and any integek, (kxN, + 1)P = P.

If (a=0andpo=qg=2mod 3) orl) = 0 andp=qg= 3 mod 4), the order d&.(a, b) is equal to
Nno=lcm(p+1, g+1). We will consider for the remainder of the pajie case whera= 0 andp =
g=2 mod 3. As proven in [Koyama et al. 1991], giW+ Icm(#E(a, b), #E,(a, b)) = lcm( +
1,q+ 1), solvingN, is computationally equivalent to factoring the qasite numben.

The elliptic curve discrete logarithm problem

ConsidelK a finite field andg(K) an elliptic curve defined ovét. ECDLP inK is defined as
given two element® andQ O K, find an integer, such thaf) = rP whenever such an integer
exists.

3.4.2.Protocol description: data-based version

The data, stored in the system, is uniquely mappeda numbed O N in some publicly
known way (for example, conversion from binary esggmtation into decimal representation). In
our context, the terms data file or data and thmbmrd are often used interchangeably. The
verification protocol consists of four phases (fégure 15): Setup, Storage, Delegation, and
Verification. The owner communicates the data ®ltblder at the storage phase and the meta-
information to the verifier at the delegation phasethe verification phase, the verifier checks
the holder’s possession of data remotely througlntaractive process. This process may be
executed an unlimited number of times.

- Setup:The phase is performed by the owner. From a cheseurity parametds(k > 512
bits), the owner generates two large primpemdq of sizek both congruent to 2 modulo
3, and computes their produtt pg. It then considers an elliptic curve over the rig
denoted byE,(0, b) whereb is an integer such that gtgl)=1, to compute a generatér
of Ex(0, b). The order oE,(0, b) is N, = Icm(p+1, g+1). The parametets, P, andn are
published and the ord@, is kept secret by the owner.
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- Storage:The owner stores its data at one or several tgldlera personalized form for
each holder. To this end, the owner encrypts dsitag a keyed functiofy (sis a secret
key known to the owner only) that takes in inpw¢ thata and the identity of the holder
and returns an identity-based encrypted versiodathd (we assume that peers are
uniquely identified in the system).

- Delegation: The owner generates meta-information to be usedthiey verifier for
checking the data possession at one holder. Tha-imfermation is a reduced-size digest
of the data stored at the holder and is computetl mgd’ mod N,)P O E.(0, b). This
meta-information is sent for storage to the verifie

- Verification: The verifier checks the presence of data at thdeholt generates a random
numberr and computes the poi@ = rP O E,(0, b) which is sent to the holder as a
challenge. Upon its reception, the holder compRtesd’ Q O E,(0, b) with the datal’ it
is storing. The prooR is sent to the verifier. With this proof, the Ve checks ifR is
equal torT, and decides if the holder’s proof is accepterkfmcted.

Setu| Owner

Generate two primgsandq of sizek: p, = 2 mod 3
Computen = pq

ComputeN, = lcm({+1,g+1)

Generate random integek n, gcdp, n)=1
computeP a generator dE,(0, b)

Public = , b, P), Secret =N,

Owner Holder

Computed'=fy(d)

Storage sendd’ d

v

Stored’

Owner Verifier
ComputeT = (d" mod N,)P
sendT T

Delegation

v

StoreT

Verifier Holder
Generate a random numbrer
ComputeQ =rP
Verification | SendQ Q

v

ComputeR=d'Q
SendR

If R=rT then “accept” else “reject”

Figure 15 Deterministic verification protocol: data-based version

With the presented security primitives, the verikeeps an extra-information (T) needed for
the verification that is twice the size of n (< 2#ich is smaller than the size of the stored data
(about 2Kb compared with 100Mb or 1Gb of data). ¥mification, the verifier has to compute
two point multiplications with a small random numbi contrast with the holder that has to
compute a point multiplication with the whole data.

3.4.3.Protocol description: chunk-based version

This section introduces an improved version of phatocol described above whereby the
computation complexity at the holder is reduced.

In this version, the data are split imtochunks, denoted {¢'1<i<m, and the verifier stores the
corresponding elliptic curve pointdi{=d';P} .<<m. We assume that the size of each data chunk
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is much larger thankdwherek is the security parameter that specifies the eizp andq,
because the verifier must keep less information the full data.

The owner proceeds in the setup phase like in t&eéqus version. It personalizes the data,
then splits the personalized data imiahunks of the same size (the last chunk is paddid
zeroes): §'} <i<m- At the delegation phase, the owner generatesuhe points I; = d'iP} 1<i<m
sent to the verifier. During the verification phadee verifier generates a random numband
a random seed (size ofc > 128 bits). Then, it send3=rP and the seedto the holder. Upon
reception, the holder generat@srandom numberscf i<i<m from the seed (it is possible to
generate the random numbersas' for eachi, or using a random number generator function).
Then, it computes the poiRR = Y14 Cd’;Q that is sent to the verifier. To decide whether a
holder’'s proof is accepted or rejected, the varifienerates the samma random numbers
{¢} 1<i<m from the seed and checks iR is equal ta (3 1<i<mCT;). The protocol is summarized in
Figure 16.

Owner Holder
Computed'=fy(d)
Storage| Splitd’ in mchunks: {d;} 1<i<m
send {d}} 1<i<m {d’ i} 1<icm
. Store {d’} 1ci<m
Owner Verifier
. Compute for eachin [1, m]: T;=(d’; modN,)P
Delegation send {Ti} 1<i<m {Ti} 1<i<m
Store {Ti} 1<i<m
Verifier Holder
Generate a random numbeaind seed
ComputeQ =rP
I Sendc, Q c, Q
Verification Generate §} 1<i<m from seec: Generate §} 1<i<m from seec:
ComputeR =34 Gd'iQ
P R SendR
If R=r(Y14nGT;) then “accept” else “reject”

Figure 16 Deterministic verification protocol: churk-based version

Compared with the data-based version of the detéstii protocol where the data is
considered as a whole, this new version makes dldehcomputan point multiplications of
the same elliptic curve point where the size ofdbalar is the size of the data chunk instead of
the full data. Also, the verifier has to kemypoints instead of one point in the previous versio
The number of chunk® is the ratio of tradeoff between the storage meglat the verifier and
the computation consumed at the holder (the masel corresponds to the previous version of
the protocol).

3.4.4.Security analysis

This section analyzes the completeness and thedsesas of the ECC based deterministic
protocol (more specifically the chunk-based versimte it is the generalized case) that are the
two essential properties of a proof of knowledgetqgrol [Menezes et al. 1996]: a protocol is
complete if, given an honest claimant and an honesifier, the protocol succeeds with
overwhelming probability, i.e., the verifier accgphe claimant’'s proof; a protocol is sound fif,
given a dishonest claimant, the protocol fails, the claimant’s proof is rejected by the verifier,
except with a small probability.
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Theorem 1- The proposed protocol is complete: if the verif@erd the holder correctly
follow the proposed protocol, the verifier alwaysepts the proof as valid.

Proof: Thanks to the commutative property of point miiitgtion in an elliptic curve, we
have for eachin [1, m]: d’;rP=rd’;P. Thus, the equatior. 1<« ¢d"itP =r(X1<<mCd’iP). O

Theorem 2-The proposed protocol is sound: if the claimargsdoot store the data, then the
verifier will not accept the proof as valid.

Proof: If the holder does not store the data churkg £, it may try first to collude with
other holders storing the same data. However,dpton is not feasible since data stored at
each holder is securely personalized during theagiophase. Sindgis a one-way function and
the keys is secret, no peer except the owner can retrieszetiginal datal from d'. The other
way to generate a correct response without stdtiegdata relies on only storingl'{P} 1<i<m
(which is much smaller than the full data size) estdevingr from the challengeP in order to
compute the correct response. Findirig hard based on ECDLP. The last option for tHddro
to cheat is to keepd{; modN,} 1<i<m instead ofd’ (whose size is very large). The holder cannot
computeN, based on the hardness of solving the ordeE (3, b). Thus, if the response is
correct then the holder keeps the data correatly.

3.4.5.Performance analysis

In the proposed protocol, challenge-response messaginly each consist of an elliptic
curve point inZ?. Message size is thus a function of the secudttol k (size of n=2K).
Reducing communication overhead then means dengetis security parameter.

The verification protocol requires the verifierdimre a set of elliptic curve points that allows
producing on demand challenges for the verificatibmally, the creation of proof and its
verification rely on point multiplication operatisn

The number of data chunkscan be used to fine tune the ratio between thragtarequired
at the verifier and the computation expected framholder: when increasing, the verifier is
required to keep more information for the verifioattask, but at the same time the holder is
required to perform one point multiplication opéatusing much smaller scalars.

Table 3 Summary of resource usage of the determirtis verification protocol (variable n andm
respectively correspond to data size and the numbeaf chunks)

Storage overhead Computation complexity Communicatin overhead
At holder O(n) O(n/m) (upstream(1)
At verifier O(m) o(1) (upstreamO(1)

3.4.6.Protocol refinement

The above verification protocols allow efficientgtecting data destruction by misbehaving
holders. However, both are still weak against seemuirity threats described in Section 3.1.3.
This section refines the security protocol to addrthese additional attacks. Every peer in the
framework is assumed to be uniquely identified bydentifier denoted biDp.

External DoS attacksAt each phase of the protocol, messages are ditdea with
common signature algorithms such as RSA. Therefaoh peer possesses a pair of public and
private keys PKp, SKq}.This authentication inherently prevents exterbanial of Service
(DoS) attacks whereby intruders generate some ifigodittacks against holders. Only
authorized verifiers are allowed to run the veadfion phase. In order to provide this security
restriction, during the delegation phase, the owmevides each verifier an enabling credential
for the verification phase. Therefore, verifiersngeate a signature for each message at the
verification phase and send this signature and ttreidentials together with the challenge
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message. Since the stored data are assumed tnbe, dhe cost of storage is assumed to be
much more expensive than the cost of verifying enagating a digital signature. Moreover,
thanks to this technique message integrity is pitegided.

Internal DoS attacksln addition to external DoS attacks, some autleakizerifiers might
also generate some flooding attacks against holttethis particular case, authentication is not
a direct solution since verifiers are authorizegadicipate to the communication. We thus first
propose to limit the number of verifiers that cdraltenge each holder. This number can be
predefined or negotiated in the storage phase ketwee owner and the holder based on the
capacity of the latter. We also propose to defitlerashold value for requests originating from
a verifier. Hence, the holder keeps a quota coufdereach authorized verifier that is
incremented at each new challenge. If this couateeeds the given threshold value during a
time interval, the verifier is not allowed to cradbe the holder and the challenge message is
automatically dropped.

Replay attacksReplay attacks whereby valid challenge messagesnaticiously repeated
or delayed so as to disrupt the verification prareealso taken into consideration. To cope with
this, the verifier only needs to send a newly gatest nonce within the challenge message.
Thanks to this well-known technique, the holderl wi¢ able to automatically detect replay
attacks.

Man-in-the-middle attackThe holder may not be the actual holder of tha.datmay play
the owner pretending to store the data but in lf@cperforming a man-in-the-middle attack to
step between the owner and the actual data holdeprevent this type of attack, the actual
holder H may, instead of sending the respdRss the answer to the verifier's challenge, send
the following messagéiash(R || IDy); whereHashis a pseudo-random function andyI3 the
identifier of the holder (“||” means concatenatwith elliptic curve points mapped to numbers).
The attacker is not able to recreate such a resppuating its own identity. And finally, the
verifier is able to check the validity of the regpe.

3.5.Existing verification protocols

The security of distributed storage applications baen increasingly addressed in recent
years, which has resulted in various approach#tetdesign of storage verification primitives.

The literature distinguishes two main categoriesaffication schemes: probabilistic ones
that rely on the random checking of portions ofediodata, and deterministic ones that check
the conservation of a remote data in a singlepaljh potentially more expensive operation.
Additionally, some schemes may authorize only anded number of verification operations
conducted over the remote storage (although therityapf schemes are designed to overcome
this limitation).

Memory checkingA potential premise of probabilistic verificationteemes originates from
memory checking protocols. A memory checker aimdeaécting any error in the behavior of
an unreliable data structure while performing teeris operations. The checker steps between
the user and the data structure. It receives thetinser sequence of “store” and “retrieve”
operations over data symbols that are stored atd#te structure. The checker checks the
correctness of the output sequence from the steiatsing its reliable memory (noninvasive
checker) or the data structure (invasive checl@that any error in the output operation will be
detected by the checker with high probability. Bium et al. 1994], the checker stores hash
values of the user data symbols at its reliable amgmiWhenever the user requests to store or
retrieve a symbol, the checker computes the hastheofresponse of the data structure and
compares it with the hash value stored, and it tgsdidne stored hash value if the user requested




a7

to store a symbol. The job of the memory checketoisecover and to check responses
originating from an unreliable memory, not to chélek correctness of the whole stored data.
With the checker, it is possible to detect corrmptof one symbol (usually one bit) per user
operation.

Authenticator.The work of [Naor and Rothblum 2005] better comprats the remote data
possession problem. It extends the memory checkelehby making the verifier checks the
consistency of the entire document in encoded merisi order to detect if the document has
been corrupted beyond recovery. The authenticatmwdes a large document that will be stored
at the unreliable memory and constructs a smadjefiprint that will be stored at the reliable
memory. Using the fingerprint, the authenticatorifies whether from the encoding it is
possible to recover the document without actuakgadling it. The authors of [Naor and
Rothblum 2005] propose a construction of the autbator where there is a public encoding of
the document consisting of index tags of this fotrfs.{i 0 y;) for each encoded value kjt
havingfs.ega pseudorandom function witleedtaken as secret encoding. The authenticator is
repeatedly used to verify for a selection of randodices if the tags correspond to the encoding
values. The detection of document corruption isntipeobabilistic but improved with the
encoding process of the document. Moreover, thayguaemplexity is proportional to the
number of indices requested.

Provable data possessiofihe PDP (Provable Data Possession) scheme in gseret al.
2007] improves the authenticator model by presgrdimew form of fingerprints=(hashv|ji) .
gyi)d modN, wherehashis a one-way functiorny a secret random numbéd,an RSA modulus

with d being a signature key, angl a generator of the cyclic group @, . With such
homomorphic verifiable tags, any number of tagssehorandomly can be compressed into just
one value by far smaller in size than the entitevgkich means that communication complexity
is independent of the number of indices requestedgrification.

Proof of retrievability. The POR protocol (Proof of Retrievability) in [Jsehnd Kaliski
2007] explicitly expresses the question of datavery in the authenticator problem: if the
unreliable data passes the verification, the usexble to recover the original data with high
probability. The protocol is based on verificatiof sentinels which are random values
independent of the owner’s data. These sentinelgliaguised among owner’s data blocks. The
verification is probabilistic with the number ofrifecation operations allowed being limited to
the number of sentinels.

Compact proofs of retrievabilityShacham and Waters 2008] improves the POR protncol
considering compact tags (comparable to PDP) thataasociated with each data chunk
having the following formt; = ay; + s wherea ands are random numbers. The verifier requests
random chunks from the unreliable memory and obtainoompact form of the chunks and their
associated tags such that it is able to checkdheatness of these tags just usingnd the set
{s1, &, ...}that are kept secret.

Remote integrity checRemote Integrity Check of [Chang and Xu 2008] alieas the issue
of data recovery and rather focuses on the repetitrification of the integrity of the very data.
The authors described several schemes some oftibam hybrid construction of the existing
schemes that fulfill the later requirement. Fortanse, the unreliable memory may store the
data along with a signature of the data based dactable signature schemes. With these
schemes, it is possible to derive the signatura dfunk from the signature of the whole data,
thus allowing the unreliable memory to compute shlgnature of any chunk requested by the
verifier.
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Data chunk recoveryThe majority of the probabilistic verification seches require the
recovery of one or multiple (in plain or compactedn) data chunks. For example, in the
solution of [Lillibridge et al. 2003], the owner piedically challenges its holders by requesting
a block out of the stored data. The response iskeloeby comparing it with the valid block
stored at the owner’s disk space. Another approaahg Merkle trees is proposed by Wagner
and reported in [Golle at al. 2002]. The data statthe holder is expanded with a Merkle hash
tree on data chunks and the root of the tree i$ lgphe verifier. It is not required from the
verifier to store the data, on the contrary of ljbiidge et al. 2003]. The verification process
checks the possession of one data chunk choseoméntly the verifier that requests also a full
path in the hash tree from the root to this randbomk.

Erasure-correcting codedcrasure-correcting codes are for great interestpfobabilistic
verification protocols, since they improve the pmbllity of data recovery in case the
probabilistic approach does not detect the destruaf some parts of the stored data. The
scheme proposed in [Schwarz and Miller 2006] rebesalgebraic signatures. The verifier
requests algebraic signatures of data blocks sttrédlders, and then compares the parity of
these signatures with the signature of the palaghs stored at holders too. The main drawback
of the approach is that if the parity blocks doesmatch, it is difficult (depends on the number
of used parity blocks) and computationally expeasovrecognize the faulty holder.

Incremental cryptographyFirst step toward a solution to the deterministarification
problem comes from incremental cryptographic athans that detect changes made to a
document using a tag, a small secret stored aliablee memory that relates to the complete
stored document and that is quickly updatable éf tker makes modifications. [Bellare et al.
1995] proposes several incremental schemes wheyetatly is either an XORed sum of
randomized document symbols or a leaf in a seasghds a result of message authentication
algorithm applied to each symbol. These schemegide@aamper-proof security of the user
document in its entirety; although they requireorexing the whole data which is not practical
for remote data verification because of the higmicwinication overhead.

Deterministic remote integrity checkhe first solution described in [Deswarte et al0£)0
allows the checking of the integrity of the remdia, with low storage and communication
overhead. It requires pre-computed results of ehglts to be stored at the verifier, where a
challenge corresponds to the hashing of the dataatenated with a random number. The
protocol requires small storage at the verifiet, they allow only a fixed number of challenges
to be performed. Another simple deterministic approwith unlimited number of challenges is
proposed in [Caronni and Waldvogel 2003] wherevdfier like the holder is storing the data.
In this approach, the holder has to send the MAQIaih as the response to the challenge
message. The verifier sends a fresh nonce (a umigdeandomly chosen value) as the key for
the message authentication code: this is to pretertiolder peer from storing only the result of
the hashing of the data.

Storage enforcing commitmeiihe SEC (Storage Enforcing Commitment) scheme oil¢G
at al. 2002] aims at allowing the verifier to chegkether the data holder is storing the data
with storage overhead and communication complekigy are independent of the length of the
data. Their deterministic verification approachaue following tags that are kept at the holder
along with the dataPK=(¢", gxz, gx3, ..., ") wherePK is the public key (stored at the holder)
andx is the secret key (stored at the verifier). Thgstare independent of the stored data, but
their number is equal to two times the number @l ddounks. The verifier chooses a random
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value that will be used to shift the indexes ofstag be associated with the data chunks when
constructing the response by the holder.

Table 4 A comparison of existing verification proteols (variablen and m respectively correspond to data
size and the number of chunks)

Efficiency
Storage at Communication
Detection Delegation verifier CPU at holder overhead
[Juels and Kaliski| Probabilistic O(1) hash
2007]: POR Bounded No o) transformation o)
[Blum et al. 1994]:| Probabilistic O(n/m) chunk
Memory checkerl Unbounded No O(m) fetching O(n/m
[Naor and Rothblum Probabilistic O(n/m) chunk
2005]: Authenticato| Unbounde No o(1) fetching O(n/m)
eriese ol 207} D0 | possie | o | 00 | o)
[Shacham and Waters Probabilistic O(n/m)
2008] | Unbounded No O(1) exponentiation o(1)
[Chang and Xu 2008] S O(log(n))
based on redactable Probabilistic Possible 0(1) signature O(log(n))
signatures Unbounded construction
[Chang and Xu 2008]{ Probabilistic O(n/m)
RSAh solution| Unbounded No o(1) exponentiation o(1)
[Lillibridge et al. 2003]| Propabilistic No o) O(1) simple oQ)
Unbounde: comparisol
Wagner in [Golle at al] Probabilistic . O(log(n)) hash
2002] | Unbounded Possible o(1) transformation O(log(n)
[Schwarz and Miller| Probabilistic Possible o(1) s(i)(r?gtz)re o(1)
2006] | Unbounded va?idation
Our probabilistic| Probabilistic O(n/m) chunk
i solution | Unbounded Yes o(1) (fe;r(;)hing O(n/m
[Deswarte et al. 2004]; A
Deterministic O(n) hash
pre-computed Bounded No o) transformation o)
challenges|
, o O(n)
Our polynomial-based Deterministic . .
deterministic solution  Bounded Possible o) irr:t(zehrgglgtligln o)
[Bellare et al. 1995]; Deterministic
C:;g:g;ggtha; Unbounded No 0(1) O(n) fetching O(n)
[Caronni and| Deterministic O(n) hash
Waldvogel 200 | Unbounde No o) transformatio o(1)
[Golle at al. 2002]: SEG Reterministic No o(1) expgr(]r;’rr]’t‘?atio o(1)
[Deswarte et al. 2004], N
[Filho and Barreto| DS:}%LTQ(;S;AC Possible 0(1) ex o(r?c(ar;l)tiation o(1)
2006 RSA solutiol P
[Sebé etal. 2007) DCMINSIC | possipie om) expgr(]’é’r?;?ation oa)
Our ECC-based Deterministic O(n/m) point
deterministic solution Unbounded Yes O(m) multiplication o(1)
Our DH-based R O(n) operations
deterministic solution Deterministic Yes 0(1) of O(log(n))
Unbounded
(Appendix A) exponentiation

Homomorphic hash functionghe second solution described in [Deswarte et @04p
requires little storage at the verifier side andadditional storage overhead at the holder side;
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yet makes it possible to generate an unlimited remnab challenges. The proposed solution
(inspired from RSA) has been also proposed by Filind Barreto in [Filho and Barreto 2006].
It makes use of a key-based homomorphic hash famé¢ti A construction ofH is also
presented asl(m)=g™ modN whereN is an RSA modulus and such that the size of thesages

m is larger than the size df. In each challenge of this solution, a nonce isegeted by the
verifier which the prover combines with the datingdd to prove the freshness of the answer.
The prover’s response will be compared by the egrifvith a value computed ovét(data)
only, since the secret key of the verifier allowe following operationd for data, and for
nonce):H(d + r) = H(d) x H(r). The exponentiation operation used in the RSAtEm makes
the whole data as an exponent. To reduce the camgptiine of verification, Sebé et al. in
[Sebé et al. 2007] propose to trade off the comgutime required at the prover against the
storage required at the verifier. The data is $pl&a numbem of chunks I} 1<<m, the verifier
holds {H(d)} 1<i<m and asks the prover to compute a sum functiomefdata chunksd} 1<i<m
and m random numbersr{ 1<m generated from a new seed handed by the verifieevfery
challenge. Here again, the secret key kept byénidier allows this operationy 1<i<m H(d; +
rN= Yi«mH(d) x H(r;). The indexm is the ratio of tradeoff between the storage Kppthe
verifier and the computation performed by the prowirthermore, the basic solution can be
still improved as described in [Chang and Xu 2008jpugh the verification method is
probabilistic. The holder will be storing tagstof "™ wheres is a random number kept secret

by the verifier. The holder periodically construagempact forms of the data chunks and
corresponding tags using time-variant challengée sgtthe verifier. The authors of [Chang and
Xu 2008] argue that this solution achieves a gaarfiopmance.

Delegating verificationThe authenticator and the memory checker perfomificegions on
behalf of the user; though they are consideredriestetd entities within the user’s platform.
None of the presented schemes considers distriptii@ verification task to other untrusted
peers; they instead rely on the sole data ownpetform such verifications. In a P2P setting, it
is important that the owner delegates the verificato other peers in the network in order to
tolerate the intermittent connection of peers arehahe fact that a single point of verification
constitutes a single point of failure. Some of $hbemes presented above may allow delegating
verification provided that the verifier is not dtay any secret information because it may
otherwise collude with the holder. Additionally, ethamortized storage overhead and
communication complexity should be minimized foistipurpose. To our knowledge, our
proposed verification protocols are the first wewksuggest delegating the verification task to
multiple peers selected and appointed by the dateeo

The main characteristics of the existing verifioatiprotocols seen in this section are
summarized in Table 4.

3.6.Summary

This chapter presented three verification prototiwds satisfy the performance, and security
requirements of self-organizing storage applicationith different levels. The security
mechanisms which were developed in this paper niakessible to verify whether a data
storing peer that responds to a challenge stilsggses some data as it claims, and without
sacrificing security for performance. This verificm can also be delegated to third party
verifiers, thereby fulfilling an essential archite@l requirement of self-organizing storage.

Assessing the actual state of storage in such plicagon represents the first step towards
efficiently reacting to misbehavior: active replioa strategies, whereof we have presented




51

how we can achieve in a self-organized form, cabuk based on such evaluations. Reactive
replication strategies can be also envisaged awilded in the next Chapter that particularly

suggest that generation of new data copies doesequoire the participation of the data owner.

Cooperation incentives may also benefit from peafumtions. Stimulating peer cooperation is
however more complex than assessing their instantencooperation with the execution of a
challenge-response protocol. The use of a cooperatimulation scheme should ultimately

make it possible to detect and isolate selfish mradicious peers. In Chapter 5, we suggest
reputation-based and remuneration-based cooperati@ntive mechanisms that both rely on

the verification primitive in having guasi-punctualevaluation of peer behavior, and thus we
argue that they are better customized to the R#Rgst problem than the existing literature on
cooperation incentives.

3.7.Relevant publication

1. Nouha Oualha and Yves Roudier. Securing ad hocaggoithrough probabilistic
cooperation assessment. 3rd Workshop on CryptogrfaptAd hoc Networks, July 8th,
2007, Wroclaw, Poland. Electronic Notes in theaatcomputer science, Volume 192,
N°2, May 26, 2008, pp 17-29.

2. Nouha Oualha, Melek Onen, and Yves Roudier. A SgcWProtocol for Self-
Organizing Data Storage. 23rd International Infdaiora Security Conference (IFIP
SEC 2008), Milan, Italy, September 2008.
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Chapter 4

Secure P2P data storage and maintenance

Data possession verification protocols allow thefiex to detect (either deterministically or
probabilistically) whether the holder destroyedadafo ensure data security, the detection of
data destruction should trigger regeneration of\a oopy the data at another holder in order to
maintain a high (or at least a minimum) replicatiate. This task cannot be solely tackled by
the owner, since it does not often participatehi@ verification process. Therefore, the task
should be conferred to the other participants & \hrification process: verifiers and holders
should then cooperate in order to regenerate ada¢avreplica that will be stored at a volunteer
peer. This regenerated replica should be persauhbnch that personalization information is
opaque to the new holder; however, the data shoodde passed through a third party or a
verifier because then it is transmitted one unrssrggime.

In this chapter, we introduce a new method thaesebn the proposed deterministic data
possession verification protocol described in thectin 3.4 and that additionally allows
verifiers and holders to regenerate new data @plaven if the owner is absent (i.e., offline);
though the method can be also applied to the pilidtabverification protocol in an analogous
way. The novelty of the method is that it allowgearerating a replica with the help of verifiers
and holders present in the network, in additiopedorming personalization of the generated
replica on the fly without the need of making tlaadtransit via a verifier peer.

We will first review some existing techniques thady be used to realize the maintenance of
the stored data with reliability, security and s@ifjanization as essential objectives. Then, we
will describe a new data storage and maintenarmegnl that is resilient to several attacks that
may pose a threat to the well operation of suclopm.

4.1.Threat model

The different attacks the P2P data storage andtemgince mechanism is exposed to are
detailed in Section 3.1.3; there are also new kafdkreats related to the rejuvenation process:

- Denial-of-Service (DoS) attackd4alicious verifiers may flood the network with ussé
rejuvenation messages. In order to prevent thatlgtia threshold’ of honest verifiers is
defined that must detect a storage fault beforeigsting the generation of a new data
replica.

- Data poisoning:during the repair phase, holders may cheat byopaig a bogus data
rejuvenation. Verifiers may also play a part in stoacting such bogus data. These verifiers
may construct bogus metadata associated with thehokler that stores in its turn a bogus
data; thus the malicious holder goes undetectatdfionest verifiers.

4.2.An overview of existing approaches

A storage mechanism consists in mainly two phadeshware data storage, whereby the
owner stores some data at one peer, and datacetiofi, whereby it verifies that the data is
actually stored. However, in order to discuss h# tequirements described above and to
address all above threats, we further refine theage service into five sequential phases (see
Figure 17): during theselection phasepotential holders of the data are elected bydhe
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owner who later on stores its data at these holdiersg thestorage phaseThe owner then
appoints verifiers for its remote data during dedegation phasand these verifiers periodically
check the availability and integrity of the storéata during theverification phaseWhenever
these verifiers detect any data destruction oruption, therepair phases activated, in which
the verifiers generate a new copy of the data with help of the remaining holders. These
phases are described below in more detail.

4.2.1.Selection

Selection is the process through which peers tieadsked to store data are elected. The goal
of the selection phase is to choose a set of pbatscan maintain data availability while
consuming minimal bandwidth. There are two posstielehniques for holder selection. A
discriminatory selectiomletermines specific peers chosen such that thésfyssome constraint
(for example, they exhibit a correct behavior ascdbed in [Dingledine 2000]) or such that
they share similar characteristics with the owrnke kheir on-line availability, or dedicated
bandwidth (as illustrated in [Toka and MichiardiO8)). In contrast,random selectionis
generally used for its simplicity since it is lesephisticated and since it consumes less
bandwidth per peer. TotalRecall [Bhagwan et al. 208nd our P2P storage cooperation
incentives (which will be described in the next @tea 5) rely on a distributed-hash-table
(DHT) to randomly select data holders. The selecigsorealized by randomly choosing a value
from the DHT address space and routing to thatevaldle claim that the random selection
mitigates some type of pre-set collusion betweesdatolders (see next Chapter 5). Similarly,
[Godfrey et al. 2006] analyzes peer selection esfias and proves the positive effects of
randomization through the study of a stochastic ehad a P2P system under churn. After
holders have been selected, the owner can direatitact them for data storage. To mitigate the
problem of peers having multiple identities astfigscribed as a Sybil attack in [Douceur
2002], peers joining the system may pay with comomal, bandwidth or storage abilities,
such as for example crypto-puzzles in [Vishnumuntiyal. 2003] (the reader may refer to
[Levine et al. 2006] for an exhaustive survey afimter techniques to the Sybil attack).

4.2.2.Storage

Once peers which will store the data have beertseldy the owner, the latter should send
the data to these potential holders. Data avaiitalbin be ensured either by implementing
some form of redundant storage, through eithefa&ipdn or erasure coding. With replication, a
simple copy of the data is distributed to each ciete peer. With erasure coding, a data is
instead divided into several blocks and additiobldcks are generated to ensure data
reconstruction as soon as a given number of blackgetrieved. Replication, which has been
mostly used in DHTs, more seriously increases ttorage overhead and maintenance
bandwidth without a comparable increase in faukremce. In contrast, erasure codes offer a
better balance between the storage overhead ahdola@uance achieved. Many storage systems
like Wuald”, AllMyData Tahoé’, and TotalRecall [Bhagwan et al. 2004] rely on Haker.
Erasure codes are more complex than replicationiramarticular, the maintenance of coded
data blocks introduces additional computationatafce it requires performing the coding
yet again. Communication costs are also needegtriewe a minimum number of coded blocks
from several holders. A tradeoff between storaggiirement and data maintenance must be
determined when considering the use of erasurescodeeplication: [Weatherspoon et al.

4 http://wua.la/en/home.html
“S http://allmydata.org/
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2005] for instance describes how quantitative satimh might help in doing so. Quite opposite
results in [Courtes 2007] suggest with analytic eledhat simple replication may be less
detrimental than erasure codes with respect to da@endability in several scenarios.
Moreover, in the case of replication, since the sizthe data can be very large, holders may not
cooperate and cheat on storing the data. They re&ty ollude and ensure that only one holder
is storing the data for all the other selected oBbeda personalization has been introduced as a
solution to this threat: the owner generates alsiagd different replicate of the data for each
holder and ensures that the response to the cbelldaring the verification phase is also
different (e.g., see Section 3.4 of Chapter 3)sTjpe of collusion may also arise with erasure
coding even though it becomes problematic onlief number of colluding holders exceeds the
number of original data blocks.

4.2.3.Delegation

As previously described, the storage mechanismldhensure that the data is continuously
available and that holders are rightly claimingbi storing the data assigned to them. The
verification phase relies on specific challenggoese protocols that achieve remote data
integrity verification. P2P networks being very dymic, the owner cannot be assumed to be
always online, in particular if the storage senigeased for backup purposes. At times when the
owner is not present in the network, data verificatshould still be ensured by the owner’s
delegates, that isyerifiers The distribution of that verification also impes/ performance
through load balancing.

4.2.4 Verification

P2P storage systems generally use timeouts/hetrtioedetect peer failures. A new type of
challenge-response protocol has been proposedlte tthe problem of remotely proving the
integrity of some data stored by a holder (seei@e&5 of Chapter 3). Even though these new
cryptographic primitives prevent the generationcofrect responses, a cheating holder may
simply not reply a verifier's challenge thereby tpraling to be offline or crashed.
Distinguishing permanent failures, malicious or,rfodbm transient ones, in which case the
holder may return with the data intact after someet is difficult. This is generally handled
through the use of grace periodduring which the verifier waits for challenges ® &nswered
before declaring the holder as faulty.

4.2.5.Repair

The repair phase can be triggered in active ortikeamode. Active repair can be performed
in a regular-basis; though such operation may Migeriinsufficient or expensive entailing
considerable both storage and bandwidth overheaduBe its periodicity is generally not
tailored to the actual status of the stored datath@ other hand, with reactive repair, detecting
that one of the holders has cheated and does oret thte data anymore should trigger a data
repair operation in order to ensure data availgbilihe verifier in charge should select another
peer to perform the required operations to stoeedata and to generate the corresponding
security metadata. Given the dynamicity of P2P pédts; such operations should not rely on
the presence of the owner. Additionally, the coapee behavior of the peers participating in
the repair operations should be stimulated. Thevexy may be triggered almost immediately
after the detection of a cheating or delayed hol8enulation results of [Bhagwan et al. 2004]
demonstrate that delayed repair (lazy repair) isengdficient in terms of data availability and
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overhead costs tradeoff than immediate repair (eagmir) for a large data size and a highly
dynamic system. In Section 4.3, we propose an toahpdel that studies the periodicity of the

repair phase.

\4

Holder selection

y

Data storag

y

Verification delegation

y

Periodic data verification

Data
destroved

Data repair

Figure 17 Data storage and maintenance phases

4.3.An erasure coding based data storage and maintenamgrotocol

This section presents a new data storage and mainte protocol for P2P storage systems.
The proposed protocol uses the verification prdtotooduced in Section 3.4 of Chapter 3. To
our knowledge, such verification protocol is thatfito suggest distributing the task of verifying
the remote data to multiple untrusted peers sealefitan the network. The security of the
protocol relies on the hardness of two problemsaated with the elliptic curve cryptography
(defined in Section 3.4.1). However, the deternimigerification protocol does not instantiate
a holder selection strategy, and specially doessnggest any repair method for the destroyed
data that have been detected. The proposed soliltaanwill be described in the following
integrates such method.

Additionally, the following protocol opts for erasucoding rather than replication (that is
rather suggested in Section 3.4) for better stokagsus reliability tradeoff. It employs some
type of erasure coding scheme, the random linemues coding [Acedki et al. 2005]. With
such data coding, the entries of the generatingixaftthe encoded data are chosen randomly.

4.3.1.Description

The description of the data storage and maintengratecol concentrates on the four phases
discussed in the previous section: storage (Fidi¥e delegation (Figure 19), verification




56

(Figure 20), and repair (Figure 21) phases. Thectieh phase may however rely on a random
selection.

In the following, the protocol is described phagghbase:

Storage: As discussed in the previous section, data habe tstored at multiple peers in
order to ensure data availability and reliabili§ecure data storage with the simple
replication technique has been proposed and eealuat3.4.5. Since the use of erasure
coding technique provides the same level of rdltghas replication but with much lower
storage requirements at holders, a new storage anisth based on erasure codes is
proposed. At this phase, the dBtés first divided intok blocks {d} 1<i<««. These blocks are
then encoded to produéem coded blocks K} 1<i<«m based on the generating mat@x
defined inZ as:

o~

wherel, denotes thé&xk identity matrix andA denotes anxk random matrix irZ. Each
coded blocky, is generated using the following linear operations:

k
bi = Z ai_j X d]
j=1

where they; ; is an entry ofG at thei™ row andj™ column. The coded blodk is finally
sent by the owner tone distinct holder that is named ffeholder.

1) Owner: divideD into k blocks {d} 1<«
2) Owner: generate random numberZifw; ;}1<i<k+m1<j<k
3) for each Ei<k+m
Owner: computie = Y¥_; a;; X d;
4) for each ¥i<k+m
Owner- i holder:b,
5) i" holder: keegh,

Figure 18 Storage phase

Delegation & verification: These two phases integrate the solution from @e&i4 of
Chapter 3 whereby the metadata is computed usengdtied block instead of the whole
data. This verification only guarantees the stom@fgene block and therefore considered
as partial. The delegation of verification uses pactic elliptic curve (defined in
[Koyama et al. 1991]) such that the order of theveus kept secret by the owner. The
owner delegates the task of verifying one codedkito a numbew of verifiers. The
verifier assigned to thid holderreceives from the owner a metadata informafiosuch
that Ti=b;.P, whereb; is an integer that maps to the coded block stor¢ideaholder, and
P is a generator of the elliptic curve. Based on sodtadata, the verifier is able to
periodically check whether the holder stores blbckndeed, it first sends a challenge
messageQ=r.P to the holder where is a freshly generated random number. Upon
reception of the challenge, the holder compuReb,.P and sends the product to the
verifier. The verifier checks whether the equaliffi=R holds. If the latter equality is not
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met, the verifier detects that the block has beérerecorrupted or destroyed by the
holder

1) Owner: generate a specific elliptic curve (refeBttion 3.4.1)
2) for each ¥i<k+m
Owner: compufg=b;.P
3) for each ¥i<k+m
for each ¥j<v
Owner verifier: T;

4) verifier: keepT;

Figure 19 Delegation phase

In reaction, this event should trigger the generatif a new block to replace the lost
one. This operation is performed in the next phase.

1) Verifier: generate a random numtser
2) Verifier: computeQ=r.P
3) Verifier  i™holder:Q
4) " holder: comput&=b..Q
5) i"holder - Verifier: R
6) Verifier: Check ifr.T;=R?
Ifr. T#R launch a repair phase

Figure 20 Verification phase

Repair: To activate this phase, a fraction of verifiersigiesd to a given holder
consisting of at lea® peers has to detect the destruction of the blamedtat a holder.
They first select a random key altogether (e.g, Kby is the XORed sum of the random
numbers chosen by verifiers). The random key igl tseselect a new holder randomly.
The new block is generated based on a coding éperaverk blocks. The coding
operation is executed by the new holder, who reswerified blocks P} 1<« from a
randomly selected set of the remaining holders. Vidhdiers also agree on a seethat
will be sent to the new holder. The seed can belgimomputed as a sum of random
numbers each one of them chosen by each verifiex.sEed allows to generate random

coefficients £} i<« The new holder then computes the new blddh Z as follows:
k

b = chxbtl

=1

The new generated block can be written as a ligeanbination of the original data
blocks. Indeed, since each block transmitted by lioéders participating in the
regeneration process can be written as a combimatithe original data blocks, then:

k k k

b’=chxbtl=chx Z“%J’Xd}

=1 =1 ]=1

Thus,
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As a result, the generated block is coded basetherandom linear erasure coding
scheme. [Acedsski et al. 2005] demonstrates that &l sub-matrix of a random matrix
is invertible with a high probability for a largéeld size; thus the property of erasure
coding is still provided by the new block. Moreavtre new block is distinct from the
lost block as well as from the remaining blockgestioin the system. The indexes of the
holders involved in the redundant block generatimtess along with the sesdnust be
stored by the verifiers then handed out to the owneen he is available again, thus
allowing it to update the generating matfixof the erasure codedf the blockb; has
been destroyed, the update only affects'firew of the matrix: the new row is defined as
(@1, ., a’; ) where for eachin [1, K]:

k

! —
ayj = z € X gy,

=1
Each verifier assigned to the revoked holder kéesp®le as a verifier for the new holder.
However, it requires new metadata informatidnfor the new coded block that is
computed as a linear combination over the metadé&iemation stored at other verifiers
(responsible of the holders that have been invoindgte block generation) and using the

same set of coefficients:
k

T' = zcletl

=1

The new metadata corresponds to the new blbcktored at the new holder; this is
realized owing to the commutativity properties tifpec curves ([Koblitz 1987], [Miller
1986]):

k k

T = Z o X T, = E(Q X by,).P = b'.P
=1

=1

1) Verifiers: generate a seed

2) Verifiers: seleck random holders

3) Verifiers - new holders, {b;} 15«

4) Newholder: generate random coefficients {<i«
5) New holder: computé’ = ¥, ¢; X by,

6) New holder: keefy

@)

1) Verifiers— new holder’s verifierss, {T;} 1<«

2) New holder’s verifiers: generate random coefficseft} 1<
3) New holder’s verifiers: comput® = ¥, ¢; X Ty,

4) New holder’s verifiers: keejp’

(b)

Figure 21 Repair phase: (a) construction of a newoded block and (b) construction of the correspondig

metadata.
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4.3.2.Security evaluation

This section analyses the security of the propatsd storage and maintenance protocol
with respect to the attacks discussed in Sectibn 4.

Preventing data destruction: Each verifier checks the availability of one remotaled
block. The destruction of any block is detecteatigh the verification protocol that has been
proven in Section 3.4.4 of Chapter 3 as being afpad knowledge protocol. Indeed, the
protocol is proved to be complete i.e., the verifibvays accepts the proof as valid if the holder
follows the protocol, and sound i.e., the verifigl not accept the proof as valid if the holder
destroys or corrupts the data.

Collusion resistance:With erasure codes, the produced blocks that wilstored at holders
inherently differ from each other, which ensuresckt are personalized. Even though collusion
betweerk+1 or moreholders may happen, we assume that such a collissiomikely because
it requires sending blocks (comparable in size to the original datapte of the holders to
encode the destroyed block. This entails considetzmdwidth and computation costs for each
verification operation.

A newly generated block differs from the remainistgred blocks. This is guaranteed with
the randomization added by the sesdthat is chosen cooperatively by the verifiers tevent
potential collusions between one particular holteat an additional peer.

Preventing DoS attacks:A quota system can be introduced into the prottzoégulate the
number of challenge messages the verifier is alibteesend to a given holder during a time
frame. This allows mitigating a flooding attack aga the holder launched by a malicious
verifier.

The activation of a repair phase is made possiblg after the agreement of at ledst
verifiers. The use of independent verifiers mitggathe maliciousness of some of them that may
flood the system with repair requests. The threskealuek' is a tradeoff factor between these
two considerations: prevention against verifiedugibn and also handling of peer churn and
intermittent availability.

Preventing data poisoning: A holder or verifier may send bogus information ttee
concerned peers. We argue that this problem casabity thwarted by including a signature
with any information to provide proofs of origin drintegrity for the recipient of such
information. Each coded block or metadata is assediwith some owner signature that attests
its validity.

On the other hand, after a data repair phase, éhieholder or the new verifier will keep
track of a compilation of all necessary owner sfgres that validates the newly generated
block or metadata. For example, a new holder cap ledong with the freshly coded blobk
the seed used to generate coefficients for the new blool, the following set of information:

{be,- P, signowner(by,-P)}

1<i<k

b’ being coded based on blockb i<« andsignune(.) being the signature generated by the

owner. When the owner reconnects to the systemaltes contact with the new holder, checks

the validity of its signature compilation, and s all these with its own signature:
k

Signowner | b.P = Z ¢ X (by,. P)
=1
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To simplify such process and in particular to rexitice signature overhead, the protocol
may alternatively rely on any homomorphic signafieg., algebraic signatures as described in

[Schwarz and Miller 2006]) providing the followinmoperty:
k k

SigNowner b = 2 X btl = HSignowner(btl)Cl
=1 =1
The new holder or verifier can thus construct advsignature for the newly generated block
or metadata based on the signatures of the gemgraltbicks or metadata and without having
recourse to the owner.

Preventing man-in-the-middle attacks:The holders of a given data are selected randomly.
As suggested in section 5.2.2 of the next chaptedata owner cannot choose by itself the
identities of its data holders. This means thataWweer necessarily have a key ID in the DHT
that is distinct from the key IDs of its holder$i€Be holders are then contacted directly for data
storage and verification. To prevent a man-in-thdete attack, the response of a holder storing
block b; to a verifier's challenge may be constructed akgast of the produds.P along with
the holder’s identityD: R=hasHb;.P, ID), hashbeinga pseudo-random one-way function. The
peer'sID can correspond to the peer's IP address, whiclorigeible but may still make it
possible to establish a secure channel betweempéests if we assume no attack on the routing
protocol. With such a construction of the resporee,attacker cannot trick a verifier by
pretending to be storing the block and holdindhatdame time an identity different frdi.

4.3.3.Performance evaluation

In the proposed protocol, the performance of bbéhdelegation and verification phases has
been already evaluated in Section 3.4.5 (Chapte$iBfe metadata are only computed based on
one block instead of the whole data, the perforrmaméact improves.

The proposed repair method requires the transmisgionlyk coded blocks (corresponding
in total to the file size) for the regeneration arfe block while at the same time providing
personalized regenerated block to the new holdéditinally, the bandwidth utilization for the
regeneration is distributed between holders.

Furthermore, the communication overhead of the ggeg repair method can be optimized
by relying on hierarchical codes as proposed bynilbuco and Biersack 2008]. With such
erasure codes, the required number of coded bkockspair a block is greater or equal to the
number of children in the tree hierarchy and lessoqual tok.

The communication overhead caused by verifier ageeé¢ and notification messages can be
considered negligible owing to the fact that theadar the block) are likely considerably larger
in size.

The linear combination of blocks is operatedimhich may lead to an increase in the size
of the produced block by at mdsbits. We argue that this increase is insignificginen the
original size of blocks.

4.4.An analytic model for P2P data storage and mainternace

This section introduces an analytic model that diess the P2P storage system inspired
from the epidemic models in [Jones and Sleeman]1®B8re peers are classified into groups
depending on their state. We endeavor to deterthimegight periodicity for data maintenance
with such model.
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We consider an owner that replicates its datahalders using ak( r-k)-erasure coding. The
original data can be generated from at ldasbded blocks. The owner also delegates the
verification of each coded block te verifiers. These verifiers have the responsibility
periodically check the presence and integrity af giored block at their assigned holder.
Whenever at leadt verifiers detect the destruction or corruptiontbé block they decide to
regenerate a hew block and store it at a new hdllerassume that verifiers do not require to
be replaced often during the data storage. The oisrsupposed to connect to the P2P system
from time to time in order to select new verifiargd to appoint them to the desired blocks.

4.4.1.Model of P2P data storage without data maintenance

Figure 22 depicts a state model for describingpitesence of holders in the P2P system.
Holders may disconnect or definitely leave the exystPeer disconnection and peer departure
rates, which are respectively namedndu, are considered constant. Peers may reconnect at
constant raté’. Holders may be in state “connected”, “disconmdttor “left”. Additionally,
holders do not just leave the system after a cbaghmay also in state “left” if they destroy
blocks they store. In this model, holders that hdestroyed blocks are not replaced (no data
maintenance). We designate the number of holdessaiies “connected”, “disconnected”, and
“left” at time t by respectivelyng(t), ny(t), andn(t), the total number of peers at time t being:

n.(t) +ng(t) +n(t) =r

v

Disconnected T

X A Left

L Connected . T
w

Figure 22 State model of data storage without maienance

The number of holders in each state varies witle taimcording to the differential equations
derived from the state model:

dn.(t)
= Aa(®) = G+ Dne(®)
d ’
T = Ame(0) = (u+ AIna(0) (4.4.2)
dn;(t)
RPTI p(ne (1) +ng(t))
The solution of these equations gives the numbaplafers in each state at time
A'r Ar
—_ ,-ut —(u+A+ANt
ne® = e e
ng (t) — Ar —ut Ar e—(u+/1+)u)t

i+2° Taxx
n(t) =r(1 —e M)

The number of holders in the systegt)+ny(t) converges to zero with time. This means that
there is a certain timg at which the owner's data is not available anyan@e.,tyis the time
limit for data availability), and there is anothéne t; at which the owner cannot retrieve its
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data from the storage system (itgis the time limit for data reliability). The timéniit t, is
defined as:

r
e~ (WHATANT —

nc(to) =

To simplify the above equation, the exponentiakfions can be rewritten as infinite power
series (in the form of Taylor series) that can ppraximated to their first order. A solution is
obtained for:

! 1-k
(L= k/r)

ta~
gy

The time limitt; is obtained if:
ne(ty) +ng(ty) =re #r =k

This leads to:
t; = (1/log (r/k)

4.4.2 M odel of P2P data storage with data maintenance

If we consider that destroyed blocks are detecteiragenerated at other new holders, we
obtain a new state model (depicted in Figure 23iis Tnodel describes a repair phase for
destroyed blocks during which new holders are thiced in the model at a constant rafé/y
is also the verification time period).

L

Disconnected T

A A Left

RPN Connected n T

Figure 23 State model of data storage and maintenaa

The number of holders in each state verifies tHeviing differential equations derived
from the model:

d";t(t) = A'ng(t) + ¥ (r — ne(t) — ng () — (u + Hn(b)
dng(®) _ ,
T ne(t) — (u+ A)ng(t)
dnilt) _ u(ne(®) + ng(0))
d(ne(t) + ng () + ()
= =y (r — ne(t) — ng(1)

The solution to these differential equations gitresnumber of holders in each state:
_or Jyw+2)  w@-y)

nc(t) - ! 7
y+ulp+i+1 A+A -y

—(r+mwt 14 [ —(ut+A+ANt
e + A + e
(,u+/1+l’ /1+A’—y)
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Ar Y Ju Y U
t) = + -(r+wt _ + —(u+A+ANt
na(t) y+u[u+/1+/1’ A+ —y° P S T p

ur u _
n(t)=—[ t (1 — et
! ] LR )

We note that the equations in 4.4.a match the alegumtions fory = 0. To be able to
perform the recovery of dropped blocks, we shoaldelm (t) > k for eacht>0. This leads to the
following inequality that must be met:

o wkusd
)/_1( u+ A )_l'r u+A+ A
k\u+21+ 2

The above equation gives a precise bound on tlendaintenance periobx

f(Lj‘,)_l
k\u+21+2

u

Tmax -

4.4.3.Numerical simulation

We simulated the above model of a P2P data st@ggiem in different scenarios based on
the equations developed earlier. In the simulai@ers join the system for an average lifetime
of 2 weeks. Each peer stays online for 1 hour amthects on average 6.4 times in a day.
Additionally, holders are assumed to destroy thiicks one time per day on average. Without
data maintenance, the owner’'s data is not availafiéx only 49 minutes and then cannot be
recovered after less than 2 days. With mainten&weever, the data is always available and
retrievable. But data maintenance should be pearadigliperformed 3.8 times per day.
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N | | | |
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SE 1 l maintenance at rate:
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= | | max
Z= S — gamma=1/T
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— *
| | S gamma=1.5 (1/Tmax)
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Figure 24 Number of holdersr=30,k=5, =10, k=7, d=6.94x10*, 1=0.0167 2’=0.0044 (rates per minute (mn)).

Figure 24 shows the number of holders that aresstiting data blocks with time in different
settings. The figure illustrates the fact that with maintenancey£0) the number of holders
decreases converging to zero. On the other hatid médintenance£0), the number of holders
converges to an equilibrium value that is not ntiflis value depends on theatio: if y<1/Ta
then the value is lower thaq otherwise it is higher thak thus rendering the restoration of
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destroyed blocks possible. The figure proves thi#t the data maintenance mechanism, the
P2P storage system is able to achieve the surlitygtmioperty for the stored data.
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Figure 25 Number of online holdersr=30,k=5, v=10, k=7, d=6.94x10*, 4=0.01674'=0.0044 (rates per mn).

Figure 25 shows the number of online holders awee tomputed with and without a repair
phase. The figure proves that considering maintsman a rate>1/T.x and withk chosen in
function of system parameters enables the systewotk with high data availability. In the
case without data maintenance however, blocks medjtd recover the data are not accessible
anymore with time.

4.5.Summary

This chapter presented a P2P data storage andemante protocol in which the detection
of data corruption and data rejuvenation are sg&oizing functions. This protocol is
innovative in that peers cooperate not only in g storage resources, but also for ensuring
their resilience. In particular, the main secudhd dependability functions of this protocol are
distributed to multiple peers which makes it eaglemitigate non cooperative behaviors, while
additionally coping with churn.
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Chapter 5

Audit-based cooperation incentives

Cooperation is a central feature of P2P systemsishkey to their scalability. However,
cooperation to achieve some functionality is natessarily an objective of peers that are not
under the control of any authority and that mayttrynaximize the benefits they get from the
P2P system. Cooperation incentive schemes haveibeduced to stimulate the cooperation
of such self-interested peers. They are diversenigtin terms of the applications which they
protect, but also in terms of the features theylément, the type of reward and punishment
used, and their operation over time. Cooperatiarerntives are classically classified into
reputation-based and remuneration-based approaCloegperation enforcement, that is using
cooperation incentives to ensure a proper operatidghe P2P system, may rely on a dedicated
and trusted coordinator or, in its purest form,stibate a self-organizing mechanism.

This chapter discusses the design of two cooperatientive mechanisms for a P2P storage
application and their application to thwarting nakhavior. The first one is reputation based, and
relies on the evaluation of peers’ past behaviorestimate how trustful they will be in
upcoming interactions. The second one is remumgrafor payment) based, and features
explicit rewards for a correct behavior. Both methms rely on the security primitives
discussed in previous chapters, notably on a pobtéar the remote verification of data
possession as a primitive for the continuous eviaiiaf behavior of storage peers.

5.1.Cooperation incentives for P2P storage

In a P2P storage system, individual peers joinrte&brts and cooperate for the correct
operation of the application. It is generally sugjgd that cooperation will help entities to
succeed better than via competition. [Buttyan andbddix 2003] demonstrated that the best
performance in mobile ad-hoc routing is obtainecemwimodes are very cooperative. Devising
mechanisms stimulating cooperation among peersiéhberefore receive a great deal of
attention.

Shortcomings of existing approaches

The majority of existing approaches for stimulaticwpperation have been introduced for
immediate services like packet forwarding in ad hetworks ([Michiardi 2004] and [Buttyan
and Hubaux 2003]) or for transferring a data blotkP2P file sharing networks (Napdfer
Gnutella®”, KazaA®®, Morpheus?®, or BitTorrent®). In MANET routing for instance,

“% http://lwww.napster.com/

" http://lwww.gnutella.com/
“8 http://lwww.kazaa.com/

“9 http://www.morpheus.com/
*0 http://www.bittorrent.com/
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encouraging packet forwarding by increasing forwangode’s reputation or handing it tokens

is an explicit and immediate counterpart for coafien. Evaluating cooperation for a data
storage service at the time of data retrievalss kasy, because pessimistic approaches make it
necessary for a cooperating peer to wait for a Itne before it gets rewarded for its
cooperation, while optimistic approaches might miak®ssible for a not abuse the cooperation
mechanism to achieve an immediate gain. Henceg thaust be a cooperation incentive
mechanism more adapted to distributed storagecgpigins and that must support the periodic
verification of stored data.

Incentives with multiple objectives

Coping with free riding or voluntary data destranticannot be achieved by a simple tit-for-
tat strategy like in BitTorrent [Piatek et al. 2Q0But requires the owner together with the help
of some volunteer peers, verifiers, to periodicalheck storage at holders and decide if some
data needs to be replicated again in the netwdhnk. data stored can be periodically checked
using one of the verification protocols discussegbievious chapters, including our own that
suggests that verification should be mostly handederifier peers selected and appointed by
the data owner to distribute the load of this teSHll, verifiers may themselves cheat like
holders (indeed, “quis custodiet ipsos custodisthe P2P storage system therefore requires a
cooperation incentive mechanism to be used todruiters to cooperatively and fairly help in
providing reliable and secure data storage, eitased on reputation or remuneration. Thus, a
cooperation incentive mechanism adapted to diggtbstorage must at least serve a twofold
objective: to incite peers to store data for ofpers and to motivate others to verify these data.

The remainder of this chapter presents approacheselty a good evaluation of peer
behavior goes essentially by verifying the intggdf the data stored. Verification results serve
to estimate the reputation of data holder peera meputation-based mechanism or to decide
whether to reward or punish peers in a remunerdtised approach. Such an evaluation is
additionally a way to indirectly establish trust.

5.2.Reputation-based approach

This section introduces a new reputation systemPfP storage applications that allows
estimating the trustworthiness of peers based qerences and observations of their past
behaviors.

5.2.1.Threats

The adversaries that we consider for the reputdiamed approach are peers that trick the
reputation system for any perceived personal benefthe following, we examine ways which
peers may use to subvert the reputation mechanism.

- Lying: a liar is a peer that disseminates incorrect olasiens on other peers (“rumor
spreading”) in order to either increase or decrahe# reputation. Colluded liars may
form a group of peers that conspires against onenare peers in the network by
assigning unfairly low reputation to them (“bad rtfong”) or unduly high reputation to
members of their group.

- Collusion between owner and holdéme collusion aims at increasing the reputation of
the holder at honest verifiers. Just lying to verdf supposes that observations of peers

51 Who watches the watchers?
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rely on external recommendations. However withbetsé recommendations, peers may
still be vulnerable to lying using such type oflaslon where the owner pretends storing
bogus data at the holder.

- Collusion between holder and verifieFhe aim of such collusion is to advertise the
quality of holder more than its real value (“balktiffing”) thus increasing its reputation
at owner. But, still the owner may ultimately armbortunistically check by itself storage
at holder to make its own view on the holder.

- Whitewashingpeers may repeatedly leave system and rejoin iveth identity escaping
the consequences of their bad actions, so thatemmésting or well behaving does not
matter for them.

- Sybil attack:If peers are able to generate new identities dt thiky may use some of
them to increase the reputation of the rest oftities either by lying, or pretending to be
the owner and holder or holder and verifier of salat.

5.2.2.Reputation-based storage

In the P2P storage system, we rely on the congirucf groups in which we evaluate peer
behavior. Peers store their personal data in theiup. The security of data stored is the
responsibility of group members, given that theg a@eriodically verified by some group
members for availability and no corruption.

Group construction and management

Peer groups are dynamic with members that join laadle the group at anytime. Such
group-based architecture allows only intra-grougeriactions, and thus peers establish rapid
knowledge of the trustworthiness of their grouplofes. Moreover, the group ensures a
minimum level of good behavior: whenever a peetbetigmves it is badly audited by a growing
number of group members until becoming totallyasedl from the group.

Peer groups are created either in a centralizeith ar decentralized manner. Centralized
managed groups can be constructed at outset bythariy like partnership in [Lillibridge et
al. 2003] that may tackle also the task of distifiithe group key to all members. The group
key controls the access to the group, and ensaoesesand private communication between its
members. On the other hand decentralized groups@wperatively formed at will by its
members and they rely on collaborative group kegemgent protocols (e.g., [Lee et al. 2006],
[Lesueur et al. 2007]).

Group members are in a structured Distributed Heethie (DHT). A DHT consists of a
number of peers having each a K&s\e.., in the DHT space, which is the set of all binary
strings of some fixed length. We assume that th@ Pkbvides a secure lookup service (see [Sit
and Morris 2002] and [Castro et al. 2002]): a pagiplies an arbitrary key (an element in the
DHT space), and the lookup service returns theactode in the DHT that is the closest to the
key.

In the group, peers have unique identities in th€TDThe risk of Sybil attacks can be
mitigated by imposing a membership fee for peerlingi to join a given group, or in a
decentralized way constraining the number of inidtes any group member possesses as
proposed in [Lesueur et al. 2008].

Self-organizing peer selection
The audit-based P2P storage system allows peeleidgate the verification of their data to
other volunteer peers, the verifiers, and alsatg accept to store data of well-behaved peers.
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Verifier selection. A data owner desiring to store a data replica énstystem may randomly
choose verifiers to whom it will send a verificatioequest. The random selection of verifiers
may be based on a random operation proper to thremvior example the identity of the
verifier i can be the closet key to the vakKieyeriie=Hash(KeyownelnONcej) whereHashis a
pseudo-random function determined at group outsdtnanceis a randomly chosen number
protecting against a replay of the same operatifih theans concatenation). From peers
answering to this request, the owner seletfgeers, and then acknowledges them including in
the message the list of thechosen verifiers. This information is a commitmfom the owner
to the verifiers’ list.

Holder selection. To avoid collusion between the owner and the holtetders may be
chosen randomly in the DHT overlay in the same asyverifier selection (with a fresh new
nonce). Alternatively, we may make also the setketmifiers choose altogether the holder for
the owner. Each verifiear commits to a randomly chosen DHT kigy(commitment can be as
simple hash operation of the key) and then sendsctimmitment to the owner. The owner
sends the digest of verifiers’ commitments to eeghfier. Upon the receipt of the owner's
message, verifiers will send their chosen randoys ke the owner. The selected holder is the
peer with the closest key to the XORed sum of thasdom keys:

KeM_|0|der: kl O kz O...0 km

The owner sends a digest of the messages recejveerifiers containing their keys along
with the identity of the chosen holder.

It is clear that the process of selecting holderpuires several communication messages
between the owner and verifiers that might be gedufn a single multicast message;
nevertheless, this is the price to pay to obtatorsensus between the owner, the verifiers, and
the holder, and particularly to avoid collusionveegn any participants in this agreement.

Interaction decision

We may rely on a simple trust model based on whitey (see Figure 26) similarly to the
Tit-For-Tat (TFT) strategy in BitTorrent [Piatek et 2007]: peers that have correctly stored
data they have promised to preserve are added tothelist of their observers (the data owner
and its delegated verifiers).
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Figure 26 Whitelisting model.

Whenever a peer detects that another peer ha®ykx$tdata it has promised to store, the
latter will be removed from the whitelist. We algmpose a “grace period” during which “no
response” from the challenged holder is toleratatll the period times out, thus avoiding
abusively isolating cooperative holders with trensiconnection.

Newcomers to the system are probabilistically dddethe whitelist. Newcomer acceptance
probability may be computed based on the uploa@daigpof the peer and its whitelist size.
This probabilistic process serves to bootstrap sterage system, but it also means that
whitewashers may probabilistically gain some adagetof that. Other trust models can be
adopted like for example the Additive Increase Milittative Decrease (AIMD), the Linear
Increase Sudden Death (LISD), or blacklisting medras.

A peer accepts to only serve peers pertainingstavititelist: it stores their personal data or
periodically verifies their data availability ingtsystem. However, a peer may accept to store its
data at peers that do not pertain to its whitelist.

5.2.3.Analytic evaluation

This sub-section discusses the potential of theit&aded approach in observing peer
behavior through the study of an analytic model.

The trustworthiness of a peer can be estimateddbasehe observation of its behavior by
third parties. The semantics of the informationemkd can be described in terms of direct (or
local) or indirect (or system-wide) observationgebt observation amounts to the compilation
of a history of personal interactions by one peerards another peer when being the owner of
data stored at the peer or serving as verifiehisfppeer. On the other hand, indirect observation
refers to any reputation information received frather peers in the system. There are
substantial communication savings to be gained ibwtihg observations to just private
interactions even though indirect observation may dnly partially disseminated or
piggybacked on ordinary messages. Besides, usihg direct observation may delay the
evolution of reputation.




71

A reputation-based approach for P2P storage apiplisagenerally allows estimating the
trustworthiness of a given peer based on experseac& observations of its past behavior
towards the actual estimator or other peers. Silpjlahe audit-based approach, that we
propose, relies on the estimation of the trustwoebs of this very peer based on experiences of
the estimator, solely as a data owner or its olasiemns obtained from audits of other peers’
data, in the role of a verifier. The following gs/an evaluation of both approaches based on an
analytic model.

Model

This sub-section discusses how to compute the gfathoosing one way of observation
reciprocity over the other in terms of the levetofrectness of gathered reputation information.

Considering two peers andp,, wherep; desires to have correct observationporPeerp;
may perform a correct observation itself or mayeree observations from other peers in the
system that may be correct or incorrect. Our madsiumes that incorrect observations are
received from dishonest peers only. lyetlenote the fraction of dishonest peers in thel tota
population.

We define a quality level for the estimated obsgowawith two extremad ando. An
observation of qualityg is correct, and an observation of qualitis incorrect. Observation may
be null to refer to the situation whem® does not have any observation on peer
(indistinguishably from the worst reputation).

First of all, the probability that; knows about the,'s behavior is compute@t must at least
obtain the result of one interaction involvipg); the estimated observation pf denoted, is
then derived for two different cases:

- Audits: observations based on storage and verificatiortseguonly takes into account
its personal interactions withy as an owner storing datamtor as a verifier for other
peers’ data stored p}.

- Reputation:; observations based on peer’s experiences andretsmmendationsp;
takes into account both its personal interactions @pinions expressed by other peers
with respect tq,. The reputation model is inspired from [Anceaumé Ravoaja 2006]
where reputation computation is based on a sulbgsfioomation provided by randomly
chosen peers.

Audits: The probability thap, knows about the behavior pf is equal to:
Ar Ar

Ar m _
(n—1)>(1_(n—1)+(n—1)(1_(n—2))) ’

Prob[p, knows p,] =0, =1— (1 —

A being the average storage rate of peersrabeing the number of peers (the considered
time unit is the time period between two verificatioperations).
Since personal observations are always correctesgtimated observation quality may only
take two values: correct observation or no obsemat
Prob[o, = 0] =0,
Prob[b'l = Q] =0
Prob[6, =0]=1—-6,
On average, we have:
0, =0, X0

Reputation: The probability thap, knows about the behavior pfis equal to:
Prob[p, knowsp,] =6, =1—-(1—-6)"
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y being the fraction of the peer population to whikbl reputation is propagated. External
observations may either originate from honest peefsom dishonest peers. Pggreceives at
best (1#)xyxn observations from honest peers amgxn from dishonest peers. Observations
from honest peers are all correct; and observafimm dishonest peers are always incorrect.
For k andk' not null observations respectively received frbonest and dishonest peers, the
average observation quality is denotedipywhenp, has a direct observation, andthy, when
p. does not have a direct observation:

_ (ko+ k'%)
tk,k’ — (1 W)O + w k + k’
N (ko + k'o)
ekt =W I

w being the weight that, gives to averaged system-wide observations withesto local
observations. For<Ok <(1-)xyxn and & k' <pxyxn, we have:
Prob[d, = ti] = (Cfi_pyymb1" " (1 = 0) DKy (€0, (1 = 6,)™™H)
Prob[, = t'x] = (C{_pyynfs (1 — 6TV (G0, (1 — 6,)™7 K
Prob[otherwise] = 0

The vaIueCk(l.,7)nyn (respectiverCk',,nyn) is the number of combinations kf(respectively
k) peers from the set of honest (respectively disst) peers from whictp, gathers
observations. A certain probability of interactisnattached to the observations of both honest
and dishonest peers. This is due to the fact tre&t though peers have to provide cryptographic
proofs that they had interactions wiph, even honest peers cannot always provide proofs of
correct observation: for example, the observatioth® absence of any response frpntannot
be proved; or the peer sending an observation mmay bollusion withp,.

Using the Vandermonde's identity, we have on awerag

0, =0(1—w)+w((1—n)Xo+nxo0)

Comparison
Seeking for simplicity, we choose quality obsemwasi such agt =1, o = —1. Thus, we
have:
0, =06,
0, =0,(1—w)+w(l-2n)
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Figure 27 Average observation quality: (a) varying with m=5 and (b) varyingm with r=3.n=100,4=0.2,
»=0.3,w=0.5,#=0.3.
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The average quality of observations is computetthéntwo cases. Figure 27 shows that the
best quality obtained depends very much on thécadmin rate.

If the replication rate is low (simple data redumclg, the reputation outperforms the audit-
based approach; however, if the replication ratdigh (more than 10 replicas using for
example erasure codes), the audit-based appro#uh ligest way to observe.

The number of verifiers has also an impact on lagibroaches: increasimg leads into an
increase on the observation quality of the two aggihes with a more significant increase of the
audit-based approach.
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Figure 28 Average observation quality varying theraction of malicious peersn=100,4=0.2,y=0.3,r=3,
m=5,w=0.5.

If the ratio of peers that send false observatinneeases, the quality of observation in the
case with reputation linearly decreases with thir however this quality is not affected in the
case of audits, as it is depicted in Figure 28.
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Figure 29 Average observation quality varying the amber of peers for (a)r=3 and (b)r=10.4=0.2,y=0.3,
m=5,w=0.5,#=0.3.

Figure 29 shows that increasing peer populatioleads to a decrease in the quality of
observations in both approaches, especially thét-baded one. Small peer populations are
more in favor of audit-based approach than reputativhereas large peer populations are more
advantageous for reputation if the replication ratemall than for audit-based approach.

Discussion
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The study of the analytic model demonstrates thataudit-based approach for observing
peer behavior outperforms reputation if the dafdication rate is high (e.g., erasure coding)
and with small peer population. Moreover, the apphois robust against liars, and it does not
require propagation of information which avoids gneblem of rumor spreading.

Since the audit-based approach works better forllspmpulation, the analytic model
validates the group-based architecture for the f2@Rge system as more favorable to the audit-
based approach for peer behavior observation gautation.

5.2.4.Simulation experiments

To validate the ability of our audit-based P2P ager system to detect and punish selfish
peers, we implemented a custom simulator whoseefnark is at first described, and then
results of simulation are presented and analyzed.

Framework

The self-organizing storage system is modeled el®sed set of homogeneous peers. The
storage system operation is modeled as a cyclaedbagrulation. One simulation cycle
corresponds to the period between two successificadons.

Churn: Peers arrive to the system in Poisson distributibare are 100 newcomers per
hour, for an average lifetime of 2 weeks. [Stuttband Rejaie 2004] shows that Gnutella peer
uptime follows a power-law distribution. We will&ishe same distribution for peer uptime and
downtime. In average, a peer stays online for I had connects in average 6.4 times in a day.

Storage: Peer storage space, file size, and storage darati chosen from truncated log-
normal distributions. The storage space of each fgeehosen from 1 to 100GB, with an
average of 10GB. In each day of simulated time5 2f&files are stored per peer for an average
period of 1 week. The average file size is 500MBe Btored files will be checked by verifiers
each day.

User strategies:We consider three peer strategies: cooperatiorsiygaselfishness (free-
riding) and active selfishness.

- Cooperative:whenever the peer accepts to store data from angger, it keeps them
stored. Whenever the peer accepts to check thiabidy of some data at a storage peer,
it will periodically perform verification operatienon this peer as agreed. Such peers
carefully apply the audit-based approach to thewtagies.

- Passively selfishthe peer will never accept to store data and wllen accept to verify
the availability of some data stored for other pedthe peer is just consumer of the
storage system. This type of behavior is also tdrfree-riding.

- Actively selfishthe peer probabilistically accepts to store datather peers or to verify
storage at other peers. Whenever it stores orieexifor others, it will fulfill its promise
only probabilistically. This type of behavior wim instability effect probabilistically
alternating between cooperation and selfishnessbaimility of participation denotep
and probability of achieving promise denotgd

Strategy with strangers: Cooperative peers accept to store or verify steiglata only
probabilistically. Such strategy bootstraps theespsand allows peers to discover new peers
with whom they may reciprocally cooperate; evenutifoit also permits to whitewashers to
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unfairly take advantage of peers’ generosity. Thabability of cooperation with strangers is
denotedP.

Simulation results

The framework is simulated in different scenario®ider to analyze the impact of system
parameters and choices on the convergence timeeddtorage system to a stable state where
only cooperative peers are the active consumetsedftorage in the system.

—@—coop.
—=— passiv. self.
- A - activ. self.

Fraction of owners
per strategy

Simulation time (in days)

Figure 30 Averaged ratio of owners per strategyn=300,r=3, m=5, P=0.01,p=0.2,0=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfisteprs.

Exclusion of selfish peersFigure 30 demonstrates that selfish peers haveckgsability
over time to store data in the system; howeverperative peers are becoming the majority of
data owners in the storage system. Free-riderexariided from storing data in the system
before active selfish peers, because the lattgparate at first by storing data then they destroy
them which may slow their detection. The procesSltefing out selfish peers from the system
is made possible in a short time period of 3 days.
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Figure 31 Averaged ratio of holders per strategyn=300,r=3, m=5, P=0.01,p=0.2,0=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfisteprs.

Figure 31 shows the fraction of holders per stratager time. The figure demonstrates that
the stored data will be exclusively held by coofieeapeers after selfish peers have been
detected (after 3 days). Selfish peers do not giaatie in the storage effort because they
consider many owner peers as non cooperative tewdrdm. These owner peers have
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previously detected their selfish behavior and diettito stop cooperating to them. On the other
hand, cooperative peers have probabilistically iveck contributions from many cooperative
holders; therefore they return the favor by pagstiting in the storage of the data of these
holders.

Overhead: The bandwidth consumed for verification is depemnd®an the number, rather
than the size, of files being stored. This is iotfa requirement on the verification protocol.
Figure 32 shows the amount of control messagestpexd file.
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Figure 32 Average amount of control messages petdistored (in KB).n=1000,r=3, m=5, P=0.01,p=0.2,
g=0.2, 40% cooperators, 30% passively selfish pee)% actively selfish peers.

The figure demonstrates that the bandwidth costedses since more and more peers are
acquainted with other peers and thus their cortidhs increase. This explains the increase in
the storage rate since cooperative peers cooparde0% with the peers they know rather than
probabilistically.

Newcomer's acceptanceFigure 33 depicts the fraction of owners per styatearying the
probability P for newcomers’ acceptance. This probability slokes participation of peers in the
system; but, it insignificantly affects the convemge time of the system to a system free from
selfish storage consumers.

Fraction of cooperative
owners

Simulation time (in days)

Figure 33 Fraction of cooperative owners varying tk probability of newcomer’s acceptanc®. n=300,r=3,
m=5, p=0.2,q=0.2, 40% cooperators, 30% passively selfish peed)% actively selfish peers.
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Figure 34 illustrates the effect of the probabilifynewcomer’s acceptanéeon the storage
rate. A very low value of the probabiliB/(P=0.0001) realizes a very small storage rate because
peers voluntarily participate less and then theya@msidered as selfish even if some of them
are actually cooperative.
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Figure 34 Average amount of data stored per peer vging the probability of newcomer’s acceptanceP.
n=300,r=3,m=5, p=0.2,0g=0.2, 40% cooperators, 30% passively selfish pee)% actively selfish peers.

High value ofP is however more advantageous to the system sicsttinage rate is high;
even though it decreases over time. Neverthelesgstam with a high value &fis vulnerable
to the problem of whitewashing where peers defeen trejoin the system with new identities
(not evaluated in the simulation). The theoretstatly in Appendix B demonstrates that there is
an optimal value ofP that deters the effect of whitewashers while adhgva maximum
societal welfare.

5.2.5.Security considerations

In this sub-section, we evaluate the robustnesth@faudit-based cooperation incentive
mechanism against the attacks exposed in 5.2.1.

Lying observers have no impact on the auditing raeidm since estimations are based on
verification results performed by the actual estomathus observations are objective.
Collusions between the owner and its holder or l@setof its verifiers are mitigated by the
random selection of holders and verifiers. Vergfieselection relies on a pseudo-random
function and a secure routing in the DHT that carassessed by each verifier. And, holders are
randomly selected by each verifier. So, collusiostween any subset of participants is
prevented.

The group-based architecture of the P2P storagaitsecontrolling peers who are joining
the storage system in order to mitigate Sybil &ttex This latter may still be able to take profit
of peers that are probabilistically adding newcartertheir whitelist, still this probability can
be adjustable depending on peer’'s confidence orsysem. The architecture allows also a
rapid knowledge about the behavior of group memlzard then peers are able to refuse storage
to non cooperating peers, hence limiting free-gder

5.3.Remuneration-based approach

This sections introduces a mechanism that combimesmonitoring of data storage on a
periodic basis together with a payment scheme legtee data owner, holders, and verifiers.
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5.3.1.Threats

Cooperative storage relies on the interaction witknown peers, hence under no prior trust
relationships. Peers should participate to theegysh compliance with the payment protocol;
however peers may misbehave in various ways.

- Sybil attack: Sybil attack represents a potential vulnerabilitking it possible to
generate new peers at will. The payment based miexhsa to be envisioned should
therefore support some form of real world basetienttcation: this attack should at least
be mitigated by imposing a real world monetary derpart to membership for peers
joining the storage system so that creating bodestities cannot be a source of revenue
for peers.

- Impersonationevery peer must know with whom it is dealing. 8yst usually rely on a
PKI (Public Key Infrastructure) where a certifigati authority issues certificates which
bound an identity (peer’s identity) with a publieyk

- Counterfeiting:Peers are generally paid with tokens (virtual nypreedit, cheque, etc).
Counterfeiting is a fraudulent reproduction of ketio. A token signed by the certification
authority cannot be forged as long as the privatedf the minter remains secret.

- Double spending attackDouble spending is a problem akin to digital cadtere it is
easy to spend a digital coin twice. There are t@lat®ns to this problem: either making
the payee verify that the coin is valid with thenbkat the time of spending, or making
spending a coin too many times reveal the idenofithe double spender.

- Fair exchange:As mentioned in [Asokan et al. 1997], "many conmeia@rtransactions
can be modeled as a sequence of exchanges ofoalecjoods involving two or more
parties. An exchange among several parties begitis am understanding about what
item each party will contribute to the exchange ahdt it expects to receive at the end
of it. A desirable requirement for exchange isrfags. A fair exchange should guarantee
that at the end of the exchange, either each padyreceived what it expects to receive
or no party has received anything." Fair exchampéopols thus provide ways to ensure
that items held by two or more parties are exchdngihout one party gaining an
advantage. In remuneration systems, obtaining fariegft cooperation incentive depends
upon devising a protocol that enforces a fair ergeeof the remuneration (virtual or not)
against some task. This property can only be atthihy intricately integrating the
remuneration operation with the application funmility.

- Starvation: Starvation is the inability of a peer to partidgpdn the cooperative system
because it has not enough tokens to do so. Paymasetd schemes generally suffer from
starvation, e.g., see [Weyland et al. 2005].

5.3.2.Enabling mechanisms

Means of verification of remote storage and P2R9&sr payment must be supported by
the payment-based incentive model, given thatlieseon periodic fair exchange of credits
between the contributing peers and consuming pierhe storage system, and periodic
verification of remotely stored data at some holgeers by some verifier peers. We discuss in
this section solutions that aim at providing thessans.

Related work
There are several micropayment schemes that haregeposed in the past like PayWord,
MicroMint [Rivest and Shamir 1996], and MillicenGlassman et al. 1995] that particularly
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present a centralized functionality marked by atreérbroker, the bank, that tracks each peer
balance and payment transactions. In most of thefsemes, the load of the bank grows linearly
with the number of transactions; though hash chaifsayWord or the use of electronic lottery
tickets [Rivest 1997] greatly reduce such cost.ekample, the P2P micropayment system
MojoNatiort? has also a linear broker’s load and this systesngume out of work because the
central bank constitutes also a single point déifai

The scale of the P2P system makes it necessargstwtrto a type of protocols termed
optimistic protocols where the bank does not negdgdake part in the payment, but may be
contacted to arbitrate litigations between peerith\8uch type of protocols, the bank’s work is
reduced. PPay [Yang and Molina 2003] is a lightireigicropayment scheme for P2P systems
where the issuer of any coin is a peer from theesyshat is responsible for keeping trace of the
coin. However, the bank comes into play when thees of a coin is off-line. In a very dynamic
system, the probability of finding the original uss of the coin on-line is very low. In this
situation, PPay converges to a system with a dedabank. Additionally, tamper resistant
hardware (TRH) can be used to enforce payment goistdn a decentralized and optimistic
fashion as illustrated by the TermiNodes [Buttya &lubaux 2001] and CASHnet [Weyland
et al. 2005] projects.

To the best of our knowledge, the only fully-decalited micropayment scheme that exists
so far is KARMA [Vishnumurthy et al. 2003]. KARMAp§its the bank functionality in different
bank sets composed of peers selected and appoariddmly from the P2P system for each
peer when it first joins the system. The KARMA pamh scheme does not require any trusted
infrastructure and is scalable. The scheme is itestin more detail in the following section.

DHT-based payment framework

The KARMA framework [Vishnumurthy et al. 2003] prages a payment protocol in which
peers’ balance and payment transactions are hahgladet of peers from the system network.
KARMA proposes to substitute the bank by a set eérp randomly assigned within a
distributed Hash Table (DHT) for each peer, callehk-set. The karma value, which
constitutes the name of the currency, is maintafoedach peer by its bank-set whose members
are collectively responsible for continuously irasig and decreasing the karma value as peers
contribute and consume resources from the P2Pns\(stee Figure 35).

The bank-set is randomly assigned to each peerb ttlesest peers télASH(Id(Peer))
belong to the bank-set of that very pddAGH; is a pseudo-random function publicly known).
The bank-sets independently track the credits lgihgnto their assigned peers, and periodically
agree on a given balance of credits with a majotity. Even if there are inconsistencies in peer
balances, transactions among peers correspondytonicropayments and thus do not produce
considerable gains or losses to peers. Peers gothim system for the first time must solve a
cryptographic puzzle in order to mitigate Sybikakts against the storage system. The payment
protocol in KARMA is similar to an online bank pagmt but with additional features that
guarantee the consistence and synchronizationesfljzdances.

*2 MojoNation archived website.http://web.archive/argb/20020122164402/%?20http://mojonation.com/
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Figure 35 KARMA framework: 1) payee sends a transferequest to its banker set; 2, 3) after confirming
the transfer from the payer’'s banker set, 4) payes’banker set will send back receipt to the payee.

The payment scheme proposed in this section refighis framework to guarantee the fair
exchange of payment against some storage spaceKARMA framework has also been
applied to the file sharing problem described inspviumurthy et al. 2003]. That application
cannot be assimilated to a P2P storage applicaioce in the former case, payments are
immediately charged after the exchange of the fileereas in the latter case, payments for
storage or verification are by installment i.egytare billed at a due date that corresponds to the
confirmation (by verifications) of the good behavad the holder or the verifier. Therefore, we
will supplement the KARMA framework by an escrowingechanism (described in detail later
on) that guarantees the effective payment of @egitomised by the owner towards a
cooperative holder or a verifier.

Remote data verification

Our proposed scheme uses a verification protoceédhan pre-computed challenges (see
Figure 36). These challenges are generated bythercand stored at the verifier. Each verifier
metadata consist of the random numbers and theiesonding pre-computed challenges (the
reader may refer to the first solution in [Deswaatal. 2004] for details).

The number of verification operations is limited tnzg number of pre-computed challenges
stored at the verifier. This limitation does nostrain our mechanism because payments of
holders or verifiers should be in essence compat@blnumber and price); and also the number
of verification operations should be proportiormlsuch payments. Besides, we opted for this
type of verification protocol because it does remjuire special cryptographic functions (just a
hashing function), in addition to the fact that twnputational and storage overhead from the
verifier side and the holder side are optimized.
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Figure 36 Used verification protocol

5.3.3.Payment-based Storage

In this section, we first give an overview of thayment scheme, to describe then the
cryptographic protocol that achieves such scheme.

Overview of the payment scheme

We propose a mechanism that monitors data storage iegular basis to determine the
payments between data owners, holders, and verifiégre payment mechanism allows a peer
storing data for other peers to be paid for ityiser It thus controls the storage functions seen
above by rewarding cooperating peers.

Notations: Let By denote the bank-set of the p&pk- the public key of a ped?, sk the
private key ofP, andskg, the private key of the bank-set Bf A messagel signed by some

keyK is denoted asM} « (bank-set signature is explained in [Vishnumurthgle2003]).

Let G be a finite cyclic group witm elements. We assume that the group is written
multiplicatively. Letg be a generator db. If h is an element o6 then finding a solutiornx
(whenever it exists) of the equatigh= h is called the discrete logarithm problem (DLP) &d
assumed hard to solve.

Assumptions: A P2P system generally consists of altruistic peselfish peers, malicious
peers, and others with behavior ranging in betw&¥a. will assume that there are a non-
negligible percentage of the peers that are aficu@ at least correctly follow the protocol.
Peers of the storage system are structured intdbdigd Hash Table (DHT). A DHT consists
of a number of peers having each a kay(Peer)in the DHT space, which is the set of all
binary strings of some fixed length. Each partinipia assigned a secure, random identifier in
the DHT identifier spacdd(Peer). We assume that the DHT provides a secofaifoservice
(see [Sit and Morris 2002] and [Castro et al. 2D02peer supplies an arbitrary key (an element
in the DHT space), and the lookup service retunesective node in the DHT that stores the
object with the key.

Peer selection:To avoid collusion between verifiers and the owoerverifiers and the
holders, holders and verifiers should be randorhlysen. For instance,lang-list of randomly
chosen potential holders and verifiers can be coct&d using the DHT. THe (respectivelyl,)
closest peers in the DHT identifier space to they KeASH,(Id(Owner), timestamp)
(respectively HASH/(Id(Owner), timestamp)) constitute the potential haddérespectively
verifiers) of the ownerASH;andHASH,are pseudo-random functions publicly known). The
random choice of holders and verifiers within thelDallows the dissemination of storage
requests, instead of for instance relying on nétlooding.
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Auction-based pricing: Payment-based schemes generally suffer from si@nyae.g., see
[Weyland et al. 2005]. In our case, starvation msettue inability of a peer to store data in the
system because its account of credits is emptys¥gest an auction-based solution in order to
mitigate the starvation phenomena. The solutiorsatrmaking peers holding small number of
credits to contribute uppermost to the system @eoto replenish their accounts. These peers
may offer low price values for their storage allogriowners desiring to store data in the system
to select them in priority. A peer seeking to stdata initiates an auction by asking peers from
the long-list that have been randomly selectedutmrst a bid to store the data in question. It
then selects the lowest bidders, though otherratiMes, such as second-price auctions are also
possible. In the end, the owner hashart-list of n, holders for its data. The same operation is
repeated fon, verifier selection.

Credit escrowing: Each peer has a personal account managed by d peers likewise
KARMA [Vishnumurthy et al. 2003] that are calldzhnk-set Our payment scheme relies on
digital checks. To prevent peers from emitting batecks, the amount of credits that
corresponds to a check value are escrowed, i®nebessary number of credits to pay check
holder are locked by the bank-set. Consequentlyk-sats keep two types of peer balances:
normal credits and locked credits. Credits areaased for some time-out (that corresponds to
the check’s expiry time), after which they are reéd to the peer normal balance. The owner
desiring to store data in the system must be ablgay its holders and verifiers with checks.
That’s why, it must escrow credits which are cotegto digital checks (see Figure 37). These
checks are then stored in a blinded version attheesponding holders and verifiers. Checks
include some random numbers that are generateuebyviner and certified by its bank-set. The
latter have a blinded version of these numbergttm@revent collusion between one bank-set
member and a holder or a verifier). Each blindegitali check has this form:

C(payer,payee, g°) =
g%, id (payer),id(payee),price,seq, TTL, OSK payer

¢ beinga random numbeseqbeing thecheck’s sequence number, aRtlL the check’s expiry
date. The payee’s knowledgeméllows it to be paid credits of valyeice. The bank-set of the
payer is not informed of this number but only a blinded version of @°. The verification
operation allows both the verifier and the holderektract the check in order to be able to
present it to their bank-set to be paid in retdrhe holder must also escrow an amount of
credits corresponding to the punishment it getsdestroys data that it has promised to store.
The escrowed credits of the holder are convertednt digital check that is certified by the
holder’s bank-set. The check is split into multipleres each one will be stored at each verifier:
a threshold numbék of these shares allows reconstructing the fulckh&hares of the digital
check comprise the following numbers (in blindedsi@n){g°}<;<,, Which are shares gf

if {si}1<i<n, are shares o [Desmedt and Frankel 1989]. If a threshold-basegority of

verifiers agree that the holder has destroyed dags, can construct holder’'s check and present
it to the owner such that this latter will be reimbed.
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Verifier 1

Figure 37 Escrowing credits

Data verification: Each verifier appointed by the owner periodicalheck storage of data
stored at a holder. The verifier does not havduhehallenge for the holder, but rather a share
of the challenge: a threshold number of messagesvierd by the holder from verifiers allows
this latter to reconstruct the full challenge. Bisiting the verification task to multiple verifier
prevents potential collusion between the holder ancerifier. The verification operation has
three-fold objectives: it allows assessing the labdity of stored data, it permits the verifier to
remove the blinding factor of the stored digitaéck in order to get paid for verification, and
finally it allows the holder to recover also itsech for its payment too. Since, the verifier is
paid exactly for each verification operation it wadty performs, verification operations are
executed in a defined number. Consequently, thempay scheme does not require a
verification protocol where verifications are unlied and may rely on pre-computed
challenges for instance.

Payment protocol

In this section, we describe a protocol that presid cryptographic implementation of the
scheme.

We consider an owner denot®dthat stores its data at a hold&rThe integrity of such data
is periodically checked by a verifie on behalf ofO. The proposed protocol consists in
multiple steps described in the following Figure 38
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Credit escrowing

(O escrows credits for the payment oH and V)
O: fix number of verification operations to
O: generateandom numbergR; }1<i<m, Vi, W
O: compute for eacH][1, m]
T=HASHHASH(, R), Vu)
T; = HASHHASH(d, R), w)
O — Boi{g", price}iism, id(H), {97, price}i<icm, id(V)
Bo— O:{C(0, H,g"hsism + {C(0, V. 9" Phsicm

(H escrows credits to form its punitionp)
H: generate a random numtser

H: generat€s;};<;<n, Shares 0§

H— By {9°h<isn,, 9°id(0), punition
By: check{g®};<i<n, are shares ¢j°

By — H: {C(H, 0,9°)}1xixn,

Data storage

(O stores datad at H)
H—V:s;,C(H, 0,g%)

V—H— 0O: {ACK}s,
O—H:d,{C(0, H,g")}1<izm: Vu

(O delegates verification ofd to V)
O: generate for eadf[1, m] {r;} 15<n, Shares oR
/77 compute HASH(d , R)} 1i<m
(HASH: HASHis executed 2 times)
O — V: {HASH(d, R)}1<i<m 1, {C(0, V,g70)} W

1<ism’

Data verification

(V sends a share of th&" challenge toH)
V—H:i, T

(H answers verifiers upon construction of challenge)
H: computeRessHASH(, R)
H— V: Res

(V checksH’s answer)
V: checkHASHRe$ =?HASH(d , R)

Payment

(H obtains itsi™ payment)

H: computeT; = HASHHASH(d , R), W4)
H— By T;, C(0, H,g™)

BH — BO: Ti, C(O, H,gTi)

By: increaseH’s balance

Bo: decreas®'’s balance

(V obtains itsi'" payment)

V: computel’; = HASHHASH(d , R), w)
VBT, (0, V,g")

Byv— Bo: T, C(0, V,g™)

By: increase/’s balance

Bo: decreas®'s balance

Data retrieval

(Oretrievesd from H)
H—O:d

(H unblocks its escrowed credits)
O—-H-— BH: {ACK}SKO
If TTLtimes out: unspent escrowed credits are returresghéctively tad andH)
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Figure 38 Payment protocol

Use cases
In this sub-section, we discuss the operation efpiftoposed payment storage-based scheme
by reviewing several use cases.

Cooperative holder: A holder that has agreed to store data escrow#tsifenim its bank-set
that correspond to the punishment received in #s® avhere it does not achieve its promise.
Escrowed credits are converted to a digital chbek is split into multiple shares and stored at
the assigned verifiers. During data storage, thdenowill receive digital checks in blinded
version from the data owner certified by the baekaf this latter. Each periodic verification
results in revealing one digital check a time. Theck will be then sent to the bank-set of the
holder that contacts the owner’s bank-set suchtiblater’'s balance increases with the amount
of the agreed price and that of the owner decrgasgmrtionally. At the time of data retrieval,
the holder will send the data back to the owned, r@ceives in return an acknowledgement that
when sent to the bank-set allows the holder todknits punishment escrowed credits.

Cooperative verifier: A verifier that accepts to periodically check thaitability of data on
behalf of the owner will receive first the holdecseck shares corresponding to the punishment
of the holder and then checks in blinded versiomfthe owner corresponding to its payment.
After each performed verification, the verifier edes the resolution of the blinded version of
one check which enables it to increase its balaviten the check is passed on to its bank-set.
At the end of the data storage, if the holder refithe data to its owner, the verifier destroys
holder’'s check share; otherwise it sends the clsheke to the owner in exchange for some
small payment.

Selfish holder: A selfish holder destroys the data it has promisedeep. The (online)
verifiers detect such selfishness and act accagdimgsending the holder’s check shares to the
owner. If at least a t threshold number of themsdp the owner is able to reconstruct the
complete holder’s check. The check will be cashethb owner through its bank-set.

Blackmailing holder: The holder may decide not to send the data towme=n The damage
caused by such decision is mitigated thanks targépécation of the data at multiple holders.
The blackmailer is not able to generate an ackmiydment to be sent to its bank-set, and then
the check corresponding to its punition will betes by the owner. Indeed, the owner contacts
the verifiers to receive the holder's check shaesmed to it.

Offline or selfish verifier: A verifier may be offline or just selfish and theeglect to
perform the verification of its assigned holderterage. Nevertheless, the holder is paid if at
least a t threshold number of verifiers are horaest online. The number t should be then
minimized in a way that takes into account the pidé¢ disconnection or selfishness of
verifiers. But also, this number should be maximize avoid possible collusions between a
fraction of verifiers and the holder. Subsequerttig threshold t is a parameter that trades off
the way of handling peers’ churn and the way ofigating their collusion. For a verifier that
has been offline, it should (loosely) synchronizé¢hwhe holder in order to send the right
challenge index, whenever it reconnects to theegayst

Selfish owner:If the owner does not send any acknowledgementaged®s the holder after
correct reception of the data, the holder can reigufeom verifiers to generate an
acknowledgement message on behalf of the owner. ddlmowledgement message is
forwarded to the holder’s bank-set to unlock thedits corresponding to the escrowed credits
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for the punition. However, if there is litigatione., the owner pretends not having received any
data from the holder, then the verifiers may acpaxies for transmitting data between the
holder and the owner (in exchange for small amadfirgayments): the holder splits data into
chunks that will be conveyed to the owner throughifiers.

5.3.4.Simulation experiments

In order to validate the ability of our payment-bdstorage approach to detect and punish
selfish peers, we developed a custom simulatorunf gayment scheme. This section first
describes the framework of simulations, then prissand analyzes the results obtained.

Framework

The self-organizing storage system is modeled alosed set of homogeneous peers. We
consider the same simulation model as in the répathased approach. Newcomers arrive to
the system in Poisson distribution at rate equdl®® per hour and they stay in the system 2
weeks in average. Peers go online and offline wegpdaw distribution with average online
period of 1 hour and average number of connectibr&4 times per day. Peer storage space,
file size, and storage duration are chosen fromctated log-normal distributions with average
value equals respectively to 10GB, 500MB, and lkw&aere are 2.85 of files that are stored
per peer and each one is verified each day.

User strategies:We consider three peer strategies: cooperatiorsiygaselfishness (free-
riding) and active selfishness.

- Cooperativepeers thoroughly follow the audit-based approach.

- Passively selfish:peers never contribute to the storage community perform
verifications.

- Actively selfish:peers are cooperative with respect to a given déta probability p
(participation probability)and continue to be cooperative with respect tovéy data
with probabilityq (fully achieving promise probability). Otherwisbgly are selfish.

Pricing: For the formulation of storage bid prices, we psmpdhe following pricing
function:
account(peer,t)

price(peer,t) = w X ( ) X pricey + (1 —w) X priceg

account

Where accounfpeer, t) is the amount of credits held by the peer at ttm& is used for
weighting the impact of the amount of credits owbgdhe peerprice, is the regular price for
storage or verification, aratcoung is used for normalization.

Simulation results

Different scenarios were simulated to analyze tipaict of several parameters on the
payment mechanism. Simulation studies the tramspioase of the network to a stable state
where cooperative peers are the only active aofdige system.

Exclusion of selfish owners:Figure 39 demonstrates that selfish peers haveclssbility
over time to store data in the system; on the olla&d, cooperative peers are becoming the
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majority of data owners in the storage system.iPaselfish peers are the first to be excluded
from the system because they consume all theialimitedits (all peers have a default number
of credits when they join, in order to facilitatgsteem bootstrap). Active selfish peers are also
filtered out from the system because they coopenalieprobabilistically.
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Figure 39 Averaged ratio of owners per strategyn=1000,r=3, m=5, w=0.5,p=0.2,0=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfisteprs.

The figure shows also that a decreasing fractiothefe active selfish peers are still present
in the system. Because they cooperate at some lplibhathey may temporarily gain some
credits and then go without detection. These amsidered as the false negatives of our
detection scheme. But still, such false negativeglacreasing with time.

We may notice that 1 simulated month is sufficiemtfilter out passively selfish peers;
however the filtering may take more than 3 monthisdctively selfish peers. Yet, this time
period can be reduced by adaptively reducing th@utenitial income for newcomers.
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Figure 40 Averaged ratio of holders per strategyn=1000,r=3, m=5, w=0.5,p=0.2,9=0.2, 40% cooperators,
30% passively selfish peers, 30% actively selfisteprs.

Exclusion of selfish holders:Figure 40 depicts the fraction of cooperators aaifish peers
in the population of data holders. The figure destiGies that with time cooperative peers will
make the majority of holders. This result is dughte fact that actively selfish peers are losing
their credits and then becoming unable to escradits necessary for the storage of other
peers’ data; albeit the fact that they will propesgll prices (this explains the small pick in the
first simulated month).
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Figure 41 Averaged ratio of cooperative owners vaing probability of participation p and probability of
achieving promiseq of actively selfish peersn=1000,r=3, m=5,w=0.5, 40% cooperators, 30% passively selfish
peers, 30% actively selfish peers.

Selfishness ratio:The penchant of actively selfish peers towards eoation or selfishness
is represented by the probabilities of participafiand achieving promisg high probabilityp
and g means that the actively selfish peer is cooperatiost of the time. The probability
impacts more the convergence of the system to catipe-only owners: for higlg (=0.8), the
system converges more quickly to 100% cooperatiugeos than for lovg (=0.2), as illustrated
in Figure 41. However, the probability of partidijpa p has a less effect on the system because
initially all actively selfish peers have enougledits to continue to be present in the system.
Starting from the first month, the graph shows thate is a little increase in detecting actively
selfish peers provided that they participate mgr®(8).

Dynamic strategies: If a peer changes its strategy from cooperatioseifishness, it is
gradually deprived from storing its data as prouwrerigure 42.a. On the other hand, selfish
peers that change their strategies to cooperétiey, are progressively permitted to store their
data in the system (Figure 42.b and .c). Finaligse peers share the storage capability of the
system with the rest of cooperative peers (atia cdt0.4). This result demonstrates the ability
of the payment scheme to encourage peers to optdmperation instead of selfishness by
working as a quota system that regulates the copsmmof peers to their contribution.
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Figure 42 Averaged ratio of owners that switch theistrategy at time=45 days (marked by the red daslte
line): (a) from cooperation to passive selfishnessr (b) from passive selfishness to cooperation, ¢c) from
active selfishness to cooperatiom=1000,r=3, m=5, w=0.5,p=0.2,0=0.2, 40% cooperators, 30% passively
selfish, 30% actively selfish peers.

Overhead: Note that we only measure the communication ovettshze to holder and
verifier selection and storage verification. In tgardar, we exclude the cost of P2P overlay
maintenance and storing/fetching of files, sincés ihot relevant to our analysis. In a further
observation, the bandwidth consumed for verificati® dependent on the number, rather than
the size, of files being stored. This is in fageguirement on the verification protocol. Figure
43 shows the amount of control messages per file. figure demonstrates that the bandwidth
cost decreases with time.
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Figure 43 Average amount of control messages pefdistored (in KB).n=1000,r=3, m=5,w=0.5,p=0.2,
g=0.2, 40% cooperators, 30% passively selfish pee)% actively selfish peers.

Data reliability: Figure 44 shows that the rate of the amount of igeated into the storage
system decreasing. This is due to several fackirst of all, there is the gradual exclusion of
selfish peers that limits the number of peers #blstore data in the system. Second, there are
possible false positives of our detection systere tiu the starvation phenomenon where
cooperative peers are not able to contribute bectney are not chosen as holders or verifiers,
and at the end they consume all their credits atdegpelled from the system. The figure also
depicts the rate of file loss that is falling doas low as zero, owing to the exclusion of selfish
holders (explained earlier).
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Figure 44 Average peer rate of file storage and leper hour.n=1000,r=3, m=5,w=0.5,p=0.2,09=0.2, 40%
cooperators, 30% passively selfish peers, 30% actlly selfish peers.

Starvation: Figure 45 depicts the rate of file injection wiimé varying the value of the
weightw in the price function. The figure shows that i€ thrice does not take into account the
amount of credits possessed by peers (Q), file storage rate decreases due to the phemom
of starvation where peers are not able to store dia¢ to a lack of credits. However, if the price
is based on the factor of possessed credits 1), the rate decreases at first then becomesestabl
for the rest of the time. So the consideration l# pricing function allows handling the
starvation problem. Auctioning for holder and vierifselection is then helpful for starving
peers.
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Figure 45 Averaged amount of data stored in the syam varying the weightw. n=1000,r=3, m=5, p=0.2,
g=0.2, 40% cooperators, 30% passively selfish pee)% actively selfish peers.

5.3.5.Security considerations

In this sub-section, we analyze the security ofgtwocol to prevent or at least mitigate the
threats described in sub-section 5.3.1.

The security of our scheme relies principally oplication to deter peers that might try to
subvert the protocol. It assumes that there aleaat a given number of peers in the system at
all times, and uses protocols to ensure that teiesywill correctly operate unless a substantial
fraction of these peers are selfish or malicious.

Selfishness punishmentThe proposed payment scheme works as a quota syptsrs
have to keep a given balance to be able to paatieipp the storage system. Peers that are
passively selfish gradually consume all their dsedor their data storage and when their
accounts are exhausted they will not be able tothsestorage system anymore. In the same
way, actively selfish peers keep losing creditsabge they have been detected destroying data
they have promised to store. These peers will dtatn their accounts and with time will not
able to use the storage system.

Collusion prevention: Holder and verifier selection is random which lisjpreset peer
collusions. The digital check of the holder is sldhiamong verifiers, thus mitigating also
collusion between the owner and one or a small murob verifiers. Additionally, challenges
sent to the holder are constructed cooperativelydjfiers to avoid collusion between the
holder and one or a small number of verifiers. Inaollusion between the owner and the
holder is less probable because it does not genarat financial profit since the owner must
pay verifiers to check holder's storage. The disttion of tasks to several verifiers limits
collusion; but it is still feasible if at leaktverifiers collude with the holder for instance. The
probability of collusion can be computed as:

ny

Z ("V)pia—pym

=k

wherep is the probability that a gilven verifier is not est (colluder). However such collusion
probability is less than 0.1 for 60% of dishonestrs (i.e.p=0.6) in the system and with=10
andk=8, or 80% of dishonest peers and with20 andk=18.
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Ensuring fair-exchange: Holder and verifier payments are strongly relatedhe correct
operation of data verification. This motivates tesltb accept that its storage being verified and
incites verifiers to perform this task periodicathy behalf of the owner. The frequency of
verifications is determined by the owner at theetiof delegating verification. This frequency is
the matter of all verifiers: the majority of vedfs use the determined frequency at which the
holder collects a sufficient number of random nurelie compute the challenge; therefore very
fast or very slow frequencies of some verifiersra influence (with large probability) the
actual frequency of computing the verification ¢fadje. The holder or the verifier cannot cash
their checks without verifying the stored data.sTisi due to two reasons. First of all, the secret
random numbers included in the checks are only kntmathe actual payers since they are held
in DLP-based blinded version at the payees and-batktoo. Second]ASH is a one-way
function, so knowindHASHm) does not give any extra information on Therefore, the data
verification operation strongly relates to the wldand the verifier payment operations.
However, the existence of such relation is onlyrgogeed by the owner. So, if a verifier or a
holder is still not paid even though it behaveslwitlhas the possibility to prove owner’s
misbehavior to the other participants (using theifeed checks) and also to stop cooperating
with the owner without being punished. Thus, thenemis encouraged to provide this type of
relation to secure the future cooperation of pharglling its data. The bank-set comes into play
to guarantee that payments are actually doable s corresponding amounts of credits are
locked to prohibit the payer from emitting bad dkeec

Preventing remuneration-related attacks:Attacks on the payment scheme (such as double
spending or impersonation) are handled by the KARfvinework. Moreover, the sequence
number and the identity of the payee included ichgaayment receipt prevent replay attacks,
because they impose that the digital check is caghed by the payee one time. We assume
that all exchanged messages are signed and erttrigptéhe keys of the involved parties in
order to ensure the integrity of exchanged messagédsven the security against man-in-the-
middle attack for instance. Sybil attacks are ratégl a la KARMA by compelling peers to
execute a cryptographic puzzle before joining ttueagie system, the result of which will be
used to construct their identities.

5.4.Discussion

The proposed cooperation incentive mechanismstagpn-based and remuneration-based
suggest two distinct solutions to the P2P storagsblem (Table 5 shows a number of
dissimilarities between both approaches).

In the reputation-based approach, the periodidteesfidata holders’ evaluation obtained by
verifiers and data owners serve in computing tipeitagion value of these holders. Such results
are not disseminated in the network to other pdbts conferring to the approach a locality
property. Therefore, the approach operates bettargroup-based architecture where peers are
only concerned with the reputation of their grougnmbers. In a group of modest size, peers are
able to be acquainted about the behavior of othemrspinside the group and then act
accordingly.

On the other hand, the remuneration-based apprdaes not require dissemination of the
verification information, it rather uses such inf@tion to decide in a self-organizing way if the
verified holder deserves being rewarded or punishigid financial incentives. Moreover, the
security of the remuneration-based approach suppibee there is at all times a fraction of
peers in the network that are honest in order toecty function. The selfishness or
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maliciousness of peers is mitigated by distributthg critical functions of the incentive
mechanism to multiple peers in the same way aszamine failure model. For that reason,
large population of peers better suits the remuiverdpased approach than a small or a group-
based peer population.

Table 5 Comparison between the proposed reputatiohased and remuneration-based approaches

Reputation Remuneration
+ random but uniform holder and verifigr+ random holder and verifier selectign
Data | selection complemented by an auction
resilience | + no starvation of storage sites ++ starvation of malicious or selfish storape
sites
++ storage incentive: good reputation enablest storage and verification incentivg:
storage remuneration
+ verification incentive: accuracy of reputationt+ global view of peer behavior
Cooperation| estimation + limited collusions
stimulation | - Local view of peer behavior + Sybil attack mitigated wusing
+ limited collusions cryptographic puzzle
+ Sybil attack mitigated by controlling entry to
the group
. - group formation (e.g., social networks) - - regumient of a substantial fraction pf
Architecture honest peers

Reputation-based and remuneration-based approactiees be combined into one
cooperation incentive mechanism to achieve a twlofiddjective: protecting the system from
malicious peers and inciting the cooperation ofdtieer peers. In this way, peers use the P2P
storage system since they trust and rely on pbatsate well-reputed. They are also motivated
to contribute to the system thanks to financialaels they gain from their cooperation. The
security of the storage system that relies on scobperation incentive mechanism is
guaranteed. Indeed, selfish peers are generallyidened as rational and therefore they prefer
to obtain a compensation for their contributionstéad of not cooperating. On the other hand,
irrational peers that are malicious are detectetithan acquire bad reputation leading to their
gradual eviction from the system. Finally, irra@bmpeers that are rather altruistic attain a high
reputation and are then admitted to stay in théeaysAdditionally, we suggest that verifiers
should receive a reputation value as holders. iBhimt proposed in the described audit-based
reputation approach since only holders have a adiput value and verifiers are incited to
perform their work in order to estimate that vegputation. It is possible that holders and
verifiers are ranked with reputation. However ration for storage and verification services
should be decoupled to avoid free-riding peers dffgr verification assistance to the data
stored in the system as an alternative to utilizimgjr own storage resources. Therefore, peers
should have two values for reputation: the firse a@oncerns their aptitude to store and to
preserve data of other peers, and the second amés pait to their contributions in checking the
presence and integrity of such data. However, waatorequire distinguishing storage from
verification services in the remuneration mechanimoause generally payment are neutral and
may even allow a multi-service framework as disedsa Section 2.4.2 of chapter 2.

5.5.Summary

This chapter described two new cooperation incentiuechanisms that are well suited for
P2P storage applications. These approaches, wh#tbgrrely on reputation estimates or
payments, allow a fast isolation of selfish pears] prevent several further malicious behaviors
that go beyond the absence of contribution to jistesn to data destruction or even malicious
peer collusion to render data verification inop@etRemuneration incentives have been shown
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to be effective as cooperation incentives for Par dackup [Toka and Maillé 2007] although
their resistance to attacks beyond selfishness roasbeen really studied. The proposed
cooperation incentive mechanisms are not only &bldetect non cooperating peers in the
storage system and to punish them, but they ata@aimitigating several potential attacks that
may cause the system to fail in providing a reéadnhd fair storage for all peers. The choice of
one mechanism over the other depends on the oagamizof peers inside the storage system.
The first mechanism presented is based on locatagpn that is appropriate for peers clustered
in groups (like social networks). The second medmarinstead better fits larger networks.

The next chapter further and more formally investtg the capabilities of the proposed
mechanisms as cooperation incentives through thefugame theoretical models.
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Chapter 6

Evaluating cooperation incentives using game theory

Cooperation incentives prevent selfish behaviorereby peers free-ride the storage system,
that is, they store data onto other peers withawrttriouting to the storage infrastructure.
Remote data verification protocols are requiretirplement the auditing mechanism needed by
any efficient cooperation incentive mechanism. émeyal, a cooperation incentive mechanism
is proven to be effective if it is demonstratedtthay rational peer will always choose to
cooperate whenever it interacts with another cadper peer. One-stage games or repeated
games have been mostly used to validate cooperaticentives that describe individual
strategies; in addition, the use of evolutionaryaiyics can help describe the evolution of
strategies within large populations.

This chapter proposes two theoretic game models B2P storage system that we use to
show under which conditions an audit-based strateigg over self-interested strategies. The
contribution of this chapter is the validation diet security primitive particularly the
probabilistic and the deterministic verificationopcols, with respect to its cooperation
enforcement function for data storage.

6.1.Preliminaries

Game theory offers valuable tools for the validatid cooperation incentive mechanisms as
the study of selfish behavior and incentive meassteongly relate to rationality and decision
making. Consequently, it has been used in sevavgksathat try to provide means to prevent
selfishness and to enforce cooperation among selfdasted individuals. In the following,
essential definitions about game theory are firsbduced, and then some approaches inciting
resource sharing and applying game theoretical matd@t we deem to be interesting are
reviewed.

6.1.1. Definitions

Game theory is a branch of applied mathematicsntiwatels interactions among individuals
making decisions. It attempts to mathematicallytgagindividual rational behavior in strategic
situations where individuals’ decisions are basedheir preferences and also depend on the
other individuals’ choices. It then provides a laage to describe, analyze, and understand
strategic scenarios [Turocy and Stengel 2001].

Game: A game consists of:

- A set ofplayers{py, ..., pn} Which are the individuals who make decisions

- A set ofstrategied.e., moves for each play&i=1, ...,n

- A specification of each playerisayoffswhich arethe numeric values assigned to the
outcomes produced by the various combinations maftegies. Payoffs represent the
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preference ordering of players over the outcomagofs are expressed using player’s
utility functionU;:
U;: SxSx ...x§, — O

The game assumes that all playersrational; this means that they will always choose the
strategy that maximizes their payoffs. Playersthem participants in the game with the goal of
choosing the actions that produce their most prefleputcomes.

Game types:A game can be one of two type®n-cooperativer cooperative In the first
type, players are selfish and are only concernall wiaximizing their own benefit. In the
second type, some players cooperate and form #iondh order to achieve a common goal,
and then the coalition and the rest of players play-cooperatively the game. A game can be a
repeated gaméhat consists in a finitely or infinitely number @érations of some one-stage
game. In such one-stage game, players’ choicesefmeed to as actions rather than strategies
(term reserved to the repeated game) and thesensidtike into account their impact on the
future actions of other playergvolutionary gameheory provides also a dynamic framework
for analyzing repeated interactions. In such gamssjomly chosen players interact with each
other, and then the player with the lower payofftsiies to the strategy of the player with the
higher payoff i.e., players reproduce proportion&dl their payoffs. Hence, strategies with poor
payoffs eventually die off, while well-performintrategies thrive.

Game equilibria: Finding a solution of a game is trying to find didia in the game. In
equilibrium, each player of the game has adoptsttadegy that they are unlikely to change.
Many equilibrium concepts have been developed imtéeampt to capture this idea. The most
famously one is th&lash equilibrium Nash Equilibrium is the set of players’ strateippices
where no player can benefit by changing its stratelgile the other players keep their strategies
unchanged. So, it is a set of strategi@d{ S, ..., on 0 S}, such that:

Ui(oy, ..., 05 ...,on) 2 Ui(oq, ..., 05, ...,0on), ViO{l, ...,ntandd ;09

Evolutionary stable strategyESS) is a refined version of the Nash equilibriwhich
captures the idea that a strategy that is a Naglikequm, if adopted by a population of players,
cannot be invaded by any alternative strategyithiitially rare. For a two-player game with a
strategy spac& a strategyox is an ESS if and only if for any’ # o*, either one of the
following two conditions holds:

a) U(o*, %) >U(d’, o%)
b) U(o*, o%) =U(d’, ox) andU(o*, ¢’) >U(d', 0’)

Here,U(., .) is the payoff function of the associated {player game.
6.1.2. Related work

To achieve a socially optimal equilibrium for afsmiganizing system with autonomous
peers, different incentive mechanisms have beepogerl in the literature. These incentives
include providing virtual or real payment incentwar establishing and maintaining a reputation
index for every peer in the network.

Payment incentive modeling
One of the first studies that considered paymehemes in P2P systems is [Golle et al.
2001], which uses a game theoretical model to stiuelypotential benefits of introducing micro-
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payment methods into centralized P2P file-shariygiesns such as Napster. In such type of
systems, in order to catch the asymmetric aspeuitefactions between peers, called agents,
the strategies have two independent actions: ghagnproviding the service, and downloading
i.e. acquiring the service. Without considering amgentives as it is the case with Napster, the
outcome of the equilibrium analysis results in aique equilibrium with nothing is shared and
nothing can be downloaded. Even with some levalliofiism in the system, all agents, either
altruistic or free-rider, are not restrained frommehloading and the whole cost then weights
over the small number of altruistic agents. Theeefthe authors propose alternatives based on
payment to overcome the free-riding problem. Thst foroposed payment scheme consists in
charging agents for every download and rewardimgntlior every upload. The result of the
equilibrium analysis shows that there is one unigud strict equilibrium where agents are
extensively sharing and downloading files. Thisulegalidates the payment scheme; but still,
the analysis does not take into account the fattafbents share diverse files and some of them
may store files that are sufficiently rare thusaimy receiving a large fraction of all the
download requests for these files. For that reatf@nauthors propose a second payment-based
alternative that continues to penalize downloadsréwards agents in proportion to the amount
of material they share rather than the number tfags they provide. The equilibrium analysis
demonstrates that two strict equilibriums may kaehed either full file sharing or no sharing at
all; though simulation experiments of the model dastrate that the system converges to an
equilibrium where all agents cooperate by sharileg.f

[Toka and Maillé 2007] in the DisPairSe projectkaodifferent direction for defining peer
utility function that becomes more centered on payithan the model of [Golle et al. 2001].
Actually, the authors of [Toka and Maillé 2007] neted a P2P backup service as a non-
cooperative game using an economic model. The maemsmcharacterizing the profile of each
user and, associated with the demand and supptyidms turned to be playing a crucial role on
justifying the use of a pricing scheme or imposgdreetry with respect to the optimal situation
of the service that is maximizing the social weadfaindeed, the theoretical study of the
economic model shows that if users are homogenieotesms of these parameters, then it is
better to opt for imposed symmetric user contrimdirather than a pricing scheme. However,
heterogeneous user population, which is the gewasa of P2P networked peers, validates the
use of a pricing scheme by which a monopoly isomhficed to fix unit prices for buying and
selling storage resources. The mathematical stuelsepted by the authors attempts to defend
the intrusion of the operator in fixing prices farP2P backup system; albeit the fact that a
profit-oriented intrusion whereby the operator\&s to extract the maximum profit out of the
business, reduces the social welfare of the sybteta times its maximum.

Reputation incentive modeling

Reputation schemes have received a great dedkeottion for enforcing node cooperation in
mobile ad hoc networks. Notably, [Michiardi 2004toposed CORE as a collaborative
reputation mechanism motivating nodes to forwardkpts, and used a game theoretical
approach to assess the features and validate ttigamiem. The author relied on a cooperative
game that uses a two-period structure: playersdeside whether or not to join a coalition, and
then both the coalition and the remaining playdieose their behavior non-cooperatively.
Additionally, the model employs a preferential sttwe as suggested by the ERC-theory
[Bolton and Ockenfels 2000]; even though the ussuah theory for ad hoc networks is not
argued in more detail by the author. The studyhefmodel demonstrates that there is a Nash
equilibrium where at least half of the total numhkmrnodes cooperate. The authors also
considered the case where nodes may have a comirstrategy space where they may choose
their cooperation levels instead of discretely ciog just between cooperation and defection. If
nodes have identical ERC preferences and are @tégleenough in being close to the equal
share, the study reveals that the grand coaliigtable i.e., no player has an incentive to leave
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the coalition. Such interesting analytical ressltniot very well defended by the author as a
validation of the proposed mechanism since themagan that the nodes will be very much
interested in achieving equality of shares maybeomet in practice.

Rather than to be expressly conceived for a spatifichanism, [Zhao et al. 2009] proposed
a general and generic game theoretical frameworkddel and analyze cooperation incentive
policies. The model studies, instead of game dayuilins, the game dynamics where strategies
change according to two learning models: the ctibest (CBLM) and the opportunistic
(OLM) learning models. In CBLM, each peer choodes dtrategy that has the highest payoff.
In the second learning model OLM, each peer rangammboses another peer astéacher If
the teacher has a better payoff than the peetattez adapts to the teacher’s strategy. OLM is
similar to evolutionary game concepts where thealted teacher is the co-player of the peer.
The main parameter of comparison between thesaifgamodels is robustness: a system is
robust if it stays at a high contribution level ewith perturbation such as peer arrivals or
departures from the network. The mathematical amabjemonstrates that a system with CBLM
is less robust than with OLM; this latter beingkalia typical evolutionary game model.
Moreover, the analysis allows comparing two inocentpolicies: the mirror incentive policy
under which a peer provides service with the sambgbility as the requester serves other
peers in the system, and the proportional incengoley whereby the peer serves the requester
with a probability equal to the requester’s conttibn to consumption ratio. The study shows
that the mirror incentive policy may lead to a cdete system collapse, while the proportional
incentive policy can lead to a robust system. Ta@ilt demonstrates that a policy motivating
fairness in terms of contributions and consumptiohgesources achieves better stability than
participatory incentives.

[Lai et al. 2003] opted also for an evolutionarydst of applications in P2P systems. The
authors proposed a model that they called a gépnedaform of the Evolutionary Prisoner’'s
Dilemma (EPD). Though the model is very similaithie traditional EPD, they argued that the
new model permits asymmetric transactions betweetieat peer and a server peer. Peers
decide to cooperate or not based on a reciprocdéeision function that sets the probability to
cooperate with a given peet to the ratio, rounded to a value in [0, 1], (caapien X
gave)/(cooperatioi received), such function is comparable to the priiqaal incentive policy
in [Zhao et al. 2009]. The authors simulated EPDeurvarious situations and obtained several
results. They showed that techniques relying onty private history, where solely peer
experiences are taken into account, fail in ingitotwoperation among peers as the population
size increases. However, techniques based on shitedy better scales to large populations.
Additionally, results demonstrate that cooperatigii strangers fails to encourage cooperation
in the presence of whitewashers. Therefore, thieoasitproposed an adaptive policy in which
the probability of cooperation with strangers beesnequal at timé+1 to pc™* = (11)xpc +
uxC,, whereCg=1 if the last stranger cooperated and =0 otherwiémulations validate the
adaptive policy by demonstrating that incentivesedoh on such policy make the system
converge to higher levels of cooperation.

[Feldman et al. 2006] have studied in more deptiwthitewashing problem in P2P systems
using a game theoretical model that particularkesainto account heterogeneity of users’
behavior. In order to sustain the system when theetal generosity is low, punishment
mechanisms against free-riding users are requifée: proposed punishment mechanism
consists on imposing a penalty on free-riding bairavith probability (1p). The optimal value
for the probabilityp is defined by the maximum obtained performancédefdystem. Still, such
mechanism can be undermined by the availabilitghefap pseudonyms through which a free-
rider may choose to whitewash. To measure the tefflewhitewashing behavior, the authors
computed system performance considering the cdgesrmanent identities and free identities,
in addition to different turnover rates that reprsuser arrival and departure rates (arrivals and
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departures are assumggbe-neutrali.e., they do not alter the type distribution).eirhstudy
demonstrates that the penalty mechanism is eftegiiven both the societal generosity and the
turnover rate are low; otherwise a notable sociatat due to whitewashing is experienced (we
will also come to such result in our study of amlationary game model of the audit-based
incentives).

In the remainder of this chapter we will presentesal game theoretical models describing
various features of our audit-based incentive maichas. We endeavor with such models to
validate our mechanism as an influencing force et rational peers to behave in a way that
maximizes the common good of the P2P storage system

6.2.Repeated signaling game of payment-based incentives

In this section, we model the P2P storage systeagasne. For the sake of game symmetry,
we assume the presence of just two players: thee lgltler and the data owner verifying the
holder. These players are involved in the stratpgicess of deciding whether to cooperate or
not on one hand, and to punish or reward on ther dthnd.

Although the considered games (that will be desctilm the following) model a payment-
based incentive mechanism, the assumption of réputimcentives may also be sustained with
such games given that the reward is the positipeitation gained by the holder and the
punishment is a negative reputation; however thmesidered models imply also that the reward
gained by the holder is deduced from the ownertsmue and the punishment inflicted to the
selfish holder is reimbursed to the owner. So, ghesented models are more adequate for
reputation mechanisms that are based on a qudtrsys

Our game models show how incentives can be busiedban the regular verification of the
correct storage of data, as promised by holderop&ation incentives are expressed as
payments: the holder is rewarded for a correctaese while it is charged when responding
incorrectly. The outcome of this modeling is thdidation of the existence of cooperation
equilibria after a series of verifications, and thaluation of the parameters to be taken into
account to design proper payment-based incenfives.games are introduced that respectively
model the holder's strategy and the owner's siyateg

6.2.1.Game elements
The essential elements of our game model are:

- Players:data owner denoted and data holder denotét

- Payoffs:Payoffs represent the preference ordering of ptageer game outcomes.

- Information: information set for a player summarizes what tteygr knows when it
gets to make a decision.

- Chance:probability distribution over chance events. Wpresent chance events by a
random move of nature which is a pseudo-player elamsions are purely mechanical
and probabilistic.

6.2.2.Game models

The P2P storage is modeled as a Bayesian gamewchnas game, information about the
characteristics of other players is incomplete, aatire is introduced as a player for modeling
uncertainty.

Figure 46 illustrates the structure of our one-stggme in the extensive form (in the form of
a tree where there is a complete description of tengame is played over time). A one-stage
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game corresponds to the phase of one challengaicutbyO towardsH. Notations used in
figures are explained in Table 6. The parame&iR, R’ andD, in Table 6, are measured in the
same units, e.g., the number of data bytes oratataks stored. Also regarding data stored in a
distributed fashion, we presume that the remotegeospace has more value than local storage
space, which explains th&>R>D.

Table 6 Notations

Notations Explication

data owne

data holder

malfunction of F

normal function of H

H is cooperative

H is selfist

H is faulty

succeed O's challen

fail O’s challenge

reward H

do not do anything

punish H

distributed storage gained by
supplementary storage provided by H
reward charge, such that R>S>0
punishment charge, such that G-R>R">(]
probability of challenge’s success for a
selfish holder

Probability of hardware failure (for H)

Players

Errors

Types

Signals

Actions

Payoffs

Chance

al & |71|0|0g 2| |Mw|o|z|z|T|o

The game (depicted in Figure 46) models the faatt tthe holdeH may follow two possible
strategies, or in game theoretical terms, be of tyyes: cooperative, that is, it will store
owner’s data until its retrieval; or selfish, thatit will destroy data chunks with probability 1-
g.

These types are respectively referred as “C” aridIf3H chooses the type “C”, it succeeds
in answering a challenge requesteddgs modeled by the emission of signal “s”. Howeitter,
may fail because of a hardware crash or erromfgtiance, which occurs with probabildyand
is modeled by the emission of signal "f". The feluo answering a challenge is either an
incorrect response to the challenge or, more fretfjyeno response at all (after some time-out).
If H chooses type “S”, we assume that it may succégsinswer a challenge only with a
probability equal tay(1-d). Otherwise, it will behave like a faulty peer. dddition, real faults
may still happen with probabilitg.

This probabilityq of a correct answer from a selfish holder may be t several reasons.
The selfish holder may restrain from answeringdiwaer pretending to be offline, and then the
probabilityq is the probability that the owner is fooled witlich “no response” (we assume that
a holder of type “C” is always available for vetdtions). Moreover, the used verification
protocol can be probabilistic such that the holdear destroy a portion of the data and still be
able to answer verification relating to the remaindf the data. The verifier may be also
another third peer that may neglect to performvéirfication task, and theqis the probability
that the verifier does not check the remote datahtve been actually destroyed by the holder.

The ownerO is not informed about’s type, which is whyO cannot distinguish between
“C” and “S” despite the fact thatl's signal is seen b®. Such situations that cannot be
discriminated belong to the same so-called “seéhfmrmation”. The two sets of information |
and |l depicted in the game diagram correspondesgely to success and failure signals.
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Figure 46 Modeling the holder strategy

In this section, we will consider a simplified viers of the game of Figure 46, in which the
risk of hardware failure foH is simply neglecteddE0). This simplification allows easier
computations in the next sections, while focusindholder strategies.
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Figure 47 Modeling the owner strategy

The game model of Figure 46 is a sequential gamth asymmetric distribution of
information, since the holdét is informed about its type, but the owr@ris not informed.
However, O can probabilistically determinél's type based on its prior beliefs, such beliefs
typically reflectingH’s reputation. With every verification performe®, updates its beliefs
according to Bayes’ formula. To descriBé&s prior beliefs abouH’s type, we derive a second
game model depicted in Figure 47. This model igpéctl signaling game, that is, players have
asymmetric information. The game is modeling thenemstrategy: the game will use signals
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based oH's type as determined by the Natutfethe informed player, has different types given
by nature; whileH knows its typeQ© does not. Based on the knowledge of its own tigsends
signals whichO can observe but which do not provide perfect imiation aboutH's type. In
our model for instance, the set of informationriiy describe a cooperative or selfishand
the set IV may describe a selfish or faubty

6.2.3.Equilibria

The solution of the game, which constitutes playlke€st response to the actions of the other
player, is called an equilibrium. The following #ens define the Nash equilibrium and the
perfect Bayesian equilibrium of the game.

Nash Equilibrium: To define the Nash equilibrium of the game, themrad form of the
game of Figure 46 (which lists each player's sgigt® and the payoffs that result from each
possible combination of choices) is presented béhotiable 7.

Table 7 Normal form of the game of Figure 46

O's payoff
rw pn
C|(R-D,GR) | (R-D,R)
S | (R-gD,-R) | ((R'-qD,R)

H's payoff

We assume thds-R > R'. If H chooses the type “C”, theD, by strict dominance, chooses
the action “rw” because the payoff associated 8" “t= G - R) is higher than the payoff
associated to “pn” (R’). By choosing “rw”, the better response Bys “S” becaus&k —D <R
- gD, and soQ will prefer to choose “pn” becaust > 0 > R. At this point, neitheD orH can
have a benefit by changing to another strategy. (3, “pn”) is a Nash equilibrium. The
normal form game leads to an equilibrium where oooperation is the best response for
players.

Compared to the extensive form game, the normah fgame lacks the information on
whetherO is informed or not about the type df The view of incomplete information is not
represented within the normal form. Another eqilitm, the perfect Bayesian equilibrium,
takes into account this view.

Perfect Bayesian Equilibrium: A perfect Bayesian equilibrium is a strategy geoti* =
(or*, o) and posterior beliefg(- |m) such that:

1) O typet, oy € argmax,, (U; (0, 03, t))

2) O signalm, ; € argmaxg, (X u(t|m)U,(m, oy, t))
_ _p®oi(mlD)

3) w(tlm) = 5 hermi)

Finding the perfect Bayesian Equilibrium of the gammeans finding the following
probabilities ([Ghassemi 2006]):

o (sl0) =1 o (flC) =0
o1 (slS) =q o1 (fIS)=1-¢q
o1(s|F) =0 o (fIF) =1
o, (rwls) = uy o;(fgls)=v; =0 oz(pnls) =w; =1-u,

o (rwlf) =u; =0 a5 (fglf) = v, a(nlf) =w,=1-v,
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Thus, the belief update equations are as follows:
p(€) r(S)q
Cls) =————"—F— S|s) = ———— Fls)=20
A T3 T G PR T ErTO I

) __ -9 ____r®
wcify =0 wGIN =SS a =g+ pid HED = oa—o+

H'’s payoffs corresponding to each type is given by:
U,(01,05,C) =u(R+R')—R'—D
U,(64,05,8) =q(uy(R+R')+ R'w, —R'— D) — R'w,
U,(0y,05,F) = —R'w,

ExpectedD'’s payoffs for each signal sent byis given by:

B r©)
2. Heke(s,000) = (6 ey~

Ztu(tlf)Uz (f, 02 t) = R'w,

R—R'>+R'

T . . p(C) _p_pt
Finding the solution of the g.amt.e depe.nds on tha mg(G o TGY R—R ) that
corresponds to whether the following inequalitydsobr not:
q(R+R1)
P(©) 2 =Ry ()2
There are two case solutions:
- Case Lif p(C) = %, thenoy* is maximized foru;=1 andw,=1. Becaus&k + R’ — D
> 0, 0:* is maximized forg = 1. The perfect Bayesian equilibrium is the stygt@here:

ai(s|S) =1 o1 (f1$) =0
a;(rwls) =1 o;(fgls) =0 a;(pnls) =0
a,(rwl|f) =0 a;(fglf)=0 o, (pn|f) =1
P(S) _G-R-R
p(C)~ R+PR

The equilibrium of the game leads to a strategyre/@eandH cooperate.

- Case 2:if p(C) <%, then o* is maximized forw,=1 only. The choice ofy is

dependent o and vice versa. l6;,=0, theno; is maximal forg=0, and forg=0, o is
maximal foru;=1, and foru;=1, g; is maximal forg=1, however, foig=1, ¢ is maximal
for u;=0, and so on. There is no perfect Bayesian eqiuilibfor this case.

6.2.4.Repeated game

We analyze a class of repeated games in whichntbemed player's type is persistent and
the history of actions is perfectly observable. sThbntext rightly represents the periodic
iteration of the verification protocol performed the owner to assess whether the holder is still
storing the data it promises to keep. The analyepdated game is the game of Figure 46 and
Figure 47 iterated while maintainiridjs type. These games are played for finite times,no
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player knows the exact game termination time. Ttabgbility p captures the probability of
“natural” termination of the repeated game (e.gsslof connection betwee@ and H).
Additionally, the ownerO has the possibility to stop the repeated game detects the
selfishness or the failure bf (H is of type “S” or “F”). The payoff at th&' period is designated
by g=(g", g°). The sum of per-period payoffs is given by:

g= (Z(l —p) g{’,Z(l —p) g?)
i=0 i=0
Action profiles

From the signals sent per-period Hy O may infer the type off. There are three distinct
possible action profiles:

d) (s, rw), (s, rw), (s, rw), ...
e) (s, rw), (s, rw), ..., (s, rw), (f, pn)

f) (f, pn)

If the signal is “s”, then, the best responsédafk to play “rw”. If the signal changes from
“s” to “f", O concludes thatl is of type “S” and the action played is “pn”. Het signal is “f”
from the the first round) infers that the type dfl is either “S” or “F”, for both cases it is better
to play the action “pn”.

Numerical evaluation

The games of Figure 46 and Figure 47 are iteratedesaluated within different scenarios.
Games’ parameters are measured in MB (Mega Bytas)LIMB=106 bytes). We intend with
such evaluations to define the impact of the proipalwf game terminatiorp and also the
requirements on the values of the reward and pmeshto achieve full cooperativeness of the
holder.

At first, we consider the repeated game of FigideHichooses the strategy that maximizes
its payoff. To makeH choose the type “C” over “S”, its outcome by chings‘C” must be
higher than its outcome choosing “S”. If the owmgtheres to the action profiles presented
earlier, the payoff oH if it chooses the type “C"” is derived as:

H R—-D
gc p

H’s payoff if it chooses the type “S” is:

v _qR+(A—-q)(-R)—qD
s 1-q(1-p)

Cooperation is more advantageous Forif the inequalitygi.. > g*. holds for everyp.
From this inequality, we derive the lower boundha probabilityp (for g=1):

p> (6.2.4.3)

Since, we assumed in the beginning tRat D, then%< 0; which means that the

inequality (6.2.4.a) is always achieved for anyueabfp. So, choosing the type “C” results in a
higher outcome than the type “S” for any probapitif game terminatiop.

Figure 48 depictsl’s payoffs varyingp. The figure shows that the gap between the pafoff
H with type “C” and its payoff with type “S” increas@versely proportional tp: for low value
of p the gap counts in hundreds to thousands MBs (thphgshows truncategf’.. for low p)
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compared to a ten or so MBs with high valugpofhe figure also demonstrates that the holder
with type “S” always achieves a higher outcogie with high value ofg (e.g.,q=0.9) then
with low g (g=0.1).

200
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T_100
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Figure 48 Payoffs ofH with type “S” and “C” (truncated) varying p and q. G=30,R=20,R’=5, D=10.

Additionally, the outcomey%. gets exponentially higher with low probabilify These
results demonstrate that the repetition of the géave p) motivates the holded to cooperate
since it obtains a high payoff with cooperationrthéth selfishness taking into account the fact
that the owner follows the action profiles of 0.

Here, we consider the repeated game of Figure H&.pRyoff of the owneD is dependent
on whether the holddd has opted for the type “C” or “S”. If the type Hfis “C” then the
payoff of O, if this latter follows the presented action prdfilés derived as:

. =
g =——
¢ p

However, ifH chooses rather the type “S” then the payofbdfecomes:
P (Rl Gl DLf
s 1-q(1-p)

The owner is faced with the alternatives of whetbestop the game by punishing the holder
(playing “pn”) or to continue rewarding the holdehenever this latter answers correctly to its
challenge (playing “rw"). If the owner has priorlieés on the probabilities that the holder may
choose one type or the other, p(C) and p(S), theeoshen may decide on these alternatives
based on the following inequality:

p(C) x g% +p(S) x g§ >R’ (6.2.4.b)

This inequality (6.2.4.b) means that the averagefbaf O if it commits to the game is
higher than its payoff if it calls off the game (kirectly punishingH). If this inequality is
obtained ther®© chooses to continue the game; otherwise, it is radv@ntageous fad to stop
the game. The inequality (6.2.4.b) is obtained when

p(C) > V(p);
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V) :p( q(R +pR") )

(1-9q(1-p)G—(1—q)(R+pR"

The inequality of (6.2.3) presented previouslyiimding the perfect Bayesian equilibrium of
the game corresponds to pY(1) (case op=1).

Figure 49 illustrates the functiov(p) varying the probability of selfish holder succéss
challengegy. The figure gives the asymptotic lower boug) of the probability p(C) over
which O deems acceptable to continue the game wWitBased on its prior beliefs abddt O
can decide whether to play with or not. The figure shows that the lower bound d®)p(
increases with the probabilitywhich means that the iterated version of the gasresis risky
for O than one-stage game. Iteration of the game theivates the owner to be cooperative and
to play the game with the holder; albeit the f&etttits prior belief on the probability p(S) that
this latter is selfish is not null. This observatis even sustained by the fact that=D (i.e., the
game never ends), th&fi0)=0 which means th& always gains a higher payoff if it cooperates
with H than the one obtained by not playing the game.

V(p)

Figure 49 The minimum value for p(C) acceptable foO to continue the game varyingo and g. G=30,
R=20,R'=5, D=10.

The value of the reward gained byif it successfully answer®'s challenge and also the
value of the punishment lost By if otherwise it sends an incorrect responseOtbave an
impact on the minimum value of p(C). We can defineh impact by computing the maximum
asymptotic lower bound of p(C) (i.&/(1) for g=1) that becomes equal to:

This latter equality demonstrates that increaflrmndR’ increases the lower bound of p(C).
So, increasingr andR’ reduces the cooperativeness of the owner. Ttaggisiet an interesting
result to find out that increasing the punishméat© acquires ifH fails has a negative impact
on the cooperation dD. This is because the punishment is also obtaiye® i it does not
cooperate and stops the game by declaringHhlaas been selfish. That's why, increasRig
increases als@'s payoff of non cooperation that may exceed itgoffeof cooperation.
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Figure 50 depicts the functior(p) for different values oR andR'. The figure shows that
increasingR increases the lower bound of p(C) that even attttie limit 1 for some given
rewardR (=35 andR’=0). Increasindr’ also increases the lower bound of p(C) that sicpnitly
increases withp (compared to increasinB). We may notice that for low value @ O's
cooperation is better stimulated by increadtighan R because we have a smaller raise in the
lower bound of p(C) by increasiR] thanR by the same value (=10); whereas for high value of
p, the lower bound of p(C) considerably increasefbgeasingR’ thanR. This result is due to
the fact that iteration of the game (Igyincreases the chances®@fto obtain the punishment
valueR’ if it chooses to cooperate and if the typédag “S” and this compensates the acquiring
of this value by not cooperating (playing “pn” hetbeginning of the game).

v(p)

Figure 50 The minimum value for p(C) acceptable foO to continue the game varyingR and R’. G=30,
D=10,g=0.5.

Additionally, the figure illustrates the fact thiatreasing the gai@® obtained by the owner if
the holder is cooperative makes the lower bounp(G) decreases, as a result of the fact that
the gain is only obtained when the owner cooperatesconclusion, owner’'s cooperation is
better stimulated by minimizing the reward and pumishment valueR and R (R=D and
R’=0) and maximizing the storage g&in

Discussion

The repeated game of Figure 46 represents an étitarebetween a data owner and a data
holder from a data holder perspective. For thisea¢epd game, we aim to encourage the
cooperation of the holder by making its cooperatiedavior the best strategically choice to
make. The result on the probabilify shows that iteration of the game favors the
cooperativeness off. On the other hand, the repeated game of Figurélldstrates the
interaction of a data owner with a holder from tvener perspective. For this repeated game,
we aim, this time, to guide the owner in choosing best response to holder actions based on
the prior beliefs about this very holder (theseoiprbeliefs may correspond to holder’s
reputation). We showed that the cooperativenesheobwner increases by iterating the game.
We identified which actions the owner must folloar fa given probability p(C). For this, we
showed the inequalities that the rewRrdnd the punishmei® should verify.
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6.3.Evolutionary game model of reputation-based incenties

An evolutionary game model describes the evolutiostrategies within large populations as
a result of many local interactions, each involviagsmall number of randomly selected
individuals. An individual plays only once; it playn a one shot game against another randomly
selected player with the goal of maximizing itdityti(fitness) in that game.

This section presents an evolutionary game modtleoP2P storage system with which it is
demonstrated that peers using the audit-basedatéputstrategy will dominate the system.
Audits are obtained from periodic checking of sggreat holders based on a deterministic
detection of data destruction.

6.3.1.Game model

In the proposed system, an owner stores data agpdit holders. It appoints verifiers for
its data replica that will periodically check stgeaat holders. The system is modeled as an
evolutionary game [Friedman 1998]: “an evolutiongame is a dynamic model of strategic
interaction with the following characteristics: (ajgher payoff strategies tend over time to
displace lower payoff strategies; (b) there istiaenc) players do not intentionally influence
other players’ future actions”.

One-stage game

The one-stage game represents an interaction bewveedata owner,data holders, anch
verifiers randomly chosen. Thus, the consideredegplayers are an ownar,holders, andn
verifiers. The one-stage interaction consists vésd phases:

- Storage phasehe owner stores data at thkolders. At this phase, holders may decide to
keep data stored or to destroy them depending em $trategy (see next paragraph
“Evolutionary game”). Holders that crash or leabe system without any notice are
considered as defectors contrary to our previouk with the Bayesian game.

- Delegation phasethe owner sends verification information to theverifiers in order to
be able to periodically check data at holders. \Weto cooperate with the owner in
verifying data is determined by each verifier'sagtgy (see next paragraph “Evolutionary
game”).

- Verification phasea verifier can decide whether the holder has beepearative based
on the results of a verification protocol and tgkatential action depending on its
strategy. A verifier whose strategy is to coopenatt send the owner the results it
obtained by auditing the holder. A non-cooperatiegifier may mimic a cooperative
strategy by sending a bogus result. Verifiers aemore trusted than other peers and
may lie about verification, for instance reportiag absence of response to a challenge
for a cooperative holder. A verifier might also foemed by a malicious holder trying to
make it appear as a non-cooperative verifier. Seenéiers may also crash or leave the
system, and be unable to communicate results dfiosions. The owner therefore
cannot determine with certainty whether a verifieose to adopt a cooperative strategy.
One negative result from a verifier is also notwagtofor the owner to decide that the
holder is non cooperative. Such a notification rhawever be used as a warning that the
holder may have destroyed its data. Based on swdrr@ng, the owner would replicate
the endangered data, therefore maintaining or @veneasing storage reliability to his
advantage.




109

- Retrieval phasethe owner retrieves its data from théolders. If one holder destroyed
the data, the owner decides on potential actioratdssthat holder depending on its
strategy (see next paragraph “Evolutionary game”).

Data storage is a long-term process during whiclersé peers may have been storing data

from multiple owners; we define the evolutionaryrgathat models our P2P storage application
as a sequence of a random number of such simultarmem-stage interactions.

Evolutionary game

Our proposed game is similar to the game in [Brandt Sigmund 2006] where players have
either the role of the donor or the role of theipient. The donor can confer a bendfito the
recipient, at a costc to the donor. We consider three roles in our gaowener, holder, and
verifier; any peer may play several of these rdhesughout the game. In a one-stage game, the
owner is considered a recipient, thieolders anan verifiers are donors. The owner gaimg at
least one holder donates at a casthowever if no holder donates then the owner gétini§ at
least one verifier donates at a cest (a<l) for each verifier (Figure 51 summarizes the
model). The latter case corresponds to the situatioere the cooperative verifier informs the
owner of the data destruction, and then the ownay meplicate its data elsewhere in the
network thus maintaining the security of its dataage.

Donor:
Holder r

Donor:
Holder 2

Donor:
Holder 1

[-<cor0] [ bor0 |
Recipient \ _ b or
: Owner \ pbor0
[-ac or0] [pboro0]

Donor:
Verifier 1

Donor:
Verifier m

Donor:
Verifier 2

Figure 51 One-stage game model
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Holders and verifiers have the choice between aaoipg, which we call interchangeably
donate, or defecting:

- Cooperation whereby the peer is expected to kelepr&tdata in its memory and to
verify data held by other peers on behalf of theem

- Defection whereby the peer destroys the data iabaspted to hold, and also does not
verify others’ data as it promised to.

Storage of data and their verification are two petalent actions. Appendix C studies the
behavior of peers that may defect in one of thet®ras independently of the other. The
following instead considers peers with some deteehibehavior that take these two actions as
falling under the same objective: either to coofeeoa to shirk.

The peers’ strategies that we consider for study ar

- Always cooperateAlIC): the peer always decides to donate, when in dle of the
donor.

- Always defect AlID): the peer never donates in the role of the donor.

- Discriminate D): the discriminator donates under conditionshé tliscriminator does
not know its co-player, it will always donate; hoxge, if it had previously played with
its co-player, it will only donate if its co-playelonates in the previous game. This
strategy resembles Tit-For-Tat but differs frormithat both the owner (the donor) and
its verifiers may decide to stop cooperating whth holder in the future.

6.3.2.0bservations

Let us consider a scheme (see Figure 52) inspimd &pidemic models which categorize
the population into groups depending on their stid@es and Sleeman 1983]. Two states are
distinguished: “not known” and “known” states. Besa of the random selection of holders and
verifiers among all peers and given the presenadoifn, there are always nodes potentially in
the “not known” state.

U

——

™N
\
/

—

—a— — Storage
system

Figure 52 System dynamics

We denote the number of peers that a given pesrérage does not know at a certain ttme
by D and the number of peers that it knows on averagienat by K. Peers that may join the
system are peers who were invited by other membisa fixed invitation ratel. Peers are
leaving the system with a fixed departure ratg. of
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The rates designates the frequency of encounter betweerpegeos, one of them being the
holder (i.e., the probability that a peer knows whthe behavior of another peer). The rate
depends on the replication ratand verification distributiomn; indeed it is derived in average

as:
T (R P A

y being the average storage rate of peerd\abeling the total number of peers in the system.
The formulation of the rate takes into account the probability that the obisgrpeer chooses
the observed peer as a holder of its data (the gieszs data at raj@ and the probability that
another peer from thdl-2 remaining peers chooses the observed peer addartand the
observing peer as a verifier for it.

We denote the total number of peers in the stosgigiem - excluding the observing peer - as
n =D + K. The dynamics ok andD are given by the following equations:

dD—A + u)D
T n—(o+uw
dK
—=0D—uK=0on—(c+uwkK
dt
Sincen=D + K:
dn_(/1 )
dt s

Let q be the probability that the discriminator knows wharandomly chosen co-player
chose as a holder strategy in a previous one-gfage (the discriminator being an owner or
verifier in that game). The probabilityis equal tK/n, hence:

dq dK/dt Kdn/dt
dt n n?

Thus,
q_ 5 g+ 2

At timet=0, the set of peers in stdfds empty. Over time, peers in stiteenter stat& with
rate o. A new peer joining the system is assigned dbatmeaning that initiallyg(0)=0. The

result of the above differential equation is thus:
o

)= 2 (1 — e-(o+D)t
a(t) = —— (1 —e Y

The limit of g(t) whent — « is o/( o+ 7). If we consider a system without chui=Q), the
limit becomes 1.

6.3.3.Fitness

We respectively denote the frequency (i.e., fraciio the population of playing peers) of
strategieAlIC by x, AlID byy, andD by z The expected values for the total payoff obtaibgd
the three strategies are denoted iy, Uaip andUp, and the average payoff in the population
by:

U=x>( UALLC +y>< UALLD +zX UD
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The average payoffs that are also called fitneisedoh strategy are defined in the following.

At timet, a participating peer will havetimes more chances to be chosen as a holdemand
times more chances to be chosen as verifier thha tthosen as an owner.

A peer playing the strategdlLC will always cooperate: it will donate at a cestif it is
chosen as a holder or at a cest if it is chosen as a verifier. It will gain a bdieb if it is
chosen as an owner and at least one of its datieiisak not a defector, otherwise, it may gain a
benefitfb if at least one of its verifiers is not a defector

Upprc = —rc—mac+b(1—y") + ,Bb(yr(l - ym))
=—c(r+ma)+b(1—y" +By" (1 —y™))

A peer playing the strategyt_ LD will never cooperate, so it will never donate. Iti\gain a
benefitb if it is chosen as an owner and at least one afdta holders is not any of these types:
a defector (type occurs with frequency, i.e., philits y) or a discriminator that knows the peer
(type occurs with probabilitgz on average). Otherwise, the peer may gain a befiefit at
least one of its verifiers is not of any of thenfiar two types.

Uarep = b(1 = (y + q2)") + ﬁb((y +qz)"(1-(+ qz)m))
=b(1-W+q2)" +B(y+q2)" (1 - +q2)™))

A peer playing the stratedy will always cooperate if it does not know the réeip or the
latter was cooperative in a previous interactiarwill donate at a costc if it is chosen as a
holder or at a costac if it is chosen as a verifier. It will gain a béibe if it is chosen as an
owner and at least one of its data holders is mafactor, otherwise, it may gain a bengfitif
at least one of its verifiers is not a defector.

Up=—cr+ma)(1—qy)+b(A—y"+By"(1—-y™))

Strategies with higher fitness are expected toqate faster in the population and become
more common. This process is calledural selection

6.3.4.Replicator dynamics

The basic concept of replicator dynamics is thatglowth rate of peers taking a strategy is
proportional to the fithess acquired by the stratdithus, the strategy that yields more fitness
than average fitness of the whole system increasesyice versa. We will use the well known
differential replicator equations:

Y o X (Upie - T
ddty— x(Uauc _)
2 = YWaup = U) 6.3.4)
dz —
dr z(Up —U)

6.3.5. Evolutionary stable strategy

A Strategy is said tinvadea population of strategy players if its fithess whsteracting
with the other strategy is higher than the fitnesthe other strategy when interacting with the
same strategy. An evolutionarily stable strateg$SEis a strategy which no other strategy can
invade if all peers adopt it.
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Casex#0, y=0, z£0: This case corresponds to a fixed point in the cepdir dynamics, which
means that a mixture of discriminating and alticigtopulation can coexist and are in
equilibrium.

Case x#0, y£0, z=0: In this case, the replicator dynamics of bothuidtic and defector
populations are:

dx N <0
i xyc(r + ma) <
@ _ + >0
i xyc(r + ma) =

The population of defectors wins the game and 88 E attained a¢=0 andy=1.

Casex=0, y#0, z£0: The dynamics of the populations of defectors aisdrininators are
derived as:
dy
T yz(c(r + ma)(1 —qy) + b(f (y) — f (¥ + q2))
dz
i yz(—c(r+ma)(1 —qy) + b(f (y + qz) — f(¥))
where the functiois defined as follows:

f) =u" = pu"(1—u™)

The equilibrium pointX=0, y=yo, z=2,) for which defectors and discriminators may coexis
corresponds to the solution(s) of the following &tipn:
dy dz _
dt dt

The equilibrium point is then defined as follows:
c(r +ma)(1 = qyo) = b(f (o + qz0) — f (o))

Table 8 describes equilibrium values in some paldiccases. More cases for equilibrium
values will be examined in the next section.

Table 8 Finding the equilibrium for x=0, y£0, z£0.

Conditions Yo Z
ba —c(o+2) cA
r=1, =0, b#c, q(t | mi - T ' ( (— ) )
q( )t—>—o)oo'+l min <max< b =00 ,0>,1> min | max (b—c)a'O 1
bo — ac(oc + 1) . ack
r=0, m=1, b, q(t) — —= | mi ( (—ﬁ ) ) ( (— ) )
q()t—>—o)oo'+l min | max b —ad)o ,0),1)| min ( max (ﬁb—ac)a'o 1

Casex#0, y#0, z£0: There is one stationary poimt=Q, y=Yo, Z=2,) for which defectors will
exploit and eventually deplete all cooperators. ahmunt of defectors will first increase, and
then converges to the equilibrium where there ibeeicoexistence with discriminators, or
winning over them, or losing to them depending tomagye system parameters.

6.3.6.Numerical evaluation

The evolutionary game is simulated within a custeimulator using the differential
equations of section 6.3.4. Simulations involveesal scenarios with various storage system
parameters in order to capture their impact orctirevergence of the system to an equilibrium.
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In our simulations, we consider that in each dagiwiulated time, 3 files are stored per peer
with average file size of 500MB. The verificatioretadata corresponding to each file having an
average size of 10KB is stored at the appointeifiees. There are 10 newcomers to the storage
system per month for an equivalent number of pkeengng it. These newcomers are detaining
the same strategy as their hosts because we askatrtee arrival and departures of peers are
strategy-neutral i.e., they do not alter the stpatistribution (we assume that the dynamics of
strategies solely depend on their payoffs as ingpéicator dynamics of 6.3.4).
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Figure 53 Frequency of cooperators vs. defectors ertime. m=5, r=3,/)’=0.1,a=20.106, 2=10/month,
N=1000,y=3 files/day,b=1, c=0.01,x(0)=0.8,y(0)=0.2, andz(0)=0.

Initial frequency of strategies: Figure 53 shows the frequency of cooperators afettigs
over time, and demonstrates that with time coopesatill be eliminated from the system by
these defectors. The presence of discriminatotisarsystem does not prevent cooperators from
being evicted from the system; however, discrindr@atand defectors will converge to an
equilibrium where both coexist (see Figure 54).
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Figure 54 Frequency of the three strategies ovemtie.m=5,r=3, #=0.1,a=20.10° 1=10/month,N=1000,y=3
files/day, b=1, c=0.01,x(0)=0.6,y(0)=0.1, andz(0)=0.3.

This equilibrium is perturbed by the injection ofaage population of defectors, as illustrated
in Figure 55 (by varying the initial frequency Df If discrimination becomes a minor strategy
in the populationZ(t) < 0.2), it is completely eliminated from the systadawever, if a small
population of defectors is injected, discriminatstif converge to the same equilibrium.
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The minimum initial frequency for which the popudat of discriminators achieves an
equilibrium where their frequency is not null isnd¢edz,,(0) (~0.2). There are two equilibria
that are determined by the initial population cfadiminators: X=0, y=1, z=0) if z(0) < z,(0)
and &=0, y=Yo, Z=2) if Z(0) = zin(0).
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Figure 55 Frequency of discriminators at equilibrium varying z0). m=5,r=3, #=0.1,a=20.10°, 2=10/month,
N=1000,y=3 files/day,b=1, c=0.01,x(0)=0.

The discriminators do not win over defectors, beeathe latter may still have a good payoff
if they interact with some discriminators that dot rknow them vyet, for instance for
discriminators that just entered the system, ordefs that just joined in. Additionally,
defectors do not always win over the discriminatbesause there are discriminators that
already know them and that always choose to defightthem. The figure shows also a little
decrease in the frequency of discriminators befmreverging to the equilibrium. The decrease
is due to the fact that discriminators act as coatpes in the beginning of the game since they
do not know the behavior of defectors yet.
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Figure 56 Frequency of discriminators at equilibrium varying r. m=5, #=0.1,a=20.10°, 2=10/month,
N=1000,y=3 files/day,b=1, c=0.01,x(0)=0, y(0)=0.5, andz(0)=0.5.

Number of verifiers and replicas: Varying the number of data replicas or the number
of verifiers changes differently the equilibriumimk Increasing favors defectors (see Figure
56). This is because the fitness gain of discrititigeowners is overwhelmed by the fithess loss
that results from data storage cesthat is always paid by discriminating holders. &asingr
increases data reliability, thus increasing chamfdsaving the benefib. But, this benefit is
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perceived by both populations of discriminators aedectors without favoring one over the
other.
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Figure 57 Frequency of discriminators at equilibrium varying m. r=3, #=0.1,a=20.10°, 2=10/month,
N=1000,y=3 files/day,b=1, c=0.01,x(0)=0,y(0)=0.5, andz(0)=0.5.

Increasingm increases the equilibrium value of discriminatfrequency (see Figure 57).
This is due to the fact that increasingmakes higher the chances to obtain a beffit
However, increasingn increases also the cost of data verificatien Even if this cost is just
paid by discriminating verifiers, it is still modesompared to the benefit perceived in
proportion g<<1).

Figure 58 also illustrates the fact that increashmystorage rate that in return increases the
probability of encountewr leads to an increase in the equilibrium value istriminators’
frequency because more discriminators get acquhinth more defectors. The figure defines
he storage rate under which discriminators amieéited from the system by defectors.
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Figure 58 Frequency of discriminators at equilibrium varying the average storage rate in #file/hour. m=5,
r=3,ﬂ=0.1,a=20.106, 4=10/month,N=1000,b=1, c=0.01,x(0)=0,y(0)=0.5, andz(0)=0.5.

Churn: The peer arrival raté affects the probabilitg, and hence the equilibrium point of
the game (see Figure 59). For a low churnout v@o®ll 1), the frequency of discriminators at
equilibrium is high; whereas for a high churnouluea the frequency at equilibrium decreases.
For high churnout, peers are not able to get aatgghiwith all peers since there are always new
peers in the system, and defectors may take adyantd the lack of knowledge of
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discriminators about the system to gain benefit mmdain in the game. For a system without
churnout {=0), discriminators win against defectors thatelmminated from the game.
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Figure 59 Frequency of discriminators at equilibrium varying the arrival rate 4 in #newcomers/hourm=5,
r=3,$=0.1,a=20.10°%, N=1000,y=3 files/day,b=1, ¢c=0.01,x(0)=0,y(0)=0.5, andz(0)=0.5.

Benefit and cost: Figure 60depicts the impact of the benefitand of the cost on the
frequency of discriminators at equilibrium. Theuig shows thab andc have opposite effects
on the equilibrium frequency of discriminators: rie@singb increases the frequency whereas
increasingc makes it decrease. If the storage cost is smali|/libe compensated by the benefit.
In contrast, if the storage cost is higix@.01>b), discriminators cannot cope with this high cost
and they will be eliminated from the system by d&des. Additionally, the figure shows that the
equilibrium point varies in function dfandc.
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Figure 60 Frequency of discriminators at equilibrium varying the ratio c/b. m=5,r=7, #=0.1,2=0.001,
4=0.01,6=0.05,b=0.05,x(0)=0,y(0)=0.5, andz(0)=0.5.

Discussion: Simulation results prove that there exist parametalues for which
discriminators, who use an audit-based mechanisay win against free-riding defectors.
Discriminators are not hopeless when confrontinfpaters, even if the latter may dominate
altruists @lways cooperatetrategy). At the equilibrium of the game, botkadiminators and
defectors may coexist if there is churn in the eysbtherwise discriminators will dominate.
The number of verifieran increases the frequency of discriminators at thailierium.
Whereas, a costly storage or an increase of tHieadpn rater reduce this frequency.

In the proposed reputation-audit based approach.Zfthe discriminators do not always
cooperate with newcomers; they only cooperate Wigm with some probabilitp. We have
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studied such type of discriminating behavior takinp account a new type of defectors that
whitewash i.e., leave the system and rejoin witlew identity to escape its punishment. Results
are presented in Appendix B. They demonstratethigaprobabilistic cooperation with strangers
of discriminators is not sufficient to fully domiadefectors. Thus, it is required to further
prevent or at least mitigate the whitewashing batnalyy controlling the peer entry into the
system, for instance the joining of peers may bénlitation, or using a cryptographic puzzle
or even imposing a fee.

6.4.Summary

In this chapter, we presented several game theatetiodels of our audit-based cooperation
incentive mechanism. The Bayesian game model rifitisy the probabilistic verification
protocol allows solutions where both parties of zene are cooperative for well identified
payment parameters and repetition frequency. Aatuitly, the audit-based strategy that relies
on a deterministic verification protocol wins ovbe free-riding strategy in a closed system; if
not, with some particular conditions, it coexistithwiree-riders at a high frequency. Thus, using
these game models, we validate the inherent ineermtapability property of the proposed
payment and reputation-based approaches that aisteating peers towards cooperative
behavior.
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Chapter 7

Conclusion and future work

Peer-to-Peer (P2P) systems have emerged as antamipparadigm for distributed data
storage in the way they exploit and efficiently makse of untapped peers’ storage resources.
Outsourcing data from a single location to multipkers in a network is probably the only
solution for increasing data availability and fatglierance on a large scale while reducing if not
suppressing storage maintenance costs. In thislves addressed the security and cooperation
issues that such an application is likely to beoseg to when effectively deployed in the wild.

Summary and contributions

We first discussed the security issues associaithdR2P data storage. The correct operation
of a P2P storage system relies on the fair and:tefée cooperation of peers. Unfortunately,
peers may misbehave in various ways. Data holdagspretend to be storing some data which
they in fact destroyed. With replication based apphes, peers may collude to store a single
data replica thereby defeating mechanisms to eneligbility. Collusion may not be the sole
way to do so, since Sybil attackers may generaterakidentities and deceitfully use them.

We describe elements of a modular architectursdoh a system encompassing the security
and cooperation mechanisms necessary to ensucetteet and secure operation of a P2P data
storage system. We describe how a trusted envinohmay make it easier to prevent some
misbehaviors, in particular if peer identificatiomlata integrity verification, and trust
management may be assured by dedicated hardwamestad platforms rather than performed
by peers themselves.

Hidden actions of non cooperative peers can beategieusing a new type of protocol that
we call data possession verification. Such prowesiable a verifier to detect whether some
data that are stored remotely have been corruptedpropose three different such protocols
with different verification capabilities, in partitar regarding delegation.

The behavior of data holders can be evaluated basethe results obtained out of such
protocols. Such audits form the basic observatiomifives of the cooperation incentive
mechanisms that we propose for stimulating coojmerand inciting correct behaviors. The
originality of the incentive mechanism stems frone toptimistic peer behavior evaluation,
following a very different approach compared withoperation incentives in MANETS: while
peer behavior can only be decided at the end dfttirage period, audits can be performed on a
regular basis and we consider that a peer behagitsisviong as no data corruption is detected.
We propose two incentive mechanisms, one reputiésed and the other remuneration-based.
Both mechanisms are designed not only to inceabtperative behavior but also to establish
trust as well as to detect and punish misbehaviegsgy These constitute essential features of a
security mechanism for such applications giverpitsibility of purely malicious attacks.

The effectiveness of our security and cooperaticihieared by our proposed audit-based
mechanisms is demonstrated through non-cooperaame theoretical models. We first
evaluate the effectiveness of our incentives withrious observation primitives both
probabilistic and deterministic. Evolutionary ganaee also introduced in order to evaluate the
macroscopic equilibria achieved.
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The following is a summary list of the contributgoaf this thesis:

- P2P data storage architecture: organization plie€ifor security mechanisms at various
layers of the system, and interest of introducinguated computing base as a security
infrastructure.
- Cryptographic protocols for remote data possessioification
o Probabilistic-based approach: realizes a good pedice by conceding verification
determinism, and allows open verifiability of thered data.

0 Restricted deterministic approach: achieves anciefft verification trading off
security and performance with verification peridi¢availability).

o0 Deterministic-based approach: realizes a good pedoce to security tradeoff.

- P2P data storage and maintenance mechanism: intrmduof a reactive data
rejuvenation process in order to achieve storatjability and availability on the long
term. The process relies on the operation of asueeacode based data maintenance
protocol.

- Cooperation incentive mechanisms: open and scalatdputation-based and
remuneration-based mechanisms that do not requimeisted infrastructure, and are
resilient to various attacks.

- Game theoretical models: validate the incentiveperty of proposed mechanisms at
micro and macroscopic levels of granularity.

Perspectives

Our work presented primitives for evaluating thédegor of peers with respect to storage.
The feedback resulting from such evaluations maelwes cooperation incentive mechanisms.
However, peers, in particular data owners, alsa neeadapt their storage strategies based on
such evaluations. Detecting a storage fault shtiidder a data regeneration process to ensure
the long-term reliability of data storage. Howeude effectiveness of such a process not only
depends on the availability of enough holders, asnedeled it, but also on the time it takes to
transfer data blocks between peers. A performanaéysis of such a process would certainly
bring more realistic estimations as to the bandwald churn requirements of a P2P storage
application.

The security mechanisms developed in this thesid,im particular cooperation incentives,
are crucial in forecasting how trusted a peer aaar in stimulating its cooperation. Although
they were tuned for P2P data storage in this wattier P2P applications (say for instance P2P
IP telephony) would definitely benefit from suchcsgety and cooperation mechanisms. For
instance, Internet providers are deploying Wifayeal for IP telephony with the cooperation of
end-users that accept to configure their ADSL bdxesarry this service in exchange of the
capability to use it. A finer grained yet self-onggng regulation of such infrastructures might
be achieved with remuneration-based incentivesantiqular. Wuala for instance has started
deploying its data storage infrastructure with suah approach. Remuneration-based
cooperation incentives also pave the way for nsétivice architectures that would then make it
possible for heterogeneous platforms to coopeféitgemtly and exchange some bandwidth for
some storage for instance.

Protection against Sybil attackers and whitewashgra central issue in many P2P
applications. It should be noted that completelj-amanized approaches can only mitigate
such attacks while at the same time imposing alpeor honest peers. We discussed the use of
a trusted computing base, as provided by some tarapistant hardware, as a possible
solution. Although costly in terms of deploymert,may indeed provide an interesting and
scalable solution to this problem. In particultie TCG architecture is increasingly deployed in
corporate hardware, thus making it an interestiagdate. In particular direct anonymous




121

attestation mechanisms may link some data to auenmatform while preserving platform
privacy. There is also an increasing trend to distallynamic trust based on existing static trust
relationships, as illustrated with the emergencesefvices based on social networks (e.qg.,
Skype, Facebook, hi5, Linkedln, MySpace). In sugdteams, small groups of peers may easily
be established based on the graph of relationsBipsbar’s rule determines that a given peer
can maintain stable social relationships with 138ep peers. This may mean that P2P
applications developed in the future may exhibjtologies very different from those used in
P2P file sharing in which a peer may connect wlidBothers, as withessed within BitTorrent
“swarms” for instance. Scalability will undoubtedigmain an important research challenge in
such systems as well and may trigger the developofenore efficient protocols for managing
the interconnection of multiple groups of well cented peers.
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Appendix A Diffie-Hellman based deterministic verification

We propose a second deterministic verification agph that is based this time on the
hardness of the Diffie-Hellman problem: finding tredue ofg® given an elemerg a generator
of a multiplicative group (typically a finite fieldr an elliptic curve group) and the valuegybf
andg’.

Tree-based number generation

We work in a groupis of prime ordemp with generatog. The protocol relies on the idea that
| number of values allows derivimgnumber of values where> |. We employ a binary tree to
generate these values in a top-down manner, wheredlues consist of the leaves, and the
generatog is at the root.

The tree construction is defined as (see

Figuree1 for an example): at tree levielthe value of the child in the left is equal te tralue
of its parent, whereas the value of the child aright is the value of its parent multiplied by

g* wherex is a random number il .1 (the value ofk is chosen such that the values on the
leaves are all distinct).

g gxg"

g gxgxz gxgx gxgxxgxi

e = T o e

0 h=gxg" h=grg® h=gxgtxg” hEOXG h=gxgxg” hEgrg'xg” h=gxgxg” xg”

Figure 61 Tree-based number generatiom=2°.

From the proposed tree construction, we are abjeneratan distinct numbers just knowing
g andx and performingd(n) exponentiations.

An original property of the tree-based construcimthat if we consider a generator of the
form g', then we obtain numbers of the folshwhereh; is a number generated from the tree at
root g. This property is obtained due to the fact that dinly operation that is carried out all
along the tree is the multiplicative operationhe groupG that is commutative.

Protocol description

The verification protocol comprises the followinggses (summarized in Figure 62):

- Storage phasethe owner splits its data into (n=2") blocks (not necessarily with the
same size) of size less thgnl] (“M|” means size oM). All blocks can be easily
mapped to random numberg Y, in Z ;. The blocks are sent to the appointed holder
for the data storage. This latter should keep tloekis stored until the time of their
retrieval by the owner. The holder should also kdéke order of block indexes
unchanged.

- Delegation phasethe owner chooses a random numbénat will be used to construct
tree-based random numbers as explained in the quewection. Generated random
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numbers are denotet ... Then, the owner computes the valaél'-;h®. This value
is sent to the verifier assigned to the holder &f{i-,, along with the secretand the
generatog. The verifier should keep the random numbsecret.

- Verification phase:the verifier generates a random numberthen it computes the
numbers {§)"} oi. Wherel is the height of the tree. These numbers are edhetholder
to be used to generate random numbatg £, based on the tree construction with root
g that actually results imv';=(h)" for eachi. The holder then computes the product
R=IT"_;h’ @ that will be sent back to the verifier. This lattas just to check whether the
equalityR=(T)" holds or not.

Owner Holder
Storage Split datad in n chunks: €} 1<i<n
send i} 1<i<n {d}1ci<n
] Store {di} 1<i<n
Owner Verifier
Generate random number
. Generaten numbers §} 1<, based ox andg
Delegat L Asi=n
elegation ComputeT=TIT_;h™
SendT, x, g T.x9
StoreT, X, g
Verifier Holder

Generate random numbrer
Computeg'i =(g*)" for eachiin [1,1]

Verification Send @'} 1<« {d'i}cia

Generate §'i} 1<i<n from {g'i} 1<i
ComputeR =TIT';h" ¥
R SendR

If R=(T)" then “accept” else “reject” 4]

Figure 62 Deterministic verification protocol

Security analysis
The commutative property of the multiplicative godd produces random numbers from the
generatorg’ of this formh’;=(h)" for eachi in [1, n] ({h} i< iS the set of numbers produced
from the generatay) which results in the equality that the verifidrecks:
n n n

R=] [w =] [cwoni =] [ty =1
i=1 i=1 i=1

Additionally, the holder is not able to compute ttesponse to the verifier's challenge
without knowing the data blocks. Actually, it catnefer the random numberor the secret
numberx from the distinct received numbersy{'} o< thanks to the Diffie-Hellmann problem.
The tree-based approach produces distinct generatedm numbers. The owner and after the
verifier may check this property by choosing thghtivalues forx and forr. Therefore, the
holder receives distinct numbers that it cannotudedirom them the secret numberandr
assuming the Diffie-Hellman problem hard to resolve

Performance analysis

In the proposed verification protocol, the verifdrould keep small verification information
that consists of the secretthe generatog and the numbef U Z,. The holder should keep the
data blocks without any additional storage overhead
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The challenge message is composed of a deaofilom numbers whetds the height of the
tree theri=log,(n). The response message consists of a random numier

The main weakness of the protocol is the computat@mmplexity. The verification process
entails| exponentiations irZ ,; and | exponentiations irZ, at the verifier side. On the other
hand, the tree-based generation of random numbersres| exponentiations irZ ,, and n

exponentiations irZ,. Moreover, the holder performs otherexponentiations irZ, using the
data blocks.

Table 9 Summary of resource usage of the determitiis verification protocol (n corresponds to data size)

Communication

Storage usage Computation complexity| overhead

At holder o(n) o(n) (upstream)O(1)

At verifier O(1) O(log(n)) (upstreamO(log(n))
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Appendix B Managing whitewashers

An inherent problem to a cooperation incentive nagitm implemented into a dynamic
system where peers may join or leave at any tintbeisvhitewashing problem. Whitewashers
are peers that repeatedly misbehave then leav&dbege system and rejoin with new identities
thus escaping punishment imposed by the incentigehamism. In order to deal with such
whitewashers, the paper presents a penalty mechagainst strangers that attempts to counter
whitewashers and it describes also a theoreticakghat models such mechanism and attempts
to capture the point of tradeoff between restrigtivhitewashers and encouraging newcomers to
participate into the system.

Whitewashing problem

The proposed P2P storage system relies first anednfust on holder and verifier cooperation
to properly function. Therefore, it may be exposedeveral attacks due to peer misbehavior
such as data destruction or corruption or everusiah between peers. Peer collusion can be
mitigated through proper selection of data holdeng verifiers. For instance, the random
selection of peers within a structured P2P sysieritsl pre-set collusions among these peers
(for details refer to 0). On the other hand, peartigipation and data preservation can be
stimulated thanks to the use of cooperation ingentiechanisms.

Still, such mechanisms are vulnerable to whitewaslieat repeatedly leave the storage
system and rejoin with new identities thus escaping punishment caused by their previous
misbehavior. With new identities, peers have arclegord: good reputation rating or a default
initial amount of credits without debts to pay.

Particularly in a so open and dynamic P2P systerarevipeers are able to freely join,
disconnect, reconnect, and leave the system, wa#ieing becomes an eminent attack. Such
attack undermines the operation of the cooperaticentive mechanism since whitewashers are
not motivated to cooperate because otherwise theyat punished and they are eventually
cutting down the utilization of their storage resms: they consume but do not contribute.
Without peer cooperation, the system may collapséhé tragedy of the commons [Hardin
1968].

Penalty over newcomers

There are several solutions to the whitewashindlpm. The first approach relies on a
central trusted authority that assigns strong itleatto peers (linked to real-world identities).
Alternatively, the authority may impose the paymesft membership fees. However,
additionally to introducing a single point of faié) such approach reduces the decentralized
nature of P2P systems.

Without a trusted third party, another option isirpose penalties on all nhewcomers: an
insider peer may only probabilistically cooperatéhwmewcomers (like in BitTorrent [Piatek et
al. 2007]), or peers may join the system only ifiasider peer with limited invitation tickets
invites them [Lesueur et al. 2008]. This optionrsedo be detrimental to the scalability of the
system; it has even been shown that this degrhdemtal social welfare [Feldman et al. 2006]
because whitewashing behavior is not observabletlaunnsl the penalty affects all newcomers
either cooperative ones or whitewashers.

This appendix studies the latter solution. The teximg measure against whitewashing
consists of a penalty mechanism. The imposed peisafierformed by each peer that does not
cooperate with strangers with probabilityplThe penalty may be also represented as service
degradation by (p)-fraction imposed on each newcomer. The probaicilidrategy attempts to
reach a point of tradeoff between restricting whi#tshers and encouraging newcomers to join
and participate into the system.
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In the proposed P2P storage system, the penalthan&m corresponds to making each
peer accept to store or verify a newcomer’s datawith some given probabilitp.

In the remainder of this appendix we will presergaene theoretical model describing the
features of a P2P storage system and capturing/titewashing problem in such system. We
endeavor with such model to discuss the abilitythef strategy based on the probabilistic
cooperation with strangers in coping with whitewexsh

Game model

We consider the evolutionary game of the audit-thaggproach described in 6.3. We may
analogously make correspond a whitewasher to s@feetrs with probabilityy, AlID", and a
probabilistic stranger strategy to a discrimind®rthat will only cooperate with peers that it
does not know with probability.

Strategies

Our study considers two types of strategies: trergpthat follow the desired behavior in the
P2P storage system and particularly use the pemathanism to deal with strangers, and the
peers that defect and whitewash.

Discriminators are peers that adhere to the followstrategy (corresponding to the audit-
based strategy in 5.2):

- Discriminate and probabilistically cooperate withaagers D"): the discriminator donates
under conditions: it donates with probabilityvith a stranger and probability 1 with a peer
that previously donated. A discriminator may kndwatta peer has donated in a previous
game in the case where that peer was a holderhandigcriminator was its verifier or the
owner of the data the peer was storing.

Defectors are peers that not only defect but alebabilistically whitewash to cover up their
defection:

- Always defect and probabilistically whitewashlD"): the peer never donates in the role of
the donor and may be a whitewasher with probabilitgo that it is not identified by a
discriminator. The valuev may represent the average rate (per generationyhath
defectors change identities.

Fitness
We respectively denote the frequency (fithess)taftegiesAllD” by y, andDP by z. The
expected values for the total payoff obtained kg tiho strategies are denoted By;," and
Uo®, and the average payoff in the population by:
U=y>( UALLDW +2zX UDI7

To simplify the formulation of the fitness for easfrategy, we will use the following
functions:
fw) = —c(r+ma)xu
gw)=b(1l—-u"+pu"(1—-um))

The functionf(u) gives the cost paid by a peer for storing and yief data for a fractiom
of peers. On the other hand, the functign) gives the benefit obtained if a fractiarof peers
defect as holders and as verifiers of the peets. da




129

Let q be the probability that the discriminator knowsatvta randomly chosen co-player
chose as a holder strategy in a previous one-gfage (the discriminator being an owner or
verifier in that game). The probabilityis computed in 6.3.2.

A peer playing the strategID" will never cooperate, so it will never donate. Il \gain a
benefitb if it is chosen as an owner and at least one afdta holders is not any of these types:
a defector or a discriminator that knows the peeghat probabilistically defects because either
it does not know the peer or the peer itself ishdteawasher. Otherwise, the peer may gain a
benefitpb if at least one of its verifiers is not of anytbé former two types.

UarLpw = g(y +q(1—-w)z+ (W +(1-91 - W))(l - P)Z)
=g(1-p(1—-q(1—-w))z)

A peer playing the stratedy” will cooperate if the recipient was cooperativeaiprevious
interaction or will probabilistically cooperateitfdoes not know the latter. It will donate at a
cost—cif it is chosen as a holder or at a cest if it is chosen as a verifier. It will gain a bdibe
b if it is chosen as an owner and at least one ofdé& holders is not a defector or a
discriminator that the peer previously defects witlithe peer defects with a fractign of
discriminators that it does not know), otherwigenay gain a benefitb if at least one of its
verifiers is not a defector or again a discrimimadkat the peer previously defects with it.

Upr = £ (p (1= )((1 = W)y +2) + wy) + qpz) + gy + (1 — p)2)
=f(p(—q(-w)(1 - 2))) +9(1 - p2)

The dynamics of strategies’ fithess follow the diéfntial replicator equations defined
below:
dy —
dt =yUaupw —U)
dz

== z(Upp — U)

The basic concept of replicator dynamics is thatglowth rate of peers taking a strategy is
proportional to the fithess acquired by the stratdthus, the strategy that yields more fitness
than average fitness of the whole system increasekyice versa.

Simulation experiments

Frequency of defectors
vs. disciminators

60 90
Time (in days)

Figure 63 Frequency of defectors and discriminatorsm=5, r=3,/}=0.1,a=20.106,,1=10/month,N=1OOO,y=3
files/day, b=1,c=0.01,y(0)=0.5, andz(0)=0.5.
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Using the above differential equations, the modetimulated within several scenarios to
capture the impact of various parameters on theergence of the system to an equilibrium.

We consider files with an average size of 500MB Hra stored at a rate of 3 files per day
and per peer. The verification metadata correspanidi each file has an average size of 10KB.
Newcomers to the storage system arrive at a rald gfeers per month. These newcomers are
assumed detaining the same strategy as their hosts.
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Figure 64 Frequency of discriminators at equilibrium varying their initial frequency. m=5,r=3, =0.1,
@=20.10°, 4=10/month,N=1000,y=3 files/day,b=1, c=0.01.

Figure 63 shows the convergence of the storagheofystem to an equilibrium where only
discriminators are active. Defectors are totallgnglated by discriminators.

There is a little increase in the population ofedédrs in the beginning of the evolutionary
game due to the fact that discriminators arersbilable to distinguish between a discriminator
and a defector. However, with time they have a dowvledge of discriminators (fractigmof
them) and defectors (fraction (@-of them).
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Figure 65 Frequency of discriminators at equilibrium varying their probability of cooperation with
strangersp. m=5, r=3,/)’=0.1,a=20.106, 4=10/month,N=1000,y=3 files/day,b=1, c=0.01,y(0)=0.5, andz(0)=0.5.
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Varying the probability of whitewashing in the system affects also the frequency of
discriminators at equilibrium. For sufficiently tigw, defectors invade the population of
discriminators and win the game. For instancell iflefectors are whitewashers, discriminators
are eliminated from the game.
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Figure 66 Frequency of discriminators at equilibrium varying the probability of whitewashingw. m=5,r=3,
$=0.1,a=20.10°%, 4=10/month, N=1000,y=3 files/day,b=1, c=0.01,y(0)=0.5, andz(0)=0.5.

Figure 64 depicts the frequency of discriminataxsying their initial frequency. The figure
demonstrates that the equilibrium where only distrators are present in the system is only
achieved if there is enough population of discriamdms in the system. Otherwise, the defectors
win the game by eliminating discriminators.

The equilibrium where only discriminators are agtidepends also on the probability of
cooperation of discriminators with strangers. Fig66 demonstrates that if this probability is
sufficiently high, the frequency of discriminatatscreases and may attain zero.

The social welfare is the total sum of peer payoffsillustrates the well-being of the
community of peers as a whole. Figure 67 showstthatwelfare is maximized for a defined
value of the probability of cooperation of discnivators with strangens (0.59<0.9) and if the
discriminators are not eliminated from the systenol§ability of whitewashingv <0.7).

Discriminators are the only contributors to the gatinerefore their presence increases the
payoff of peers. Their cooperation may be underthimgthe presence of defectors that use the
system without contributing and particularly whiteshers that defect and go without being
detected by the discriminators. Increagingt certainly increases the benefit for all peleus at
the same time it increases the cost due to theepcesof defectors. Figure 67.c demonstrates
that there is an optimal value fprthat achieves the highest social welfare and thigmal
depends om.

Figure 68 depicts the variation of the social welfavith the replication rate and the
verification distribution factom. The figure shows that there is an optimal valae the
replication rater for which the social welfare is maximized~8). Exceeding this value, the
social welfare decreases until reaching the vakre ze., the system collapses. Increasing
makes the benefit obtained by the owner increaseesihe chances to select a cooperative
holder are improved; however the replication ratdfects also the cost of cooperation that is
solely paid by discriminators.
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Figure 67 Social welfare at equilibrium varying (a)the probability of cooperationp, (b) probability of

whitewashingw, and both of them.m=5, r=3,ﬂ=0.1,a=20.106, 4=10/month,N=1000,y=3 files/day,b=1,¢=0.01,

Varying m has less impact on the social welfare becausedstecbarged on discriminators
is minimized by the significantly low unit cost ual ac (¢=20.10°. The social welfare
increases by increasimg(small increase) since a high valuenomeans better chances to have

y(0)=0.5, andz(0)=0.5.

a verifier that is discriminator and then gain adfé b if all holders are defectors.

Figure 69 demonstrates that there is a maximumevialiutolerable churn. If peers arrive in
the system at a high rate, discriminators may motble to distinguish sufficiently quickly
defectors and they may then be eliminated fronsylséem. Churn can be tolerated until a given

rate identified in the figurel{-0.9) for the considered system parameters.
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Figure 68 Social welfare at equilibrium varying (a)replication rate r (m=5) and (b) verification
distribution factor m (r=3).$=0.1,a=20.10°, 2=10/month, N=1000,y=3 files/day,b=1, c=0.01,p=w=0.5,
y(0)=0.5, andz(0)=0.5.
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Figure 69 Social welfare at equilibrium varying thechurn 1. m=5,r=3, #=0.1,¢=20.10°, N=1000,y=3
files/day,b=1, c=0.01,p=w=0.5,y(0)=0.5, andz(0)=0.5.
Discussion

Simulation results demonstrate that discriminatwesnot hopeless in front of defectors and
that even they may win over them for a judiciousichk of system parameters, notably the
fraction of discriminators in the system shoulditigally not null, the replication rate and the
churn sensed in the system should not be consigérjt.

The results show also that there is an optimal gdvidity p for the penalty mechanism that
achieves a high social welfare for the whole P2iPage system. However, a non-zero welfare
is only obtained if the whitewashing phenomenaektricted to a given fraction of defectors.
For instance, if all defectors are whitewashingcuiisinators are entirely eliminated and the
system collapses. This result motivates the remdrd to supplement the proposed penalty
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mechanism with other means that prevent or at leagtthe whitewashing behavior such as
controlling the peers that join the system usingngtographic puzzle [Vishnumurthy et al.
2003] the payment of a membership fee. Anothertigmils to force or motivate peers to stay
online a minimum amount of time in the system lik&Vuala® (1A is then increased) because
peer connection time must be taken into considarati

53 http://wua.la/en/home.html
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Appendix C Dissymmetric peer defection

Peers in the P2P network are autonomous and mayvéeh various ways. It is interesting
to consider strategies where a peer wants to milesobelieve that it behaves well while
minimizing its network cost. A peer following sustrategy will properly store assigned data,
will even correctly answer to verifiers, but to eavetwork bandwidth, it will not verify other’s
data.

From the evolutionary game model described in 8edi3.1 of Chapter 6, we may think of
the interactions of three types of populations:

- Storage defectors (denot&i) are peers that have reduced storage resourcesdoanot
consume them within the P2P storage applicatioay(ttather prefer defecting); even
though they cooperate in verifying others’ data.

- Verification defectors (denotedD) are peers that have more interest in minimizivegjrt
bandwidth consumption than optimizing their storeggources. Therefore, they correctly
store other peers’ data but defect when beingigesibf some others data.

- Discriminators (denote@®) are peers that only cooperate with peers thhaeeihey do
not know yet or peers that were previously cooperatolders. If they cooperate, they
correctly keep the data that they have promisexdddie and also periodically check other
peers’ data.

We designate the fithess &D, VD, and D strategiesrespectivelyx, y, andz Their
respective payoffs can be respectively deriled Uyp, andUp. The total payoff is given
as:

U=xXU5D+y><UVD+Z><UD

We employ the following functioy that gives the benefit gained by a peer having in
average a potential fractianof peers that do not store its data and a poteinsietionv of
peers that do not verify its data:

gu,v)=b(A—-u"+pu"(1 -v™))

Storage defectors are only charged the costs dication. They may gain a benefit
from the storage application if their co-players aot storage defectors or discriminators
that know that they are defectors; otherwise thay gain a benefib if their co-players are
not verification defectors or again discriminattivat know their type.

Usp = —cma + g(x +qz,y + qz)

The costs paid by verification defectors are steremsts. They may gain a benefit if their
co-players are not defectors.

Uyp=—cr+g(x,y)

Discriminators pay the storage and verificationtsaslative to all peers except storage
defecting peers that have been detected. They miayagbenefit if their co-players are not
defectors.

Up=—c(r+ma)+g(xy)

To study the dynamics of their strategies, we oglythe replicator dynamics as seen in
Section 6.3.4 of Chapter 6. First of all, we comsidimple cases where they are only one
type of defectors at a time.

Casex(0)=0: we obtain the following differential equatio
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v _ >0
dt—yzxema

The above inequality means that verification defiecialways win over discriminators
because they pay small costs compared to discriarsgonly storage costs) and because
also they are not punished for their defection {ghment concerns only non cooperative
holders).

Casey(0)=0: the payoff of discriminators is the samé&3 of Chapter 6 but wittm=0.
The payoff of storage defectors resembles to thalefectors of 6.3.3 even though the
chances to obtain the benefib are improved. Storage defectors and discriminataay
coexist at a certain equilibrium that depends tesy parameters.

Casez(0)=0: the following differential equation is ohtaid:

dx o 0
P c(r—ma) >

Since the verification costs are generally lessoirtgmt than storage costs (the size of the
metadata needed for verification is smaller thandhta), the above inequality is generally
held. This means that storage defectors win ovéficagion defectors. Tough these costs are
exclusively paid by each population in this pafticicase. Therefore, the relative costs may
be perceived differently (e.g.< ma) and then the above inequality may not be obtained

Casex(0)£0, y(0)£0, andz(0)20: Figure 70 depicts a simulation of the dynamitshe
three strategies with non null initial frequenc{fse same system parameters are taken as
6.3.6). The figure demonstrates that storage dwfeett first are the most reproductive (their
frequency increases more importantly than the otteastegies). They even eliminate
verification defectors and reduce the frequencyis€triminators, but these later catch up
thanks to the growth of their knowledge about thehadvior of defectors. With time,
discriminators are able to distinguish defectoosnfrcooperators and subsequently refuse to
cooperate with these defectors. Their costs arenbduced, which allow them to increase in
frequency at the expense of storage defectors.

0.8

Frequency of strategies

|
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| |

| |

| |

1 1
0 60 120 18 240 300 360
Time (in days)

Figure 70 Frequency of strategies over timen=>5, r=3,/)’=0.1,a=20.106, 4=10/month,N=1000,y=3 files/day,
b=1,¢=0.01,x(0)=0.3,y(0)=0.3, andz(0)=0.4.

The study of dissymmetric peer behavior shows pedrs that focus on reducing their
bandwidth utilization may win over cooperative geaince their contributions incur lower
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costs. Although, cooperative peers rely on diregieeiences to compute reputation, they may
be affected by this type of defectors in ensurhreygecurity properties of their remote data. The
data stored in the system will only be periodicaklyified by their owners at game equilibrium.
On the other hand, peers that do not contributk sitrage resources are detected and punished
by the reputation system.
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