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Abstract

This paper proposes to improve our previous work on
the concept-based video shot indexing, by considering an
ontological concept construction in the TRECVid 2007 video
retrieval, based on two steps. First, each single concept is
modeled independently. Second, an ontology-based concept
is introduced via the representation of the influence relations
between concepts and the ontological readjustment of the
confidence values. The main contribution of this paper is in
the exploitation manner of the inter-concepts similarity in
our indexing system, where three measures are represented:
co-occurrence, visual similarity and LSCOM-lite ontology
path length contribution. The experimental results report the
efficiency and the significant improvement provided by the
proposed scheme.

1. Introduction

The expansion of image and video collections on the
Web has attracted the research community’s attention for
effective retrieval system, visual information management
and video content analysis. Retrieving complex semantic
concepts requires to extract and finely analyze a set of low-
level features describing the content. A fusion mechanism
can take place at different levels of the classification process.
Generally, it is either applied directly on extracted features
(feature fusion), classifier outputs (classifier fusion), or at
the decision-making level (decision fusion).

Most systems concept models are constructed indepen-
dently. However, the binary classification ignores the fact
that semantic concepts do not exist in isolation and are inter-
related by their semantic interpretations and co-occurrence.
For example, the concept CAR co-occurs with ROAD while
MEETING is not likely to appear with ROAD. Therefore,
multi-concept relationship can be useful to improve the
individual detection accuracy taking into account the possi-
ble relationships between concepts. Several approaches have
been proposed. Wu et al. [1] have reported an ontological
multi-classification learning for video concept detection.
Naphade et al. [2] have modeled the linkages between

various semantic concepts via a Bayesian network offering a
semantics ontology. Snoek et al. [3] have proposed a seman-
tic value chain architecture for concept detection including a
multi-concept learning layer called context link. In this paper,
we propose a robust schema for video shots indexing based
on two levels ontological reasoning /decision construction.
First, each individual concept is constructed independently.
Second, the confidence value of each individual concept
is re-computed taking into account the influence of other
related concepts.

This paper is organized as follows. Section 2 presents our
system architecture. Section 3 gives the proposed concept
ontology construction, including three types of similarities.
Section 4 reports and discusses the experimentation results
conducted on the TRECVid 2007 collection. Finally, sec-
tion 5 provides the conclusion of the paper.

2. System architecture

The general architecture of our system can be summarized
in five steps: 1. visual descriptors extraction, 2. classification,
3. perplexity-based weighted descriptors, 4. classifier fusion
and 5. ontological readjustment of the confidence values.

Figure 1. General indexing system architecture.



2.1. Visual Descriptors

Temporal video segmentation is the first step toward
automatic annotation of digital video for browsing and
retrieval. Its goal is to divide the video stream into a set
of meaningful segments called shots. A shot is defined
as an unbroken sequence of frames taken by a single
camera. Five types of MPEG-7 global visual descriptors are
extracted on the selected keyframes : Color (ScalableColor,
ColorLayout, ColorStructure, ColorMoment), texture (Edge-
Histogram, HomogeneousTexture, StatisticalTexture), shape
(ContourShape), motion (CameraMotion, MotionActivity),
and FaceDescriptor (For more details, see [4]).

2.2. SVM-based Classification

The main idea is similar to the concept of a neuron:
Separate classes with a hyperplane [5]. However, samples
are indirectly mapped into a high dimensional space due
to its kernel function. In this paper, a single SVM is
used for each low-level feature and is trained per concept
under the “one against all” approach. A sigmoid function
is employed to compute the degree of confidence yj

i =
1/ (1 + exp (−αdi)). Where (i, j) represents the ith concept
and jth low-level feature. di: distance between the input
vector and the hyperplane. α: slope parameter obtained
experimentally.

2.3. Perplexity-based Weighted Descriptors

In [4], we have proposed a novel approach to weight each
low-level feature per concept within an adaptive classifier
fusion step (section 2.4) that we call PENN “Perplexity-
based Evidential Neural Network”. The proposed approach,
as presented in Fig. 2 will now be briefly defined.
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Figure 2. Perplexity-based weighted descriptors steps.

1. K-means Clustering: computes the k center of the
clusters for each descriptor, in order to create a ”visual

dictionary” of the shots. The selection of k is an unresolved
problem, and only tests and observation of the average
performances can help us to make a decision. In Souvan-
navong [6], a comparative study of the classification results
vs the number of clusters used for the quantization of the
region descriptors of TRECVid 2005 data, shows that the
performances are not diminished by quantization of more
than 1000 clusters. Therefore, kr = 2000 are used for the
quantization of MPEG-7 region descriptors, and kg = 100
for the global, that present a compromise between efficiency
and a low time-consuming computation.

2. Partitioning: selects the positive samples per concept.
3. Quantization: computes Euclidean distance between

each partitioning data set and dictionary.
4. Entropy measure: The entropy H =

−
∑k−1

i=0 Pi log(Pi) of a certain feature vector distribution
P = (P0, P1, ..., Pk−1) gives a measure of concepts
distribution uniformity over the clusters k. In [7], a good
model is such that the distribution is heavily concentrated
on a few clusters only, resulting in a low entropy value .

5. Perplexity measure: In [8], perplexity PPL or nor-
malized perplexity value PPL (Eq. 1) can be interpreted as
the average number of clusters needed for an optimal coding
of the data.

PPL =
PPL

PPLmax
=

2H

2Hmax
(1)

If we assume that k clusters are equally probable, we
obtain H(P ) = log (k), and then 1 ≤ PPL ≤ k.

6. Weight: It is generally assumed that lower perplexity
(or entropy) correlates with better performance [8], or in
our case, to a very concentrated distribution. So the relative
weight of the corresponding feature should be increased.
Many formulae can be used to represent the weight such as
Sigmoid, Softmax, etc. Here, we choose Verhulst’s evolution
model (Eq. 2). This function is non exponential and allows
for brake rate αi, reception capacity K, and decreasing speed
of weight function βi (For more details, see [4]).

wi = K/
(
1 + βi exp (−αi(1/PPLi))

)
(2)

2.4. Classifier Fusion

Classifier fusion is an important step of the classification
task. It improves recognition reliability by taking into ac-
count the complementarities between classifiers, in particular
for multimedia indexing and retrieval. Several schemes have
been proposed in the literature according to the type of
information provided by each classifier as well as their
training and adaptation capacity. In this work, we have used
our recently proposed neural network based on evidence
theory (NNET) to address classifier fusion [9].



3. Concept Ontology Construction

The ontology has been historically used to achieve better
performance in the multimedia retrieval system. It defines
a set of representative concepts and the inter-relationships
among them. It is therefore important to introduce some con-
straints to the development of the similarity measures before
proceeding to the presentation of our method. Psychology
demonstrates that similarity depends on the context, and may
be asymmetric [10]. In LSCOM-lite ontology [11], we notice
positive relationships such as (ROAD, CAR), (VEGETATION,
MOUNTAIN), and negative relationships like (BUILDING,
SPORTS), (SKY, MEETING).
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Figure 3. Fragment of the hierarchical LSCOM-Lite.

In this section, we investigate how the relationship be-
tween different semantic concepts can be extracted and used.
One direct method for similarity calculation is to find the
minimum path length of connecting two concepts [12]. For
example, Fig. 3 illustrates a fragment of the semantic hier-
archy of LSCOM-Lite. The shortest path between VEGETA-
TION and ANIMAL is VEGETATION-OUTDOOR-LOCATION-
ROOT-OBJECTS-ANIMAL. The minimum length of a path is
5. Or, the minimum path length between VEGETATION and
OUTDOOR is 1. Thus, we could say in LSCOM-lite ontology,
OUTDOOR is more similar semantically to VEGETATION
than ANIMAL. But, we should not say ANIMAL is more
similar to CAR. In an other way, OUTDOOR contains many
different concepts such as ”DESERT, URBAN, ROAD,etc”
each with different colors and textures scene descriptions.
To address this weakness, more information between the
concepts are introduced, so that it becomes a function of
attributes co-occurrence, low-level visual descriptors, path
length, depth and local density to boost the performance
of specific indexing system, as: λ(Cm, Cn) = (Simcos +
Simvis + Simsem)(Cm, Cn).

3.1 Co-occurrence: is obtained by considering the co-
occurrence statistics between concepts, where the presence
or absence of certain concepts may predict the presence of
other concepts. Intuitively, documents (video shots) that are
“close together” in the vector space relate to similar things.
Many methods are proposed in literature to represent this

proximity such as: Euclidean, Hamming, Dice, etc. Here, we
use Cosine similarity because it reflects similarity in terms
of relative distributions of components [7].

Simcos(Pm, Pn) =
∑k−1

i=0 P
m
i Pn

i√∑k−1
i=0 (Pm

i )2
∑k−1

i=0 (Pn
i )2

(3)

3.2 Visual similarity: is based upon low level visual
features. In section 2.3, we have used perplexity to build
a weighted descriptor per concept. Now, in order to com-
pute the visual similarity dvis, we are interested in mutual
information presented as a measure of divergence. To this
end, several measures are proposed in the literature: Jensen-
Shannon (JS), Kullback-Leibler (KL), etc. We decided to
use dJD Jeffrey divergence [7] which is like dKL, but is
numerically more stable.

dJD(Pm, Pn) =
k−1∑
i=0

(
Pm

i log
Pm

i

P̂i

+ Pn
i log

Pn
i

P̂i

)
(4)

where P̂i = P m+P n

2 is the mean distribution. The visual
distance between two concepts is :

Simvis(Cm, Cn) =
1∑Nb features

i=1
1
2 (wm

i + wn
i )di

JD(Pm, Pn)
(5)

where wm
i is the ith perplexity-based weighted descriptors

for the concept m.

3.3 Semantic similarity: between the concepts has been
widely studied in the literature and can be classified in three
major approaches [13]: (1) distance-based approaches (i.e,
based on the ontology structure), (2) information content-
based approaches (IC) and finally (3) the hybrid approaches
(i.e, combine the two previous approaches).

For the hierarchical LSCOM-lite ontology presented in
Fig. 4, we have decided to use hybrid approach proposed by
Jiang & Conrath measure [14] (Equ. 6), associating proba-
bilities to each concept in the ontology based on occurrences
in a given corpus. The IC is then obtained by considering
the negative log likelihood: IC(Ci) = −log(p(Ci)). We
also propose a novel hybrid combination form of semantic
similarity as presented in Equ. 7 which will be compared
with the standard J & C approach.

{
SimsemJ&C (Cm, Cn) = 1/dJ&C(Cm, Cn)

dJ&C(Cm, Cn) = IC(Cm) + IC(Cn)− 2 ∗ IC(CS(Cm, Cn))
(6)

Simsem(Cm, Cn) = 1/ (dRada(Cm, Cn) + dJ&C(Cm, Cn))
(7)

where dRada(Cm, Cn) is the length of the shortest path
between Cm and Cn.



3.1. Concept-based Confidence Value Readjust-
ment (CCVR)

The proposed framework (Fig. 1) introduces a reranking
or confidence value readjustment to refine the PENN results
for concept detection, and is computed using:

P (x/Ci) = P (x/Ci) +
1
Z

Nb arc∑
j=1

λi,j(1− ζj)P (x/Cj)

(8)
where P (x/Ci) corresponds to the multi-modal PENN

result, λi,j is the causal relationship between concepts Ci

and Cj , ζj is the classifier error in the validation set and Z
is a normalization term.

Figure 4. Hierarchical ontology model.

4. Experimentations

The experiments provided here are conducted on the
TRECVid 2007 dataset [15] containing science news, news
reports, documentaries, etc. Of the 100 hours of video
segmented into shots and annotated [16] with semantic
concepts from the 36 defined labels 1. Half is used to train
the feature extraction system and the other half is used
for evaluation purposes. The evaluation is realized in the
context of TRECVid using mean average precision MAP in
order to provide a direct comparison of the effectiveness of
the proposed approach with other published work using the
same dataset. Other metrics are introduced in our evaluation:
F-measure, positive classification rate CR+, and balanced
error rate BER.

Fig. 5 shows the variation of average precision results
vs semantic concepts, for three systems: NNET 2, PENN 3,

1. The feature extraction task consists in retrieving shots expressing
one of the following 36 semantic concepts: (1)SPORTS, (2)WEATHER,
(3)COURT, (4)OFFICE,..., (35)MAPS, (36)CHARTS [11].

2. PENN: Perplexity-based Evidential Neural Network.
3. NNET: Neural Network based on Evidence Theory.

Figure 5. Average precision evaluation.

and Onto-PENN 4. First, we observe that PENN and Onto-
PENN systems have the same performance on average for
several concepts, and present a significant improvement
compared to NNET for the concepts 4,6,17,18,19,23,31
and 32. This is not surprising considering the manner the
MAP (Mean Average Precision) is computed (using only
the first 2000 returned shots as in TRECVid). Furthermore,
low performances on several concepts can be observed
due to both numerous conflicting classification and limited
training data regardless of the fusion system employed. This
also explains the rather low retrieval accuracy obtained for
concepts 3,22,25,26,33 and 34.

To evaluate the inter-concepts similarity contribution in
the video shots indexing system, we need to study the
results in all test set. For this, the comparisons of the
detection performances are carried out by thresholding the
soft-decisions at the shot-level before and after using the
inter-concepts similarity via F-meas, CR+ and BER. Note
that the MAP is not sensitive to Threshold values τ . Fig. 6
compares the three experimental systems along with the
variation of τ ∈ [0.1, 0.9], by step of 0.1. We can clearly see
that for any τ value the Onto-PENN dominates and obtains
higher performances for F-meas, CR+ as well as lower BER
comparing to PENN and NNET. The BERmin = 40.38% is
given by τ = 0.2, for F-meas= 16.98% and CR+ = 34.48%.
The best results are obtained for τ ∈ [0.2, 0.5]. With
τ = 0.40, the CR+ is improved by 10.14% to achieve
22.07%, and decreasing the BER of 2.91% compared to
NNET.

Fig. 7 presents the performance evolution per concepts
using τ = 0.4. Some points can be noticed: The three
systems produce a certain non-detection (F-meas= 0,

4. Onto-PENN: Ontological readjustment of the PENN. The results
presented in the rest of paper for the Onto-PENN, are given by Equ. 7
for the semantic similarity computation.



Figure 6. Evaluation of the metrics (CR+, BER and F-
measure) vs Threshold τ ∈ [0.1, 0.9].

CR+ = 0) for the concepts 2,3,9,11,25,26,28,29,33,34, and
36. Then, NNET can not detect any of the following con-
cepts 1,5,6,20,21,22,31,32, and 35. Identically, for PENN in
5,20,22, and 35. Finally, Onto-PENN resolves the limitation
previously mentioned and achieves a high improvement for
the concepts 1,4,7,8,10,12,13,15,16,17,18,19,22,23,24, and
31, due to the strong relationship between the connected con-

Figure 7. F-measure and CR+ evaluation.

cepts, allowing for better, more accurate decision-making.
As an example, to detect FACE, PERSON, MEETING,

or STUDIO concepts, PENN gives more importance to
FaceDetector, ContourShape, ColorLayout, ScalableColor,
EdgeHistogram than others descriptors. For the “PERSON”
concept, the improvement was as high as 11%, making it the
best performing run. The Onto-PENN system introduces the
relationship between the connected concepts (i.e. concepts
that are likely to co-occur in video shots), increasing the
performance in term of accuracy (see Fig. 8).

Table 1 summarizes the overall performances for the
content-based video shots classification systems using a
fixed τ = 0.4. We compute the above mentioned statistics
for all concepts, and for a subset composed of the 10
most frequent concepts in the dataset. Both hybrid semantic
similarity-based Onto-PENN allow an overall improvement
of the system and a significant increase of F-meas and CR+.
They achieve a respectable result of MAP, significantly
decrease the “BER” compared to NNET and PENN.



Figure 8. Inter-concept connections graphical model for
the concept OFFICE. We observe that 20 concepts are
connected with OFFICE, but only 5 are strong and sig-
nificant (MEETING:6.65%, STUDIO:5.06%, FACE:33.92%,
PERSON:38.52%, and COMPUTERTV:4.77%) presenting
88.92% of the global information.

Table 1. Performances comparisons (Threshold= 0.4).
Methods / NNET PENN Onto-PENN

Evaluation (%) (Equ. 6) (Equ. 7)
MAP 12.70 13.29 13.31 13.37

MAP@10 33.70 35.30 35.30 35.36
F-meas 11.84 14.10 17.07 17.30

F-meas@10 38.75 40.79 44.67 44.74
CR+ 11.93 13.43 21.76 22.07

CR+@10 40.69 41.74 59.45 59.71
BER 45.02 44.13 42.32 42.11

BER@10 38 36.52 34.03 33.96

Finally, the results given by the two equations (Equ. 6
and Equ.7) used in the semantic similarity construction are
very close, with a slight advantage for the Equ. 7. Other
experiments have been made for choosing the semantic
similarity, but due to space constraints are not reported in
this paper. However, it can be observed that performance
declines using the equation of Lin et al. [10] compared to
the two used equations, which underlines the importance of
the semantic similarity.

5. Conclusions

In this paper, we have described an ontological-based
robust video shots indexing. Ontology is defined for learning
the influence of the relation between concepts. Three types
of influence are used: co-occurrence, visual similarity and
semantic similarity to improve the accuracy of the indepen-
dent concept classifiers, on the TRECVid 2007 benchmark.

Our proposed approach obtains a significant improvement,
about 18.75% of CR+, 5.99% of F-meas, 1.66% of MAP,
and deceases the BER with 2.91%. Future works will
concern the similarities from WordNet instead of a corpus.
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