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Abstract In this paper we present a model of peer-to-
peer backup and storage systems in which users have
the ability to selfishly select remote peers they want to
exchange data with. In our work, peer characteristics
(e.g., on-line availability, dedicated bandwidth) play an
important role and are reflected in the model through
a single parameter, termed profile. We show that se-
lecting remote peers selfishly, based on their profiles,
creates incentives for users to improve their contribu-
tion to the system. Our work is based on an extension
to well known results in Matching Theory, which allows
us to formulate the Stable Exchange Game, in which we
shift the algorithmic nature of matching problems to a
game theoretic framework. We propose a polynomial-
time algorithm to compute welfare-maximizing stable
exchanges between peers and show, using an evolution-
ary game theoretic framework, that even semi-random
peer selection strategies, that are easily implementable
in practice, can be effective in providing incentives to
users in order to improve their profiles.

Keywords peer-to-peer · backup · peer selection ·
game theory · matching theory · incentives

1 Introduction

Nowadays, the need for safe on-line storage and backup
services with availability and reliability guarantees is a
relevant issue. Since centralized client-server solutions
are not scalable nor robust, alternatives based on dis-
tributed data structures have recently appeared, offer-
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ing on-line storage as a web service (e.g., Amazon S31).
Despite being often built on commodity hardware, on-
line storage systems do not come for free because of
the large amount of resources service providers need to
dedicate and maintain. For example, for relatively small
amount of storage space users pay roughly $1/year/GB,
but an excessive storage demand is “punished” by a
yearly fee of $40 for 20 GB data at Amazon S3; more-
over bandwidth issues, as well as user requests for ac-
cessing data come also into the pricing picture. Alterna-
tive storage providers offer unlimited storage capacity
for $60-100 per year (e.g., Mozy2, AllMyData3).

Solutions based on distributed data structure gen-
erally do not exploit resources (storage and bandwidth)
available at users, although recently Amazon S3 adopted
the BitTorrent protocol [4] to amortize on bandwidth
costs of downloading popular data stored in their sys-
tem. Similarly to efficient content distribution, a peer-
to-peer (P2P) approach seems to be a suitable scheme
for on-line backup and storage services. In such a sys-
tem, users are expected to cooperate, that is they are
compelled to share their private resources (storage and
bandwidth) with other participants to make the con-
cept work. A notable example of a P2P backup and
storage solution is Wuala4. In contrast to P2P file shar-
ing systems where tit-for-tat based cooperation is tem-
porary and lasts only for the data transfer time, in a
P2P backup and storage system user cooperation must
be long-term and dedicated to well-defined partners.

Although several works have defined subtle economic
frameworks to design and analyze incentive schemes to

1 Simple storage service, http://aws.amazon.com/s3
2 Online backup service, http://mozy.com
3 Unlimited online backup, storage, and sharing,

http://allmydata.com
4 Peer-to-peer storage system, http://wua.la/en/home.html



2

enforce user cooperation (e.g., [1] and references therein),
none of them have addressed the question of whether it
would be possible to design a P2P backup and storage
system with built-in incentives without requiring addi-
tional mechanisms. One of the main reasons is that ex-
isting P2P backup and storage systems do not constrain
the interaction among peers: in systems such as AllMy-
Data and Wuala peers exchange data with a randomly
chosen neighbor set, composed of remote peers partic-
ipating in the P2P system. An additional mechanism
to degrade or eventually deny service to misbehaving
peers is required.

In this work we make the case for a P2P system
in which users can selfishly create their neighborhood.
We build a model of a P2P backup and storage sys-
tem in which users are described by a profile, that ag-
gregates information such as on-line availability, band-
width capacity (accessibility), behavior, etc. Our model
is used to formulate a selfish optimization framework (in
game theoretic terms, a game) in which peers can select
the amount of data they wish to store in the system,
and the remote peers they wish to exchange data with
(termed peer selection). The novelty in our approach is
that it allows users to selfishly determine their profile:
e.g., availability and accessibility become optimization
variables, all compacted in a user profile. Profiles are
coupled with peer selection and we show that this is
sufficient for providing incentives to users to improve
their profiles.

Due to the complexity of the joint optimization prob-
lem we originally formulate, in this paper we focus on
the impact of peer selection on user profiles by extend-
ing the theory of Stable Matching. We define a novel
game, termed the Stable Exchange Game, and propose
a framework based on evolutionary game theory to an-
alyze deterministic and heuristic peer selection strate-
gies and show that even semi-random choices, which
are simple to implement in a real system, compel users
to improve their profiles if they wish to obtain a better
quality of service.

The remainder of the paper is organized as follows.
In Section 2 we briefly discuss related works, while in
Section 3 we formally introduce our system model. Sec-
tion 4 focuses on the analysis of peer selection strategies
and shows how prior results on matching theory can be
extended to account for the requirements of our model.
We define and analyze the uniform model in Section 5.
Section 6 introduces a framework based on evolutionary
game theory through which we analyze the impact of
several heuristic peer selection strategies on user pro-
files. In Section 7 we present the numerical evaluation
of our models and peer selection techniques. Finally,

we conclude the paper in Section 8 and discuss on our
future work.

2 Related work

A number of related works focus on economic modeling
of backup and storage systems and focus in particu-
lar on incentive mechanisms: we point the reader to
[15] and its references for an overview of such works.
In [15] selfish user behavior is described using non-
cooperative game theory: users are modeled by their
strategies on their demand (in terms of amount of data
to backup) and their offer (offered resources such as
storage space, available bandwidth and up-time). The
user payoff function defined in [15] is linear and split in
two parts: the first term represents users’ willingness to
participate to the backup service as a function of the
amount of data they need to backup, the second term
accounts for the costs for a peer to offer local resources
to remote peers.

An example of a commercial P2P storage applica-
tion is Wuala: the system relies on exchanges of data
between users. Each user has the right to backup the
amount of data in the system that she offers locally, dis-
counted by her availability, which must be kept above
a certain threshold. Data persistence and integrity is
periodically checked by the data owner, and important
peer parameters (offered/used storage space, availabil-
ity, bandwidth and malicious behavior) are maintained
using a distributed hash table. Furthermore a copy of
every piece of user backup data is stored on a server as
well.

In [8] the authors present the performance evalua-
tion of different peer selection strategies in presence of
churn: they present a stochastic model of a P2P sys-
tem and argue on the positive effects of randomization.
Peer selection strategies in [8] are designed to mitigate
the impact of churn while in our work peer selection it-
self provides incentives to users to increase their on-line
time.

Papers on network formation (e.g., [6], [13]) discuss
strategic peer selection to find equilibrium networks in
which users selfishly minimize a cost function that ac-
counts for end-to-end connectivity. Our model is related
to these works in that users build their neighborhoods
based on their local preferences. However, in our sys-
tem end-to-end connectivity is not necessary. Moreover,
we assume the creation of a link between peers to be
bilateral, as discussed in [5]. Matching theory, a field of
combinatorial optimization, provides useful tools to an-
alyze peer selection in our setting: we discuss in details
related works in Section 5.
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Data management is a crucial issue in backup and
storage systems. A vast literature exists tackling data
redundancy [16], resilience to peer churn, [3] and rep-
utation systems [9]. These problems are not addressed
in our work. We also gloss over the problem of deciding
which is the optimal amount of data to be stored in the
system [15].

3 System model

In this section we define a general model of a P2P
backup and storage system in which we assume sym-
metric exchange of data between peers. The model pre-
sented in this paper relies on the existence of a double-
overlay structure. The first overlay is a distributed hash
table that maintains information on the characteristics
and behavior of all peers taking part to the system,
as done in the Wuala application. We combine users’
features and behavior into a single parameter, that we
term profile. The second overlay is built by the users
themselves through peer selection: every peer decides
which remote peer to select and exchange data with.

We begin by defining the degrees of freedom of the
system: these are the variables a given peer is allowed
to locally optimize. We then present the utility function
that characterizes a peer: this allows to define a non-
cooperative game that we will discuss throughout the
paper5. We insert a table of notations here (Table 1) to
ease the readability of the paper.

I Set of users in the P2P backup system
α User profile vector
α̂ Effortless user profile vector

c User backup data vector
cij Backup data exchanged between users i and j
ni Neighbor vector of i containing cij ∀j ∈ I \ i
Ni Neighborhood selection set of user i

Si Combined strategy set of user i

P Payoff function
Pi Payoff of user i

U Utility of service in the payoff
D Degradation cost in the payoff
O Opportunity cost in the payoff

T Transfer cost in the payoff

E Effort cost in the payoff

M Matching
Pi,j,c Growth of i’s payoff due to her cth match to j

v(αi) Fitness of user i holding αi profile

∆v(αi, αj) Variation of i’s fitness when making link to j

Table 1 Table of Notations

5 In this paper the terms user, peer, player and participant are

synonyms.

3.1 User profile

Definition 1 Let I denote the set of participants in
the system, and let αi indicate ∀i ∈ I user i’s profile.
αi ∈ [0, 1] accounts for peer i’s availability (probability
to be found on-line) and accessibility (dedicated band-
width).

Each peer’s characteristics are combined in one scalar,
αi which accounts for peer i’s: data possession behavior
(i.e., liability in storing data), availability (probability
to be found on-line), and accessibility (available band-
width). We assume αi to be computed, maintained and
advertised through a dedicated DHT overlay. We note
that the definition of a method to compute users’ pro-
files calls for realistic measurements on peers’ behavior:
we will focus on this issue in our future work, while in
this paper we gloss over the details of how profiles are
computed.

In this work we make the case for users to con-
trol their profiles: users’ behavior, as well as their (eco-
nomic) efforts directed to improve their availability and
accessibility are considered optimization variables that
can be adjusted by a peer when participating to the
P2P backup and storage system.

In the next subsection we discuss data exchange
strategies between peers: these rules are necessary to
ensure data availability despite peer churn. We suggest
to use peers’ profiles as an important ingredient to drive
peer exchanges.

3.2 Backup data exchange

Definition 2 We denote by ci ∀i ∈ I the amount of
data user i wants to backup or store in the system.

Most of the existing works on P2P backup and stor-
age systems consider a specific exchange rule in order
to address the data availability issue and to enforce
symmetric collaboration between peers. For example,
Wuala imposes on peer i, with ci data units stored in
the system, the duty of storing ci

pi
data units for others,

where pi is peer i’s availability, pi ≤ 1. The shared ca-
pacities provide additional storage space which is then
exploited by data management techniques such as data
replication and/or redundancy. The latter guarantee
permanent backup service despite peer churn. More-
over, since the extent of space a peer offers for oth-
ers depends on the peer’s characteristics, this approach
supports fairness: less reliable peers need to offer rela-
tively more storage resource than sounder ones. There-
fore, such exchange rules yield symmetry among peers
in terms of overall resource contribution, i.e., not only
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storage space is taken into account, but its “quality” as
well.

In our model, a peer i offering ci

αi
storage space can

backup ci data units in the system (note that 0 ≤ αi ≤
1). As we noted, a fair barter-based P2P system should
lie on symmetric exchanges of backup space between
peers; in our model, the profile is used as weighting
factor to reach symmetric exchanges.

Our general model considers peers being able to lo-
cally decide (and optimize) the amount of data ci they
will store in the P2P system.

3.3 Peer selection

Along with the two optimization variables α, c discussed
in the previous subsections, our model explicitly ac-
counts for the strategic selection of remote connections
a peer establishes. This process, termed peer selection,
defines neighborhood relations among peers: the union
of all peers’ neighborhoods defines an overlay network
through which peers exchange data.

Definition 3 We introduce ni ∀i ∈ I, which is a |I|-
vector describing user i’s neighborhood. The elements
of ni are cij ∀j ∈ I, where cij is the amount of data
exchanged between user i and user j. cij = cji ∀i, j,
and ci ≥

∑
j 6=i cij must hold.

Note that although the definition of peer selection
we give in this section resembles to what has been
previously studied in network creation games [6], the
utility function we next define implies that peers are
not interested in end-to-end connectivity. Here, instead,
users are concerned with their neighbors’ profiles, thus
if these later change, links may be rearranged. In the fol-
lowing we define a heuristic utility function that quan-
tifies user preferences over the outcomes of the possible
strategy set.

3.4 User utility function

The utility function is the key component of our model.
Peers are assumed to selfishly optimize the utility func-
tion by appropriately selecting their strategy which is a
combination of three elements: their profiles, the amount
of data they want to store in the system and the re-
mote connections they establish. The utility function
we define in this section accounts for peers’ availability,
accessibility and behavior through the peers’ profiles.

Definition 4 For ∀i ∈ I, player i’s payoff Pi(αi, ci, ni)
can be described by the following form:

Pi(αi, ci, ni) = Ui(ci)−Di(ci, ni)

−Oi(αi, ci)− Ti(αi, ci, ni)− Ei(αi, α̂i),

where

– Ui(ci) stands for user i’s benefit for storing ci data
blocks which is assumed to be positive, continuously
differentiable, increasing and quasi-concave in its ar-
gument;

– Di(ci, ni) indicates the service degradation due to
non-optimal neighbors. It takes peer i’s neighbors’
αjs, weighted by the amount of data cij stored at
each remote peer as inputs. It is decreasing in the
remote peers’ profiles: connecting to a remote peer
with a higher αj value implies less degradation. If
the number of a peer’s neighbors drops drastically,
the service degradation increases;

– Oi(αi, ci) is the opportunity cost of offering private
resources (i.e., storage). This is a user specific func-
tion of user i’s ci and αi, since it is assumed to be
positive, continuously differentiable, increasing and
convex in the offered storage space, which is given
by αi and ci as discussed in Subsection 3.2;

– Ti(αi, ci, ni) represents the transfer cost related to
the service, and it is a user specific function of user
i’s ci, αi and weighted profile set of her neighbor-
hood. Ti is decreasing in αi, increasing in ci and
shows similar characteristics to Di on the neighbor
set ni;

– Ei(αi, α̂i) describes the effort cost that peer i has
to bear when improving her initial effortless profile
α̂i to αi. Ei is assumed to be a positive increasing
convex function of αi > α̂i.

Authors in [15] model the utility as a function of
the amount of data stored at remote peers, while the
uploading/retrieving process is assumed to be ideal. In
this work we argue that the “quality of service” of a
backup system should appear in the user’s payoff. As a
concrete example, a peer may offer a large amount of
storage space to remote peers, but the value to other
peers should be weighted by her up-link capacity: 1 Ter-
aByte of data is worth little if the up-link capacity is
only a few bytes per second.

3.5 Formal game description

We now formally define the dynamic, non-cooperative
game that can be built around the system model we
discussed in the previous subsections:



5

– I denotes the player set (|I| is the number of play-
ers);

– S depicts the collection of strategy sets (S = (Si)
for ∀i ∈ I), Si being the combination of the three
different strategy sets: αi ∈ R[0,1], ci ∈ R+, ni ⊆
Ni = {{i, j, cij} : j ∈ {I \ i}, cij ∈ R[0,min (ci,cj)]};

– P function gives the player payoffs (P = (Pi) for
∀i ∈ I) on the combination of strategy sets (P :
S1 × · · · × Sn → R|I|).

User strategies and their effects on the payoff lead
to the maximization problem a selfish user faces in the
system: user i always maximizes her payoff Pi on her
three strategy variables (i.e., her on-line characteristics
described by αi, her backup ci and her strategy regard-
ing peer selection ni), all of them having impacts on
her payoff as the previous section presented. Their ef-
fects are not independent, e.g., a user who makes costly
efforts to increase αi will have a better neighborhood
in terms of neighbors’ profiles, resulting in lower degra-
dation cost.

The optimal user strategy tuple s∗i = (α∗i , c
∗
i , n
∗
i ) ∈

Si is defined by solving the equation argi(max(Pi)) with
the constraint that n = (ni) for ∀i ∈ I must ensure
pairwise and symmetric exchanges. In (Nash) equilib-
rium Pi(s∗i , s

∗
−i) ≥ Pi(s′i, s

∗
−i) for any player i and for

any alternative strategy tuple s′i 6= s∗i , where s∗−i =
(α−i, c−i, n−i)∗ depicts the composition of equilibrium
strategy tuples of players other than i.

In summary, the game defined in this section is a
joint optimization problem that turns out to be very
difficult to analyze. In Section 4 we restrict our atten-
tion to peer selection and derive some simplifying as-
sumptions to improve the tractability of the problem.

4 Modeling peer selection

To the best of our knowledge, little work has been done
in studying the strategic selection of remote peers to
exchange data with in a P2P backup and storage sys-
tem. In this section we focus on strategic peer selection.
We leverage on the literature of P2P content sharing
(see for example [14]) and cast the peer selection as a
stable matching problem. However, we improve on pre-
vious models by allowing matchings to be the results
of a dynamic game in which peers can both select re-
mote connections based on global preference ordering
and can operate on their profiles αi to modify their
rankings.

First, we focus on determining the dominant strat-
egy for peer selection; second, we provide a brief in-
troduction to matching theory, and at the end of this
section we define a new matching problem.

4.1 Dominant strategies

To delve into the analysis of peer selection strategies
(n), we simplify the game previously discussed by con-
straining the degrees of liberty of the system: we simply
“downgrade” two strategic variables to play the role of
parameters in our simplified system:

Assumption 1 We assume that for ∀i ∈ I user i’s
strategies ci, αi are fixed; moreover, peer i equally splits
the ci data units among the neighbor set, i.e., cij = cik
for ∀j, k ∈ ni. Thus, i’s payoff may be improved only
through ni, i.e., the number and the profiles of i’s neigh-
bors.

Definition 5 Player i adopts a

– selective strategy if neighbors with high profile
are preferred over neighbors with low profile: Pri(j)
> Pri(k) iff αi > αk ∀j, k ∈ I \ {i}, where Pri(j) is
the probability that i attempts to create a link with
j;

– non-selective strategy if neighbors are chosen at
random, i.e., Pri(j) = Pri(k) ∀j, k ∈ I \ {i}.

Definition 6 A dominant strategy of a game 〈I,S,P〉,
where I is the set of players, S = (Ni) for ∀i ∈ I is the
strategy set, and P = (Pi) gives player preferences over
the strategy set, is a strategy n∗i ∈ Ni with the property
that for player i ∈ I we have P(n∗i , n

∗
−i) ≥ P(ni, n∗−i)

for ∀ni ∈ Ni and for any counter strategy set n∗−i ∈
N−i.

Proposition 1 The selective strategy is dominant for
every player.

Proof The proof’s key is that cooperation is bilateral,
i.e., needs consent from both parties. Under Assump-
tion 1 a player’s payoff depends only on her selected
partners’ profiles; moreover based on the payoff func-
tion’s Di and Ti, collaborating with player j is less ben-
eficial to a given user i than cooperating with player k,
such that αk > αj . Let us separate player i’s partners
based on their strategies: selective and non-selective
partners. Then, i’s payoff is the function of the average
profiles of her non-selective and selective partners, de-
picted in the form of Pi(αnon−selective, αselective). Since
cooperation is pairwise, a selective player will not col-
laborate with a worse player, if she can pick a bet-
ter one. Thus, assuming large number of heterogeneous
profile players, a selective (resp. non-selective) player’s
Pi is a function of (α̃i, αi) (resp.(α̃, α̃i)), where α̃i is the
average profile of non-selective players having higher
profiles than αi (resp. α̃i stands for the average pro-
file of selective partners worse than αi and α̃ depicts
the average profile of all non-selective players). Since
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P (α̃i, αi) > P (α̃, αi), and similarly P (α̃, αi) > P (α̃, α̃i)
hold, being selective is always the best strategy as it as-
sures the highest payoff regardless the counter-strategy
set.

4.2 Matching problems

The game presented in Section 3 incorporates a match-
ing problem on the strategy vector n: we are interested
in stable outcomes of these games. Here we emphasize
the complexity that the pairwise symmetric backup ex-
changes introduce to the system model. We define our
problem starting from traditional matching problems.
In each case, we assume complete global preference lists
without ties and that if player i prefers one of her strate-
gies to an other, it is because the strict preference order
over the payoff Pi for the given best response strategy
set yields so.

The first works on matching theory focused on bi-
partite, stable marriage problems [7]. However, in our
setting there is no such distinction of genders (wom-
anhood and manhood), hence the bipartite approach
is not suitable. Single linking between players belong-
ing to the same set was first introduced in the stable
roommates problem.

4.2.1 Stable roommates problem

In a stable roommates (SR) problem player i’s strategy
is ni ∈ Ni, where Ni is the set {{i, j} : j ∈ I \ {i}},
and P is assumed to give strict order on i’s possible
pairs, termed preference list. The formal definition of
the SR problem is to find a matchingM on the setting
presented above, M being a set of |I|2 disjoint pairs of
players, which is stable if there are no two players, each
of whom prefers the other to his partner in M. Such
a pair is said to block M. Following the statement of
the SR problem by Gale and Shapley in [7], Irving et
al. [11] present a polynomial-time algorithm to deter-
mine whether a stable matching exists for a given SR
instance, and if so to find one such matching.

For the case where a given player may be part of
multiple pairs, the stable fixtures problem was intro-
duced.

4.2.2 Stable fixtures problem

Irving and Scott present in [12] the stable fixtures (SF)
problem, which is a generalization of the SR problem.
Formally, the notion of capacity is introduced such that
for each i ∈ I a positive integer ci, which is player
i’s capacity, denotes the maximum number of matches,
i.e., pairs (i, j) in which player i can appear. i’s strategy

is ni ⊆ Ni = {{i, j} : j ∈ {I \ i}} and P gives again
the strictly ordered preference list on i’s matches. It is
straightforward to see that the SR problem is a special
case of the SF problem when ci = 1 ∀i ∈ I, i.e., each
player may have 1 match at most. A matchingM here
is a set of acceptable pairs {i, j} such that for ∀i ∈ I
|{j : {i, j} ∈ M}| ≤ ci, where a pair {i, j} is acceptable
if i appears in nj and j appears in ni. M is stable if
there is no blocking pair, i.e., an acceptable pair {i, j} /∈
M such that

– either i has fewer matches than ci or prefers j to at
least one of her matches in M; and

– either j has fewer matches than cj or prefers i to at
least one of her matches in M.

[12] describes a linear-time algorithm that deter-
mines whether a stable matching exists, and if so, re-
turns one such matching.

In this work, we define a more general problem by
further extending the SF problem with the possibility
of multiple matches between two given players. We call
this problem the stable exchange problem. In [2] the
authors arrive at a very similar extension of the SF
problem through the definition of SR problem general-
izations under the names of stable activities problem,
where parallel edges in the underlying graph are al-
lowed, and stable multiple activities problem, where
multiple partners are allowed. However, in the stable
exchange problem the players’ preference structures are
provided by the underlying utility function model, which
gives specific properties to this matching problem.

4.2.3 Stable exchange problem

In the stable exchange (SE) problem player i’s strat-
egy is ni ⊆ Ni = {{i, j, cij} : j ∈ {I \ i}, 0 ≤ cij ≤
min (ci, cj)}, where cij (resp. ci) denotes player i’s num-
ber of matches towards player j (resp. towards all the
players). A matching M is a set of matches {i, j, cij}
such that {i, j, cij} ∈ ni, {j, i, cij} ∈ nj for ∀i, j ∈ I,
and

∑
j:{i,j,cij}∈M cij ≤ ci holds for ∀i ∈ I. To avoid

inconsistency in the consequence order of consecutive
matches between given players, we make the following
assumption regarding the preference list:

Assumption 2 Pi,j,c′ > Pi,j,c′′ holds for any pair of
matches between players i and j if c′ < c′′ for ∀i, j,
where, by an abuse of notation, we denote players i and
j’s c′th pairwise match’s payoff for i by Pi,j,c′ .

M is stable if, similarly to the SF problem, there is
no blocking match, i.e., no match {i, j, c′} /∈ M, thus
c′ > cij for ∀i, j : (i, j, cij) ∈M, such that
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– either i has fewer matches than ci or Pi,j,c′ > Pi,k,cik
∈

M, such that j 6= k, i.e., {i, j, c′} is more beneficial
for i than at least one of her matches in M; and

– either j has fewer matches than cj or Pj,i,c′ > Pj,l,cjl
∈

M, such that i 6= l, i.e., {j, i, c′} is more beneficial
for j than at least one of her matches in M.

In other words, in a stable matching no two players
could have a new match between themselves which is
preferred by both of them to any of their existing matches.

In order to summarize the presented matching prob-
lems, Figure 1 provides graphical representation of sim-
ple problems’ stable matchings.

Fig. 1 Stable matchings of simple matching problems: stable

roommates (left), stable fixtures with ci = 3 ∀i ∈ I (center) and
stable exchange problem with ci = 3 ∀i ∈ I (right)

5 The exchange game

In this section first we reduce the generic model defined
in Section 3 by defining a simplified utility function
derived from Definition 4 that induces the peer selec-
tion game. Then we show that under the assumption
made in Section 5.1 we can anticipate best response
peer selection strategies and stable overlay graphs for
any given α vector when users selfishly optimize their
utility from participating to the system. Since we cast
the question as a stable matching problem, afterwards
we focus on how to shift from the algorithmic domain
that characterizes simple matching problems to a game
theoretic framework.

5.1 Peer selection game: a simplified utility function

Proposition 1 indicates that selfishly selecting remote
peers to connect to dominates a random strategy. We
now define a formal setting to study the problem of
the existence of stable matchings between peers that
selfishly select both remote connections based on some
preference ordering and that operate on their profiles
αi to modify their ranking. To improve the tractabil-
ity of the problem we suppose peer homogeneity in the
amount of data that needs to be stored and in the ini-
tial (effortless) profile parameter α̂i. The combinatorial

problem that arises in our game is thoroughly discussed
later in Section 5.

Assumption 3 We assume ci = C ∈ N+ ∀i (also ex-
changes are discrete) and that α̂i = 0 for ∀i ∈ I, where
α̂i is the initial, effortless profile.

Leveraging on Assumption 3 we can define the fol-
lowing simplified utility function, which is selfishly op-
timized by all peers participating to the system:

Definition 7 We assume that i’s payoff ∀i ∈ I, intro-
duced in Definition 4, is defined as follows: P (αi, C, ni) =
U(C)−D(C, ni)− O(αi, C)− T (αi, C, ni)− Ei(αi, 0),
where:

– the utility of service U(C) and the opportunity cost
O(αi, C) are such that exchanging backup data brings
positive gain with any αj peer, for simplicity U(C)−
O(αi, C) = 2 ∀αi in the subsequent analysis;

– the degradation cost, which increases (convex) in
the backup fraction exchanged with a particular peer
but decreases in the latter’s profile, has the following
form: D =

∑
j∈ni

( cij

C )(1+αj)(1− αj);
– the transfer cost, which depends linearly on the backup

fractions, is T = (1− αi)
∑
j∈ni

cij

C (1− αj);
– and the effort cost is equal to Ei = α2

i , assuming
E = (αi − α̂i)2.

5.2 The capacity-uniform stable exchange problem

In this section we analyze a simplified instance of the
stable exchange problem: we assume the previously de-
fined homogeneous case in which all users store the
same amount of data in the system while selfishly op-
timizing the simplified utility model (see Assumption 3
and Definition 7). Let us suppose that the payoff func-
tion P (and thus the preference order on N = (Ni) for
∀i ∈ I) is defined based on the player parameter set
α. The implications of α on P are compacted in the
following proposition.

Proposition 2 In a capacity-uniform stable exchange
problem determined by Assumption 3 and Definition 7,

Pi,j,c′ > Pi,k,c′

holds for a given 0 < c′ ≤ C for any given pair j, k ∈
{I \ i} if, and only if αj > αk for ∀i ∈ I. In the case
αj = αk, Pi,j,c′ = Pi,k,c′ for any 0 < c′ ≤ C. Also,
Assumption 2 holds as direct consequence of Definition
7.

Proof Statement comes directly from Assumption 3 and
Definition 7. Player i’s payoff of the cth match with
player j is Pi,j,c′ = Ui −Di − Oi − Ti − Ei, where the
different terms are given as follows:
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– Ui −Oi = 2
C ;

– Di =
(

( c
′

C )
(1+αj) − ( c

′−1
C )

(1+αj)
)

(1− αj);

– Ti = (1− αi)(1− αj) 1
C ;

– Ei = α2
i

C ;

since the utility of service, opportunity and effort costs
are assumed to be equally attributed to the maximum
number of matches (C) a player can establish. This
gives straightforwardly the proposition.

For the given capacity-uniform stable exchange prob-
lem, constructed by the assumptions and holding prop-
erties given in Proposition 2, we now prove that it is
always possible to find the optimal stable matchingM.

Proposition 3 At least one stable matching exists for
a given uniform backup exchange problem instance, and
a slightly extended version of Irving’s algorithm [12]
(presented in the proof) finds the optimal one in poly-
nomial time.

Proof The proposition comes directly from our exten-
sion of Irving’s algorithm for SF problems to SE prob-
lems and from Proposition 2. By supposing determin-
istic behavior of Irving’s algorithm (see [12] for fur-
ther details on the algorithm), the statement becomes
straightforward. Note that non-determinism has no ef-
fect on the outcome, therefore let us suppose that play-
ers place their bids in the profile order. The best pro-
file player i bids the first C matches on her preference
list, and based on Proposition 2, all of them will be ac-
cepted and reciprocated, since if Pi,j,cij

> Pi,k,cik
then

Pj,i,cji
> Pj,k,cik

with cji ≥ cij for ∀i, j, k such that
αi > αj and 0 < cij , cik, cji ≤ C. In other words, this
means that if a higher profile peer is interested in a
match with a lower profile one, then the latter is in-
terested also at least to the same extent. When the
highest profile peer has found her maximal number of
stable matches, the remaining bids of the other players
targeting her are dropped. Then, as an induction, the
previously stated reasoning stands for the highest pro-
file player of the rest. This deterministic sequence of
the algorithm also assures that the optimal matching
will be found, since there is no possible further pair-
wise match which yields higher payoff than the ones in
M.

5.3 The capacity-uniform stable exchange game

We now shift from the basic algorithmic setting of match-
ing problems to a game theoretic setting. Formally, let
α be a strategy variable vector the players can decide
on, which indirectly influences the payoff function P: in

this setting, supposing that Assumption 3 and Defini-
tion 7 hold, the uniform stable backup exchange prob-
lem becomes a game.

5.3.1 Game definition

In the capacity-uniform stable exchange game, using
the Section 3’s notations, the joint strategy si for player
i consists of αi ∈ [0, 1] and an instance ni ⊆ Ni =
{(i, j, cij) : j ∈ {I \ i}, 0 ≤ cij ≤ C}. Player i ∈ I
selfishly maximizes her payoff Pi, given by P on the α
strategy vector and the peer-selection strategy vector
n, i.e., P : α ×N → R|I|.

5.3.2 Equilibrium

In Nash equilibrium, which must be a stable matching,
the Pi({α∗i , α∗−i}, {n∗i , n∗−i}) ≥ Pi({αi, α∗−i}, {ni, n∗−i})
holds for any αi, ni and for ∀i ∈ I, where α∗−i and s∗−i
depict the best response counter strategy sets.

The optimal player strategy tuple is

(α∗i , n
∗
i ) = argi(max(Pi(α,N )))

for ∀i ∈ I with the constraint that stable matching is
symmetric in n∗ = (n∗i ) for ∀i ∈ I, since every match
is pairwise. The social welfare is given by

max(
∑
i∈I

Pi(α,N ))

also with the stable matching constraint.
We suspect that showing the existence of the pair-

wise Nash equilibrium of the game, as well as the joint
optimization problem defined above, are NP-hard prob-
lems, but defer to future work a formal proof.

6 Peer selection strategies: an evolutionary
framework

In this section we build a framework based on evolution-
ary game theory to analyze the properties of a range of
peer selection strategies. Our goal is to study the im-
pact of peer selection on peers’ profile α, that is we
address the following question: how much effort will a
peer dedicate to improve her profile, given a specific peer
selection strategy?

We define the following evolutionary game [10]: play-
ers execute an interleaved sequence of peer selection and
profile selection. In the first phase, peers adopt one of
the peer selection strategies we define hereafter, in the
second phase, they adapt their profiles based on the
average profile computed over the first phase’s strategy
set. Only an increment in their fitness will motivate
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an additional effort in improving their profile. These
two phases are repeated throughout generations until
an equilibrium is reached. The asymptotic evaluation
of the system we present aims at determining evolu-
tionary stable strategies (ESS) over peers’ profile α.

Assumption 4 We assume the number of players to
tend to infinity: |I| → ∞; the initial strategy profile
α is assumed to be uniformly distributed on [0, 1] and
continuous over the infinite population. Moreover, we
assume that in each generation, every player attempts
to establish C

2 matches (i.e., data exchanges).

Definition 8 Let ∆v(αi, αj) denote the variation in
fitness for a player with profile strategy αi when estab-
lishing a match to a player with profile strategy αj .

Assumption 5 We assume a cumulative fitness func-
tion that accounts for a player’s payoff (based on Defi-
nition 7) obtained in previous generations.

Therefore6

∆v(αi, αj) =
1
C

(αj(2− αi) + αi(1− αi)) .

We now turn our attention to a range of heuristic
peer selection techniques. Instead of applying our algo-
rithm to find the optimal stable overlay for the uniform
backup exchange problem as illustrated in Section 5,
we make the case for simpler schemes. The following
peer selection strategies can be easily implemented in a
realistic setting and they do not require global knowl-
edge. Informally, we first propose a completely random,
un-biased and unilateral peer selection. We then con-
strain peer selection accounting for the profile of the
two peers involved in a matching. First, we explore a
strategy in which the remote peer accepts a matching
with a probability that is proportional to the profile
of the initiator of the matching. Then, we propose a
strategy in which random peer selection is biased by
the profile of remote peers: a peer with a high profile
will be more likely selected than one with a low profile.
Remote peers accept a connection with a probability
proportional to the initiator.

Definition 9 Heuristic peer selection strategies:

– one-sided random matches: remote peers are ran-
domly chosen and the match is not pairwise, i.e.,
when chosen, a player has to cooperate with the
initiator one;

– pairwise random matches: a player with αi ran-
domly selects a remote player, and the match is ac-
cepted with probability αi;

6 Assumption 4 allows to approximate (
cij

C
)
(1+αj)

by 1
C

.

– pairwise strategic matches: a player with pro-
file αi selects a remote player with profile αj with
probability αj and the match will be accepted with
probability αi.

Before delving into the analysis of the impact of
peer selection strategies on profile selection, we briefly
review two important concepts in evolutionary game
theory.

6.1 Evolutionarily stable strategy

The definition of an ESS that Maynard Smith [17] gives
for cases involving two possible pure player strategies
is the following. In order for a strategy to be evolution-
arily stable, it must have the property that if almost
every member of the population follows it, no mutant
(i.e., an individual who adopts a novel strategy) can
successfully invade. Let v(α′) denote the total fitness
of an individual following strategy α′. If α∗ is an evo-
lutionarily stable strategy and α′ a mutant attempting
to invade the population, then

v(α∗) = (1− p)∆v(α∗, α∗) + p∆v(α∗, α′);

v(α′) = (1− p)∆v(α′, α∗) + p∆v(α′, α′);

where p is the proportion of the population following
the mutant strategy α′.

Since α∗ is evolutionarily stable, the fitness of an in-
dividual following α∗ must be greater than the fitness of
an individual following α′ (otherwise the mutant follow-
ing α′ would be able to invade), and so v(α∗) > v(α′).
Now, as p is very close to 0, this requires that either
that

1. ∆v(α∗, α∗) > ∆v(α′, α∗) or that
2. ∆v(α∗, α∗) = ∆v(α′, α∗) and∆v(α∗, α′) > ∆v(α′, α′).

In other words, what this means is that a strategy α∗

is an ESS if one of two conditions holds: (1) α∗ does
better playing against α∗ than any mutant does playing
against α∗, or (2) some mutant does just as well playing
against α∗ as α∗, but α∗ does better playing against the
mutant than the mutant does.

6.2 Replicator dynamics

An ESS is a strategy with the property that, once all
members of the population follow it, then no “rational”
alternative exists. To determine the stable equilibrium
state, at first we need to study the replicator dynam-
ics of the system from the initial state. During each
generation, players establish matches, and their fitness
improves thereby.
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As mentioned above, the system is assumed to show
discrete dynamics characters, i.e., generations follow
each other. The proportion of the population follow-
ing a given strategy in the next generation is related
to the proportion of the population following the same
strategy in the current generation according to the rule:

xt+1
αi

= xtαi

vαi
(x)

v̄(x)
,

where xtαi
(resp. vαi

(x)) denotes the proportion (resp.
the average fitness) of population holding strategy αi
during the t-th generation. v̄(x) depicts the average fit-
ness of the whole player set.

6.3 One-sided random matches

When considering one-sided random matches, each player
randomly selects C

2 players to connect to: the match is
established even if the remote peer profile is low com-
pared to the initiator’s profile. We now establish the
ESS profile selection strategy:

Proposition 4 In a SE game where one-sided random
matching is used α∗ = 1

3 is the only ESS.

Proof Let α′ be a mutant strategy such that α′ 6= 1
3 .

We show that ∆v(α∗, α∗) > ∆v(α′, α∗) always holds.
Since ∆v(α∗, α∗) = 7

9 , after some algebra we arrive at
(α′− 1

3 )2 > 0 inequality for the condition to hold, which
is always true given α′ 6= 1

3 . Similarly, we can show
that α′ = 1

3 is successful as mutant strategy against
any other strategy, thus it can invade any other overall
population α∗ strategy.

6.4 Pairwise random matches

When supposing pairwise random matches, a player
with αi gets rejected with a probability of (1-αi). In
case of rejection, the match is not successful, therefore
it does not increase the player’s fitness. With this ex-
tension we reduce the success possibility of low profile
players, so their fitness is expected to increase slower
than a player with higher profile. The expected payoff
of a match initiated by a player holding αi becomes:

∆v(αi, αj) =
1
C

(αj(2− αi) + αi(1− αi))αi.

When considering pairwise random matches, no player
has C expected matches, unless all players in the gen-
eration hold the maximum profile, i.e., α = I1. A low
profile peer will be rejected with high probability when
she initiates a match, on the other hand she will be

selected randomly by others, thus despite her bad pro-
file, she might be matched to some peers. To embrace
this duality, which does not occur in the previous case
where every initiated match is supposed to be success-
ful, we need to distinguish between the payoffs due to
“outgoing” matches from those obtained from “incom-
ing” matches. A player with profile αi will improve her
fitness by ∆vb(αi) due to “outgoing” matches and by
∆vt(αi) due “incoming” matches.

The player fitness improvements depend on the dis-
tribution of the population proportions holding given
profile strategies. This distribution is time variant due
to the inter-generation strategy changes, thus the prob-
ability of picking a specific profiled player randomly
for a match attempt evolves through subsequent gen-
erations. This evolution reacts to the fitness improve-
ment of the player with a given strategy. Assuming uni-
form initial strategy distribution, we make the following
proposition, limited to the second generation.

Proposition 5 Under Assumption 4, the proportion of
population with αi < 0.31 and with αi > 0.89 will de-
crease, and the number of players with strategy profiles
in between is going to increase in the second generation.

Proof At the initial state, profile strategy set is uni-
formly distributed, i.e., xαi = 1 where xαi denotes the
probability density function (i.e., distribution) of play-
ers holding αi as strategy. The average fitness of the
population’s proportion holding strategy αi is

vαi(x) = ∆v(αi) = ∆vb(αi) +∆vt(αi) =

1
2

∫ 1

0

(α(2− αi) + αi(1− αi))αixαdα

+
1
2

∫ 1

0

(α(2− αi) + αi(1− αi))αxαdα,

since based on the law of large numbers each player
initiates and receives C

2 match attempts during a gen-
eration lifetime. After some algebra we get vαi

(x) =
− 1

2α
3
i + 7

12αi + 1
3 under the assumption xα = 1. Since

the average fitness improvement is given by v̄(x) =∫ 1

0
vα(x)xαdα, in our case it is equal to 0.5. Thus based

on Subsection 6.2 only the proportion of players holding
strategies such that − 1

2α
3
i + 7

12αi+
1
3 >

1
2 will increase,

establishing the proposition.

Pairwise random peer selection provides incentives
to player for improving their profiles: compared to the
ESS of the random matching strategy, the average pro-
file will be higher.
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6.5 Pairwise strategic matches

Intuitively, the case of utility-based pairwise matching
yields stricter exclusion effect on low profile players.
Pairwise strategic matches bring the heuristic strategy
closer to the idea behind pairwise utility-based match-
ing, yet it is simpler to implement.

In a SE game of pairwise strategic matches, the ex-
pected payoff of a match initiated by a player holding
αi is:

∆v(αi, αj) =
1
C

(αj(2− αi) + αi(1− αi))αiαj . (1)

Based on Equation 1, we establish the following
proposition:

Proposition 6 Under Assumption 4, the lowest pro-
file (under 0.4) players will increase their profiles in a
system implementing pairwise strategic matches.

Proof The proof is similar to the one given for Propo-
sition 5. Here

vαi(x) =
1
2

∫ 1

0

(α(2− αi) + αi(1− αi))αiαxαdα

+
1
2

∫ 1

0

(α(2− αi) + αi(1− αi))ααixαdα

= −1
2
α3
i +

1
6
α2
i +

2
3
αi,

so at the initial state v̄(x) = 19
72 . This result implies that

the proportion of population holding higher profile than
0.4 will increase, thus players worse than this threshold
will increase their profiles.

Proposition 6 indicates that if peer profiles are part
of the peer selection strategy, the consequence is that
peers will be compelled to improve their profiles in or-
der to obtain better matching. In summary, even simple
techniques that are not based on any local optimization
of a utility function, provide incentives for peers to im-
prove their profiles.

7 Numerical evaluation

Hindered by the complexity of the exchange game, we
give heuristics to find equilibrium in given game in-
stances and provide the evaluation of our approaches in
this section. Building on the idea presented in Section
6, we propose that players’ decisions regarding their
two strategic variables (i.e., α and n) are interleaved
and carried out iteratively. Players’ strategy-making on
α follows a heuristic based on a similar evolutionary
game theoretic scheme as in Section 6, however in order

to meet scalability requirements, here players switch to
their partners’ average profile strategy if they experi-
ence lower payoff then their neighborhood’s average.

In terms of peer selection we compare the four schemes
that we presented previously. Thus, according to Sec-
tion 5 and Assumption 4, in each iteration:

1. we find the optimal stable matching (see Proposition
3) on the actual profile vector based on our variation
of Irving’s algorithm;

2. every player makes C
2 one-sided random matches;

3. every player makes C
2 pairwise random matches;

4. every player makes C
2 pairwise strategic matches.

In Algorithm 1 we depict the pseudo-code of the
heuristic algorithm to study the exchange game of Sec-
tion 5. We implemented Algorithm 1 in a custom MAT-
LAB simulator and studied its convergence properties:
the algorithm converges in linear time for each peer se-
lection scheme.

Algorithm 1 Iterative distributed dynamic uniform
exchange algorithm
k = 0, initial strategy set αk, initial fitness set Pk

repeat
define matching Mk by one of the four schemes based on

αk, where Mk =
⋃
i∈IMk

i , i.e., player i’s matches in Mk

compute Pki given αk and Mk for ∀i ∈ I

compute P̄k−i =
∑
j∈Mk

i

ck
ij

C
Pkj for ∀i ∈ I

for all i ∈ I do
if Pki < P̄k−i then

αk+1
i :=

∑
j∈Mk

i

ck
ij

C
αkj

else

αk+1
i := αki

end if
end for

k := k + 1

until αk = αk−1

7.1 Simulation setting

The results we show in this section are based on the
following criteria according to Assumption 4:

– Our experiments involve a relatively high number of
users: we assume |I| = 1000 players;

– We assume that the set of players taking part to the
stable exchange game does not vary in time;

– For every peer i ∈ I, we set the initial user profile
to a random value generated uniformly on the [0, 1]
interval;

– We assume that each peer stores C = 20 units of
data in the system;
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– Users are considered to be selfish and their behav-
ior is driven by the payoff function conform to the
considerations given in Assumption 3 and Definition
7;

– Due to the randomized nature of our algorithms,
the results presented in the following are averaged
over 10 simulation runs.

7.2 Evaluation metrics

The evaluation of the achieved results is based on the
following metrics:

– Average user profile: α(t) = 1/N
∑
i∈I αi(t), which

is the average profile computed at each round of the
iterative algorithm;

– Cumulative distribution function of equilibrium user
profiles at the end of the simulation run;

– Total payoff or social welfare: P (t) =
∑
i∈I Pi(t),

which cumulates the payoff that every peer perceives
for storing its data in the system. We present the
evolution of this aggregated user payoff: it is plotted
for each round of the algorithm’s iteration.

7.3 Simulation results

First we present the evolution of players’ profile strate-
gies: we show the average system profile in each gener-
ation over the simulation rounds. Figure 2 depicts the
profile evolution when the three heuristic peer selection
schemes are deployed, and Figure 3 shows the outcome
of our algorithm presented in Proposition 3 for every
round.
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Fig. 2 Evolution of player profiles when applying the three
heuristic peer selection schemes

As the figures suggest, any peer selection scheme
that involves some kind of distinction among peers re-

sults in higher average peer contribution (i.e., higher
average profile) than an entirely random overlay cre-
ation scheme, as the one-sided random peer selection.
As a simple observation, a peer’s best response pro-
file strategy to the initial uniform profile distribution is
α∗ = 0.25 by maximizing the payoff’s T and E (α∗i =
maxαi

(αi(0.5− αi))) if its neighborhood is picked ran-
domly. We show in Proposition 4 that evolution makes
α∗ = 1

3 to be the dominant strategy. We formalize this
result in Section 6, where we state that when initial
profiles are uniformly distributed on the [0, 1] interval,
the average profile (0.5) drops to the equilibrium pro-
file value of 0.33 with random peer selection. However,
the value of equilibrium profile plotted on Figure 2 is
slightly higher (0.39) than the analytical result, this
difference is caused by Assumption 5 which has been
made in order to increase the tractability of the game’s
quantitative analysis.
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Fig. 3 Evolution of player profiles when the stable exchange
algorithm of Proposition 3 determines the overlay

An other remarkable observation is that the two
other peer selection heuristics, i.e., pairwise random
and pairwise strategic schemes, obtain higher average
profile in the system than the deterministic stable ex-
change algorithm, plotted on Figure 3. After many rounds
of simulation (1000 rounds), the stable exchange algo-
rithm seems to converge to the initial profile average
(Figure 3), while the two other schemes drive the sys-
tem towards much higher average profile extremely fast
(after only 10 rounds). The main cause of this phe-
nomenon is the stratification of players, that we will dis-
cuss later. Note, however, that while the overlay which
is created by the stable exchange algorithm yields inher-
ently lower average profile than the heuristic schemes
in this setting, we show an other configuration in Sub-
section 7.4 where we experience the opposite: heuristic
peer selection schemes provide lower profiles there.
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To make the stratification observable, we plot the
the cumulative distribution of profiles at the stable state
on Figures 4 and 5. In the cases of heuristic peer selec-
tion, one can observe that the majority of players hold
similar profile strategy (except for the pairwise strategic
scheme where a part of the player set has 0 as profile).
This is due to the fact, that peer candidates are ac-
cepted based on the specific rule, but they are selected
randomly out of the whole system set. Thus, interac-
tion becomes possible between any two given players
through the rounds, and no isolation occurs (except
again for the 0 profile players in the pairwise strate-
gic setting). Therefore the profile imitation heuristic
which determines players’ profiles drive the system con-
vergence towards one unique global profile in each case.
This result might be interesting in our setting, where
we assume that the profile selection heuristic compares
a player’s payoff only to its direct neighborhood’s (and
not to the whole system’s), and copies this latter’s av-
erage profile if convenient.
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Fig. 4 Distribution of player profiles in equilibrium resulted from

the heuristic peer selection schemes

When the stable exchange algorithm creates the sys-
tem’s overlay, the stratification of players is the main
reason for the resulted profile distribution. On Figure
5 we plot the whole cumulative distribution of equilib-
rium profiles first, then we highlight a small part of the
distribution function below, because the clustering phe-
nomenon becomes much more observable on the latter.
In this case, it is possible to distinguish among groups
of players holding nearly the same profile level. These
players are, in fact, colluded into clusters, and in each
cluster, players end up with the same profile strategy
since they all have the same neighborhood to compare
themselves to. Informally, the direct consequence of our
stable exchange algorithm is the stratification of players
based on their profiles which results in the emergence

of disjoint clusters in our simulation setting, and the
heuristic profile strategy-making aligns the profiles of
players belonging to the same cluster.

We point out that the initial profile distribution in-
cludes a fraction of players with profiles close to zero:
this is the case for peers having, e.g., poor connectivity
or malicious tendency. Figure 4 shows that “low-profile”
peers improve their profiles throughout subsequent gen-
erations to arrive at the stable profile value in ran-
dom schemes. However, in strategic schemes (pairwise
strategic on Figure 4 and stable exchange algorithm
on Figure 5) high profile peers do not make links with
very low profile ones, thus these peer selection tech-
niques induce robustness against low-profile peers. In
the pairwise strategic heuristic peer selection scheme,
players with initially low profiles are destined to be
isolated from the system, while the stable exchange
algorithm drives these players to slightly higher pro-
files. This phenomenon shows that, in this perspec-
tive, the pairwise strategic peer selection scheme is even
stricter with initially unreliable players than the stable
exchange algorithm-driven peer selection.
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Fig. 5 Distribution of player profiles in equilibrium when the
stable exchange algorithm is applied
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Finally, Figure 6 depicts the evolution of player pay-
offs compacted in the the social welfare (i.e., sum of all
players’ payoffs) for each generation when we strive to
find the stable matching with the stable exchange al-
gorithm in each round: the heuristic scheme we defined
in this section (that is, copying winning profile strat-
egy from within the neighborhood) drives the system
to higher social welfare.
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Fig. 6 Evolution of player payoffs if the overlay is given by the

stable exchange algorithm in each round

7.4 Simulation results with high initial profile setting

Previously, in Subsection 7.3, we presented results of
simulations conform to the setting analytically studied
in Section 6. In order to present the peer selection tech-
niques from an other perspective, here we provide the
evaluation of an other configuration: we alter the initial
profile distribution of the setting described in Subsec-
tion 7.1, and assume that profiles are generated uni-
formly on [0.5, 1]. As it is observable on Figures 7 and
8, homologs of Figures 2 and 3, with this initial setting
the stable exchange algorithm, besides the fact that it
creates a stable overlay in a deterministic way, yields
high average profile on the user set. While the pair-
wise strategic scheme results in similar average profile
as the stable exchange algorithm-driven peer selection
(around 0.75), the two other heuristic schemes fail to
provide a comparably high average profile level.

Similarly to the plots in Subsection 7.3, we provide
the distribution of stable profile strategies in systems
employing the three heuristic schemes (on Figure 9) and
the stable exchange algorithm (on Figure 10) to carry
out peer selection. As previously, we see the global pro-
file strategies in the heuristic cases, and player stratifi-
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Fig. 7 Evolution of player profiles when applying the three

heuristic peer selection schemes
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Fig. 8 Evolution of player profiles when the stable exchange

algorithm (Proposition 3) determines the overlay

cation on their profile sequence as the outcome of the
stable exchange algorithm.

0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

profile

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

one−sided random
pairwise random
pairwise strategic

Fig. 9 Distribution of player profiles in equilibrium resulted from
the heuristic peer selection schemes



15

0.5 1
0

0.2

0.4

0.6

0.8

1

profile

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Fig. 10 Distribution of player profiles in equilibrium when the

stable exchange algorithm is applied

To summarize the effects of different peer selection
techniques, we may state that the heuristic schemes
yield fast convergence to system-global profile strate-
gies that are fairly high. The practical advantage of
these schemes is that they are easily implementable,
however, on the other hand, they are easy to forge.
The deterministic stable exchange algorithm is also re-
alizable in a distributed system, and provides a stable
overlay, moreover it is strategy-proof (due to its deter-
ministic nature). The controversial result of the stable
average profile levels that we see in Subsection 7.3 is due
to the fact that the stable exchange algorithm results
in a stable overlay where players are stratified based on
their profiles. This phenomenon, jointly with our profile
selection heuristic, results in moderate profile strategy
variation in the simulations. As we show in Subsection
7.4, in a system of players with initially high profiles this
stratification conserves the high average, while heuris-
tic schemes drive the average lower. Based on the re-
sults, we find that a system consisting of utility-based
strategic players requires more sophisticated techniques
in order to model and to study profile selection strate-
gies than the evolutionary framework that we presented
in Section 7. Nevertheless, this latter provides a fairly
simple context to show the quality of our heuristic peer
selection techniques.

8 Conclusion and future work

In this paper we presented a realistic model of a P2P
backup and storage system that accounts for the char-
acteristics (profiles) of peers participating to the sys-
tem, including their availability, accessibility and (ma-
licious) behavior. We used game theory to define a game
in which peers can selfishly optimize the amount of data

they wish to store in the system, the set of remote peers
to exchange data with, and their profile.

Hindered by the complexity of the joint optimiza-
tion problem, we focused on the important problem of
peer selection with the aim of understanding if peer se-
lection alone can be used to provide incentives to peers
for improving their profiles. We cast the problem of peer
selection and profile selection as a game, and showed
how to extend Stable Matching Theory to fit our prob-
lem setting. We extended a known polynomial-time al-
gorithm to compute the optimal stable matching for
uniform-capacity configurations.

We then established a framework based on evolu-
tionary game theory to study simplified peer selection
strategies and showed that even semi-random peer se-
lection can be sufficient to provide incentives to peers
for improving their profile. We supported our findings
through numerical evaluations in which we compared
the outcomes of our stable matching algorithm and
heuristic peer selections techniques in the evolution-
ary framework. We showed that the consequence of the
proposed peer selection strategies for the whole system
is to have increased user contribution and aggregate
utility. We also concluded that evolutionary heuristics
might be advantageous to model given configurations,
but also have certain limitations.

As part of our research agenda, we plan to perform
measurements on existing backup and storage solutions
in order to build realistic data-sets on peer availability,
accessibility and behavior. This will allow us to focus
on a clear formulation of the profile set and to decide
which ingredient has an outstanding importance for in-
centive compatibility to arise. We will also design a
real system implementing our heuristic peer selection
strategies, study its performance in terms of aggregate
utility (benefit for peers) and investigate on the bene-
fit a service provider could derive in managing such a
“self-improving” system.
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