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Abstract

In this paper, we propose a novel method inspired by the
bio-informatics domain to parse a rushes video into scenes
and takes. The Smith-Waterman algorithm provides an effi-
cient way to compare sequences by comparing segments of
all possible lengths and optimizing the similarity measure.
We propose to adapt this method in order to detect repetitive
sequences in rushes video. Based on the alignments found,
we can parse the video into scenes and takes. By comparing
takes together, we can select the most complete take in each
scene. This method is evaluated on several rushes videos
from the TRECVID BBC Rushes Summarization campaign.

1 Introduction

With rapid advances in the technology of digital video
documents and although powerful technologies now exist to
create, play, store and transmit those documents, the analy-
sis of the video content is still an open and active research
challenge. In this paper, we focus on video film making
tools. The automatic creation of video summaries [?, ?] is a
powerful tool which allows making summary by synthesis
the entire content of a video while preserving the most im-
portant or most representative sequences. For this purpose,
the content of the video sequence has to be analyzed, and
its structure has to be identified, so that the most relevant
video segments can be selected. In this paper, we focus
on the analysis of video rushes, as used in the TRECVID
BBC Rushes Summarization campaign. Rushes videos are
the raw recordings from a camera, taken during the prepa-
ration of a movie or a documentary. They are unedited, and
they constitute the raw material from which the video editor
will select segments and compose the final video program.
Rushes exhibit a very specific structure. The recording of a
movie is organized in scenes, where each scene represents
a given piece of action. Typically, a scene will be recorded
several times, each recording is a different take, because the

director will ask for variations of the presentation withinthe
action, or sometimes because some recordings are disturbed
with unexpected mistakes. In the rushes video, a take will
be a continuous recording from the camera, and, for short
takes, it may happen that several takes are recorded contin-
uously in the same video sequence. Furthermore, the rushes
videos will also contain auxiliary data such as test patterns,
to calibrate the camera colors, or clapper sequences which
identify the take and scene number in the recording and they
are also used for alignment of the soundtrack with the video.
These characteristics require adequate processing for the
analysis of rushes videos. In this paper, we propose an origi-
nal approach which uses sequence alignment algorithms in-
spired from the bio-informatics domain to structure a rushes
video into scenes and takes. In the following section, we
discuss the motivation for this work, and then, we detail the
video sequence alignment algorithm and finally, we evalu-
ate this algorithm on several rushes videos proposed during
the TRECVID BBC Rushes Summarization campaign.

2 Motivation

The TRECVID BBC Rushes Summarization campaign
proposes a task where, given a video from the rushes test
collection, one has to automatically create an MPEG-1
video summary with a maximum duration of2% that shows
the main objects and events of the original video. The
summary should minimize the number of frames used and
present the information in ways that maximize the usability
of the summary and speed of objects/event recognition.
The evaluation is performed by human assessors who
watch the summaries and provide various indicators on the
quality and coverage of their content.
As mentioned previously, the content of rushes videos is
very specific. Rushes videos contain a lot of repetitions, for
example several takes of the same scene with variations due
to the indications of the director, or to unexpected events
and errors. They also contain long segments in which the
camera is fixed on a given scene or barely moving, and
reusable shots of people, objects, events, locations, that
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are sometimes used to fill gaps during the final editing.
Although many techniques have already been proposed to
automatically process the content of general videos, the
specific structure of rushes videos require an adaptation of
these techniques, and sometimes, the development of new
approaches for an efficient parsing. In previous work [?]
[?], we have already tackled the problem of detecting and
removing junk frames (such as test patterns and clapper
board), defining a video similarity measure (based on a
hierarchical classification of one second segments), and
selecting relevant segments for the final summary (through
a criterion of maximal coverage). To extend this work
further, we introduce a new step in the process in which
we use a sub-sequence alignment algorithm to structure the
video into scenes and takes. We can compare takes of the
same scene together, and select the take that seems to be
the most representative. Figure?? shows the main steps of
this new process.

Figure 1. General approach of video parsing

In this process, the main steps to parse a video are: first,
to decompose the video into one-second segments and to
cluster these segments by a hierarchical method. Secondly,
we use a Video Sequence Alignment algorithm (VSA) to
find repetitive sequences. Repetitive sequences are the dif-
ferent takes of the same scene, so that by grouping repetitive
sequences, we can identify the various scenes occurring in
the video. Finally, the comparison between the different
takes allows selecting the most representative one.

3 Local sequence alignment algorithm

In 1966, Levenshtein introduced the notion of edit dis-
tance by the question: ”What is the minimal number of edit
operations to transform a string into another?”. The Lev-
enshtein distance is a metric for measuring the amount of
difference between two sequences. The Levenshtein dis-

tance between two strings is given by the minimum number
of operations needed to transform one string into the other,
where an operation is either an insertion, deletion, or scor-
ing of a single character. In 1970, Needleman-Wunsch [?]
proposed an algorithm to perform a global alignment over
two sequences by dynamic programming. To find the align-
ment with the highest score, a two-dimensional matrix is
allocated, with one column for each character in the first
sequence, and one row for each character in the second se-
quence. Thus, if we are aligning sequences of sizes n and m,
the running time of the algorithm is O(nm) and the amount
of memory used is in O(nm).

Given :Two nucleotide or protein sequencesA = a1a2...an B =
b1b2...bm

• Compute(n + 1) ∗ (m + 1) scoring matrixMl where
Ml[i][j] represents the cost of the sub-sequence alignment
ending with segmentssi andsj .

• Find the best sub-sequence alignment, i.e. the maximal value
Ml[i][j].

Output :The best sub-sequence alignment.

Figure 2. Smith-Waterman algorithm

In 1981, Smith-Waterman [?] proposed a variation
of this algorithm to perform local sequence alignment
(see figure??): instead of looking at the total sequence,
the Smith-Waterman algorithm compares segments of all
possible lengths and optimizes the similarity measure.
This is done by creating a scoring matrix with cells
indicating the cost to change a sub-sequence of one to the
sub-sequences of the other. The main difference to the
Needleman-Wunsch algorithm is that negative scoring ma-
trix cells are set to zero, which renders the (thus positively
scoring) local alignments visible. Back-tracing starts atthe
highest scoring matrix cell and proceeds until a cell with
score zero is encountered, yielding the highest scoring local
alignment. Figure?? shows the scoring matrix between
HEAGAWGHEE and PAWHEAE, the best local alignment
(in bold) is AWGHE with AW-HE.

Figure 3. Example of scoring matrix
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Several works is based on the same idea. [?] decomposes
shots in keyframes and then perform a global alignment
between all pairs of shots. Finally they construct a similar-
ity matrix of shots. [?] perform a local alignment between
successive shots only, so they obtain an alignment score
which used to classify shot. In [?] use LCSS to find the
same takes, we call this method JRS.

4 Video Sequence Alignment algorithm

In this section, we explain our adaptation of the Smith-
Waterman algorithm to find repetitive sequences in a
video: VSA (Visual Sequence Alignment). In order to
detect similarities between sub-sequences of the video, we
partition the video into one-second segments, and these
segments are hierarchically clustered by visual similarity.
The hierarchical classification is useful because it can
easily provide various similarity thresholds, so that we can
adapt it to the variability of the visual content. Then, we
search visually similar video sub-sequences.

4.1 Temporal unit

Our first step consists in defining a temporal unit from
work. This unit is the shortest sequence that could be
perceived by a human. A study showed that one second is
the minimal length to see a concept in a video sequence [?].
Another showed that20.5 frames is required to see a
concept [?]. We have therefore chosen to use this temporal
unity of a second. We decompose the rush video into
one-second segments (25 frames).

4.2 Hierarchical clustering

In order to perform an adaptation of Smith-Waterman
algorithm, we have to define a good match between
two video sequences. A good match happens when the
matching is performed between two one-second segments
belonging to the same cluster. Each one-second segment
is represented by the average HSV histogram (18 bins for
H, 3 for S and V) of those frames. The algorithm starts
with as many clusters as there are one-second segments,
then at each step of the clustering, the number of clusters is
reduced by one by merging the closest two clusters, until
all segments are finally in the same cluster. The distance
between two one-second segments is computed as the
Euclidean distance, and the distance between two clusters
is the average distance across all possible pairs of segments
of each cluster.

4.3 Scoring matrix

We search local alignments between a video sequence
and itself. So, we propose the following definitions and as-
sumptions to compute the scoring matrix:

• A video sub-sequenceS = s1s2...sn is a list of one-
second segments.

• Two one-second segmentss1 and s2 are aligned if
some sub-sequences containings1 ands2 are aligned.

• Two aligned sub-sequences can not contain the same
one-second segment.

• A pair of one-second segments can be aligned only
once.

• Two aligned sub-sequences must have a minimal num-
ber of one-second segments.

The video sequence is represented as a list of one-second
segment clustersSl = c1c2...cm whereci corresponds to
the cluster of the segmenti at the clustering levell. The
(m + 1) ∗ (m +1) scoring matrixMl[i][j] at levell is com-
puted as :Ml[i][0] = 0, Ml[0][i] = 0 and Ml[i][i] = 0 ∀i ∈ 0, ..., n

Ml[i][j] = max





0

Ml[i − 1][j − 1] + match cost(~i,~j)
Ml[i][j − 1] + gap cost

Ml[i − 1][j] + gap cost





wherematch cost is the cost to align two segments and
gap cost is the cost to add a gap in the alignment.

4.4 VSA

We can use the Smith-Waterman algorithm to find repet-
itive sequences in a video directly with the previous adap-
tation to the video domain. This process requires to de-
fine a clustering level. In order to eliminate this require-
ment, we propose to use a varying level allows to have
a coarser or finer definition of the visual similarity. We
start with a finer visual similarity, to detect the most sim-
ilar sub-sequences first, and continue with a coarser sim-
ilarity to find weaker alignments. Another way is to favor
perfect alignment rather than long alignment, so we normal-
ized the scoring matrixM by the length of the alignments:
M̄l[i][j] = Ml[i][j]

length(i,j) . The Sequence Alignment Algorithm
is described in figure .

The result of the VSA is an ordered list of aligned sub-
sequences, where the order corresponds to the confidence
that we can assign to the alignment, the best alignments
being found first. As we let the algorithm run, erroneous
alignments may be introduced. Those will be filtered in the
next processing step, where scene detection is performed.
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Given : A video sequenceS is defined as a list ofm one-
second segments:S = s1s2...sm

• Hierarchical clustering:Sl = c1c2...cm whereci is
the cluster of segmentsi of the clustering levell.

• l = 0.
• Compute(m + 1) ∗ (m + 1) normalized scoring ma-

trix M̄l whereM̄l[i][j] represents the cost of the sub-
sequence alignment ending with segmentssi andsj .

• Iteratively: find the best sub-sequence alignment, i.e.
the maximal valueM̄l.

– If M̄l > threshold, we store this alignment
and we update the scoring matrix.

– Elsel = l+1 and we update the scoring matrix.
Output:An ordered list of aligned sub-sequences.

Figure 4. VSA: Video Sequence Alignment al-
gorithm

5 Rushes video parsing

Every scene is generally recorded in several takes
(different versions for the same scene). We parse rushes
video into scenes depending on the alignments that have
been found by the VSA and we remove false alignment by
the fact that two aligned sub-sequences must belong to the
same scene.

5.1 Alignment matrix

Our alignment matrix is a matrix of scores which express
the confidence of the alignment between two frames. A
video sequence is defined as a list of framesV = f1...fn

(we now work at the frame level). We construct an ∗ n

alignment matrixA where A[fi][fj] is the rank of the
alignment between segments which contain framesfi and
fj, if one exists. If no such alignment exists, the value of
A[fi][fj ] is set to the total number of alignments found plus
one.

5.2 Scene detection

We assume that the different takes of the same scene
are visually very similar. So, in the alignment matrix, they
should correspond to a black square area along the diagonal.
Since two scenes are presumably visually different, we can
detect the boundary between scenes by searching for white
rectangle areas in the alignment matrix. We use a recursive
method: we seach the best scene boundary, and we repeat
this process on the two sides of the boundary until we do
not find any.

More precisely, we compute the confidencerect(f) of a
framef to be a scene transition on the video sequence be-
ginning at the framefirst and finishing at the framelast

by: rect(f) =

∑

∀f1∈[first,f]

∑

∀f2∈[f,last]

A[f1][f2]

∑

∀f1∈[first,f]

∑

∀f2∈[f,last]

1

We search the framef ∈ [first, last] maximizing the value
of rect(f), and if this value is greater than a threshold,f

delimits a scene transition and we restart the process on the
two sides off . At the beginning, we fixfirst = 0∧ last =
F (F is the number of frames in the video). The process
is continued as long as we can find rectangles with values
greater than the threshold. The threshold has been manually
adjusted, and is the same for every video sequence. When
no rectangle can be found, the decomposition into scenes
is complete. We remove false alignments, i.e. inter scene
alignments. Figure??shows a video scene decomposition.

Figure 5. Video scene decomposition

5.3 Take selection

To select the best take for a given scene, we note the
following comments:

• The different takes of a given scene presumably con-
tain very similar content, therefore it is likely that dif-
ferent takes (or parts of different takes) will appear in
the list of aligned sub-sequences. A take should be
a sequence of frames which do not contain aligned
frames.

• Some takes may be shorter, for example when an unex-
pected event happens that does not allow a full record-
ing of the action. The longest take is therefore a
good candidate for being the best representative for the
scene.

Based on these remarks, we do not search for a precise
decomposition of the scene into takes, but rather we search
for the longest take by searching the longest contiguous
sequence of frames which do not contain frames that
have been aligned together. This sequence is kept as the
reference take for the scene.
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6 Experimental results

6.1 Protocol

We experimented our approach on videos used in the
TRECVID BBC Rushes Summarization Tasks for 2008:
6 for the development and8 for the test. It consists of
unedited video footage, shot mainly for five series ofBBC

drama programs and was provided toTRECVID for research
purposes byBBC archive.
In the ground truth, the important information to evaluate
our system is the video decomposition in scenes and
takes: a scene is decomposed into takes and a take can
be decomposed into consecutive take fragments, (not all
take fragments are present in all takes, since some takes
may have been shortened). Take fragments are delimited
by frame numbers. We constructed the ground truth data
by manually defining the various scenes, takes and take
fragments, as illustrated in figure??. The ground truth
shows the take fragments of the different scenes that can be
aligned together. So, from the ground truth data, we can
easily infer the ground truth alignment matrix of the video
sequence.

Figure 6. Ground truth of video MRS044500,
and alignment matrix corresponding with
sample of aligned sub-sequences.

To evaluate the VSA algorithm, we compare the align-
ments found with the ground truth data. When two aligned
frames by the VSA belong to aligned take fragments in the
ground truth, the frame alignment is considered as correct.
This allows for some variability in the time alignment,
which is required because consecutive frames are too
similar to consider that only one frame-to-frame alignment
is correct. Small variations around it are still perfectly
valid. We use Recall and Precision rates as indicators for
the performance of the VSA. The recall rate is the ratio
between the number of correct pairs of frames aligned by

VSA and the number of pairs of frames aligned in the
ground truth. The precision rate is the ratio between the
number of correct pairs of frames aligned and the total
number of alignments found by VSA.
To evaluate the video parsing by scene boundaries detec-
tion, we compare the surface area of scenes found with the
ground truth data. When two frames are in the same scene
by scene detection and in the ground truth, this allocation
of scene is considered as correct. So, we use Recall and
Precision rates as indicators for the performance of the
video parsing. The recall rate is the ratio between the
number of correct pairs of frames allocated in the same
scene by the scene detection algorithm and the number of
pairs of frames allocated in the same scene in the ground
truth. The precision rate is the ratio between the number
of correct pairs of frames allocated in the same scene and
the total number of allocations in the same scene by scene
detection.

6.2 Results

We use 6 videos to fix thresholds: we perform a
lot of tests by comparing results. In the scoring ma-
trix, match cost(~i,~j) = cos(~i,~j) + 1 if ci = cj and,
match cost(~i,~j) = cos(~i,~j)− 2 else, andgap cost = −3.
During VSA, the minimal confidence to valid an alignment
of almost2 one-second segment minimal is1. And the
scene detection threshold is0.95.
Curve?? shows the average precision-recall graphs on the
6 annotated videos, depending on the number of alignments
found by the VSA (the VSA provides an ordered list of
alignments anyway, so it is enough to consider the first
N elements of the list). The precision and recall rates are
computed at the frame level. We compared several varia-
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Figure 7. Precision-Recall graph for varia-
tions of the VSA

tions of the VSA algorithm. If we do not use normalization,
the results change very little when compared with the
regular VSA. In the VSA without dynamic level, we fix the
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hierarchical clustering level. This reduces the complexity
of the algorithm, but also greatly reduces the performance.
We get similar effect if we remove both normalization and
dynamic effect. Finally, if we filter the alignments using
scene detection, we slightly improve the performance.
Figure?? compares the ground truth alignment (left) with
the scene structure found by VSA (right) for some example
videos. At the bottom of the matrix, the recall - precision
values for our method and for JRS method [?].

(a) MRS025913
recall=0.63 - precision=0.88

JRSrecall=0.30 -JRSprecision=0.74

(b) MRS07063
recall=0.80 - precision=0.85

JRSrecall=0.87 -JRSprecision=0.40

(c) MRS144760
recall=0.89 - precision=0.87

JRSrecall=0.46 -JRSprecision=0.94

(d) MRS044500
recall=0.61 - precision=0.98

JRSrecall=na -JRSprecision=na

(e) MRS157475
recall=0.79 - precision=0.90

JRSrecall=0.47 -JRSprecision=0.61

(f) MS216210
recall=0.49 - precision=0.94

JRSrecall=0.42 -JRSprecision=0.91

Figure 8. Matrix alignment

Table?? shows results on the8 test videos. About the
alignment, the recall varies between0.154 and0.444, and
the precision between0.422 and0.762. These results are
correct according to the method evaluation based on the
area. For scene detection, results are good : precision varies
between0.771 and0.978, and the recall between0.554 and
0.932.
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VSA Recall 0.23 0.28 0.30 0.28 0.44 0.15 0.24 0.16
VSA Precision 0.75 0.76 0.61 0.60 0.69 0.42 0.58 0.46

SD Recall 0.72 0.93 0.57 0.75 0.55 0.68 0.77 0.80
SD Precision 0.92 0.81 0.88 0.94 0.92 0.77 0.98 0.77

Table 1. Evaluation on test data

7 Conclusion

We have introduced a Video Sequence Alignment algo-
rithm, VSA, which uses a dynamic programming approach

to identify similar sub-sequences in a video sequence. This
algorithm is used to parse rushes video and structure them
into scenes and takes. We have described the details of the
algorithm and evaluated its performance on the TRECVID
BBC Rushes Summarization task videos.
VSA is a useful step in the construction of summaries for
rushes video. In the future, we plan to extend it to other
video processing applications, for example, to structure
more general videos by detecting similar sub-sequences.
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