
Selfish Neighbor Selection in Peer-to-Peer
Backup and Storage Applications

Pietro Michiardi, Laszlo Toka

EURECOM

Abstract. In this work we tackle the problem of on-line backup with a
peer-to-peer approach. In contrast to current peer-to-peer architectures
that build upon distributed hash-tables, we investigate whether an un-
coordinated approach to data placement would prove effective in provid-
ing embedded incentives for users to offer local resources to the system.
By modeling peers as selfish entities striving for minimizing their cost
in participating to the system, we analyze equilibrium topologies that
materialize from the process of peer selection, whereby peers establish
bi-lateral links that involve storing data in a symmetric way. System
stratification, that is the emergence of clusters gathering peers with sim-
ilar contribution efforts, is an essential outcome of the peer selection
process: peers are lured to improve the “quality” of local resources they
provide to access clusters with lower operational costs. Our results are
corroborated by a numerical evaluation of the system that builds upon a
polynomial-time best-response algorithm to the selfish neighbor selection
game.

1 Introduction

During the last few years the on-line backup and storage market has witnessed
an increasing interest from both academia and industry. Current commercial
solutions and research projects present a variety of approaches to the problem of
reliable, scalable and available on-line storage for heterogeneous users requiring
to store and access a large amount of data from anywhere on the Internet [1–3].
While it is possible to draw a line to separate storage-centric (e.g. Amazon
S3 [1]) from sharing-centric (e.g. Wuala [2], AllMyData [3]) approaches, the latter
adding the possibility for users to operate fine-grained access control policies on
their on-line data with a social-networking flavor, from an architectural point of
view on-line backup and storage services can be broken down into those based
on server farms [1] and those embracing the peer-to-peer (P2P) paradigm [2,3].

In this work we focus on P2P approaches, and study an architecture wherein
peers are allowed to optimize the amount of resources they dedicate to the sys-
tem. Specifically, the focus of this paper is on the neighbor selection algorithm,
which is used by peers to decide where to place fractions of data they need to
store. The lack of attention to neighbor selection is mainly due to the structured
approach suggested by current system design, e.g. Wuala [2]. In a structured

approach (based on a Distributed Hash Table (DHT)), neighbor selection is im-
plicit because data is uniformly stored on peers. The main benefit of DHT-based
approaches is that they achieve load balancing by spreading data on every peer,
irrespectively of their characteristics. Peer heterogeneity in terms of the amount
of resources they dedicate to the system cannot be easily taken into account. As
a consequence, such systems require additional layers to elicit users’ cooperation
to the system.

In this paper, we propose an unstructured architecture and study the im-
plications of an uncoordinated neighbor selection algorithm wherein peers are
responsible for building up their neighborhood which will store their data. Neigh-
bor selection is modeled as a non-cooperative game in which users selfishly min-
imize the cost they bear for storing data. In our setting we introduce a global
rank of peers in terms of their profiles, i.e., the amount and quality of resources
they offer to the system. We show that the neighbor selection process reaches an
equilibrium in which the system is stratified : peers with similar profile cooperate
by building bi-lateral links that are used to exchange and store data. The higher
the peers’ profiles are, the less costly the service they receive from one another
is. The consequence of system stratification is a natural incentive for peers to
improve the amount and quality of resources they offer to other peers.

The contributions of this paper are the following: i) in Sec. 3 we present
a novel system design that has built-in incentives for peers to offer resources
and to improve the quality thereof; ii) we define a simple model, in Sec. 4, that
incorporates the cost for storing data in a selfish setting; iii) in Sec. 5 we design
a polynomial-time algorithm to compute the equilibrium state of our system; iv)
we show in Sec. 6, using a simulator, that the implication of peer selfishness is
a stratified system in which peers can lower their cost of storing data.

2 Related work

Reliable on-line backup and storage has been the subject of a very large number
of prior works, both from the research community and from industry.

A notable example of current commercial solutions is represented by Amazon
S3 [1], which is based on large clusters of commodity hardware running a custom-
built distributed data structure discussed in [4]. The main goals of Amazon S3
are availability and reliability, which are achieved using replication. Availability
and reliability do not come for free: end users are compelled to pay for the
amount of space they occupy on the data centers and the amount of traffic their
content generate [1].

The hybrid P2P design of some on-line backup and storage services such
as Wuala [2] and AllMyData [3] require a centralized component to ensure a
minimum storage space to end-users which is complemented by storage space at
all peers taking part to the application. In current P2P systems availability and
reliability are guaranteed by data redundancy through coding. For example, in
Wuala data placement is achieved through a DHT layer, in which super-nodes are
in charge of uniformly spreading the data on storage nodes. Incentives constitute

a key component of Wuala: users must offer an amount of local space inversely
proportional to their on-line time [5]. Super-nodes are involved in constantly
checking that this constraint is satisfied. Additionally, a distributed reputation
mechanism serves the purpose of providing tit-for-tat incentives for users to
allocate a large fraction of bandwidth to the P2P network. In contrast to these
systems, our goal is to come up with an alternative system design that does not
require external incentive mechanisms to support the system operation.

Research on distributed backup and storage applications has proliferated
in the literature, although targeting different scenarios than the one we con-
sider here. OceanStore [6], FarSite [7] and TotalRecall [8] represent influential
design of such systems, the first based on a mesh of peers that cooperate in
storing replicated (for active data) or redundant (for permanent data) blocks,
the second using a randomized placement algorithm, the last using a DHT-based
approach in selecting the placement of erasure coded data blocks. [9] provided
insights to the performance of different data replication strategies in terms of
data availability and durability.

Several prior works tackle the analysis of backup and storage applications, al-
though from a more theoretic perspective. For example, [10] studied the potential
benefits of a monopoly driven currency-based economy in P2P storage systems,
and is orthogonal to this work. Among many other works that offer solutions
to ensure fairness in the contributed and consumed storage, [11] suggested to
create incentives to users by exploiting their social relationships.

Interestingly, the approach we take in this work can be seen as a network
formation game [12], although we depart from the original mathematical tools
used to analyze stable topologies.

3 System design

Due to the uncoordinated nature of P2P backup applications, data availability,
i.e., ensuring that files can be retrieved in any moment, is an important issue
that needs to be addressed. Similarly to related works such as Wuala, in our
system we adopt data redundancy using erasure coding1: files are split into c
equally sized pieces which are then encoded to obtain n blocks. The original file
can be reconstructed from any c fragments, where the combined size for the c
fragments is approximately equal to the original file size. We term k = n/c the
redundancy factor of the coding scheme. File availability can be expressed as

σ =
n∑
i=c

(
n

i

)
pi(1− p)n−i (1)

where p is the average on-line time of peers that compose the system, and σ is
the probability that the file is available. Given the average on-line time of peers
and the number of fragments c that compose the original file, it is possible to
1 See [8] for related works on replication and redundancy techniques to achieve data

availability.

derive the redundancy factor k that meets the target file availability, which is
achieved only if each of the n encoded blocks are placed on distinct peers. We
explicitly derive the expression of k later in this Section.

Current P2P backup applications assume the average peer on-line availabil-
ity p to be known and use a global redundancy factor for the whole system:
once file fragments are encoded, they are spread uniformly at random on remote
locations. Asymmetric data placement calls for complex mechanisms to enforce
contribution of local space. Indeed, as opposed to the barter-based nature of
exchanges we study in this work where direct retaliation is possible, the multi-
lateral nature of asymmetric systems calls for auxiliary instruments, e.g. virtual
currency, storage claims [13], to foster peer cooperation. Furthermore, the ran-
domized nature of data placement also implies that the price of unreliable peers
is shared among all system participants. Assume, for example, the on-line avail-
ability of peers to be distributed according to the normal distribution, that is
p ∼ N (µ, σ2). Then, the probability for a peer i whose availability is pi >> µ
to store data on a peer j with availability pj ≥ pi is very small, and vice-versa.
Hence, there is no reason for a peer to improve availability, and an additional
mechanism compelling peers to offer more resources is required. We now define
the resources playing an important role in P2P backup and storage applications.

Definition 1. The resources peer i offers to the system are:

– storage space, či ∈ N, that is the amount of encoded data chunks a peer stores
locally for other peers;

– on-line availability, pi ∈ [0, 1], expressed as a probability for peer i to be
found on-line;

– bandwidth bi = min{ui, di}, where ui, di represent respectively the upload
and download capacity allocated by the user to the P2P application.

These factors are tightly coupled: for example, a large amount of local space
is useless when peer availability is low; similarly, high availability and space
dedicated to the system operation are worth little if the bandwidth allocated to
data exchange is not sufficient.

The endeavor of this work is to come up with a system architecture providing
embedded incentives to foster peer cooperation without requiring any additional
mechanisms. We advocate an unstructured P2P application with the following
objectives: i) peers are compelled to offer a fraction of their local storage to
other peers; ii) peers are incited to increase the on-line time and bandwidth they
dedicate to the system. Intuitively, the first objective refers to the “quantity”
of resources a peer offers while the second goal addresses the “quality” of such
resources. In our system, neighbor selection replaces the inherent mapping of
data chunks a peer stores in the system achieved by DHT-based solutions. As
opposed to selecting remote storage locations uniformly at random, peers are
left with the freedom of building a set of neighbors that will hold their data, and
are not limited to their social acquaintances [11]. Formally, the problem can be
described as follows.

Definition 2. Let I denote the set of peers in the system, where |I| = N . Every
peer i splits their content in ĉi equally sized pieces. Pieces are encoded so as to
obtain ni = kiĉi chunks.

Peers are responsible for establishing (logical) links to remote peers that will
store their data, with the constraint that both ends of the link are required to
agree to store data for each other: data placement is symmetric.

Definition 3. Let νi be the set of peers {j | j ∈ νi ⇔ i ∈ νj}, that is the link
i↔ j is bi-directional. We call νi the neighbor set of peer i.

In our system, a peer is compelled to offer a fraction of local resources for the
benefit of other peers. Because of the symmetric nature of our system design,
peers are constrained to allocate an amount of storage space equal to the number
of encoded chunks they would inject into the system. We can state the above
constraint as follows:

Definition 4. A peer i that needs to store ni = kiĉi chunks in the system is
required to offer an amount of local space equal to: či = kiĉi ∀i ∈ I.

In practice, we have that |νi| = kiĉi, otherwise either the backup data’s
availability drops due to the low number of peers based on Eq. 1, or unnecessary
links are made if |νi| > kiĉi. The cardinality of the neighbor set is increasing
in the redundancy factor: the larger the redundancy employed in the coding
scheme, the larger the number of distinct remote locations required to store
data. Furthermore, we know that ki = f(pj ,∀j ∈ νi): according to Eq. 1, the
redundancy factor is a decreasing function in the on-line time of remote peers
that are part of the neighbor set of peer i.

Before proceeding any further, we extend the traditional definition of peer
availability to account for the amount of bandwidth a peer dedicates to data
exchanges: p̃i = p

bref/bi

i . The exponent modulates pi by the fraction of band-
width bi peer i dedicates to the system compared to a reference value bref . bref
is heuristically set to max(bi) for ∀i ∈ I. Hence, peer availability is slightly un-
derestimated: the consequence for a peer is the requirement for a slightly larger
neighbor set size that would compensate “slow” connections.

In this work we assume peers to be rational and selfish: intuitively, selfishness
implies that peer will prefer to place data on remote peers offering resources of
higher quality. Although this concept will be formalized in Sec. 4, we introduce
peer selfishness in a simplified setting. Let νi and ν′i be two distinct neighbor set
peer i could link to, such as2 : p̃j = p ∀j ∈ νi and p̃k = p′ ∀k ∈ ν′i. Now, let’s
assume p′ < p. It follows from our previous observations that:

ki = f(p̃j ∈ νi) < k′i = f(p̃k ∈ ν′i)⇒ či = kiĉi < či
′ = k′iĉi

In words, selfish peers prefer to store data on remote peers with higher avail-
ability because this implies a reduced demand in terms of local storage space,
following the constraint given in Def. 4.
2 Instead of assuming all peers of νi to have the same availability p, it is possible to

show similar results for the case in which p = 1/|νi|Σj∈νipj or p = minj∈νi pj

Proposition 1. In a symmetric system, in which peer i selfishly selects remote
locations to store data we have that ki = f(p̃j , j ∈ νi) = f(p̃i). That is, the
redundancy factor that meets per file availability requirements can be computed
as a function of peer i’s on-line availability p̃i.

Proof. We know by Def. 3 that j ∈ νi ⇔ i ∈ νj . Due to the selfish nature of peers
and the symmetric nature of links between them, we know that j ∈ νi ⇔ p̃j ≥ p̃i
and i ∈ νj ⇔ p̃i ≥ p̃j . Hence, we have that p̃i = p̃j . The proposition follows
directly. ut

With Prop. 1 at hand, we can formally define the redundancy factor ki,
which can be derived from Eq. 1 using the normal approximation to the binomial
distribution:

ki =

(
σ
√

p̃i(1−p̃i)
ĉi

+
√

σ2p̃i(1−p̃i)
ĉi

+ 4p̃i
2p̃i

)2

(2)

We now define peer profiles, which summarize the salient features of peers,
as they compactly represent the “quality” of resources in terms of on-line time
and bandwidth dedicated by a peer to the system. Profiles constitute a global
ranking that is used during the execution of the neighbor selection mechanism
discussed in Sec. 5.

Definition 5. The profile of peer i is defined as follows: αi = 1
ki
∀i ∈ I. We

also define α∗i to be the bootstrap profile of peer i when joining the system for
the first time: α∗i = 1

k∗i
where k∗i = f(pj , ∀j ∈ ν∗) and ν∗ is a random neighbor

set.

Before moving to a detailed description of selfish neighbor selection, we note
that in this work we are making the implicit assumption that a method for mon-
itoring the resources a peer dedicates to the system is available. The monitoring
component would collect information on peer behavior in terms of profiles and
truthful reporting on stored data. Depending on the application setting, the
monitoring component can be centralized or distributed. It should be noted
that in this paper we also gloss over data maintenance, which is an important
problem as discussed in [14]. Due to space constraints, we cannot elaborate any
further on monitoring and data maintenance and we will leave these aspects for
an extended version of this work.

4 Peer model

The central property of the system we investigate in this work is that peers
are free to select the locations where their data chunks will be stored. Neighbor
selection is based on peer profiles: peers are assumed to be selfish in establishing
links to remote peers holding high profiles and we are interested in studying the
re-wiring process and its convergence properties. Here we describe the objective
function peers optimize locally whereas in Sec. 5 we formalize the optimization
framework that underlies our system.

The complex interplay between peers hinders the task of defining a peer
model that accurately mimics the P2P system we investigate in this work. For
this reason we define a simple heuristic cost function that incorporates the effects
of peer selection and that accounts for the quality of resources offered by peers
to the system.

Definition 6. The cost Ci that peer i with profile αi “pays” for storing ni = kiĉi
units of data in a neighborhood νi is defined as follows:

Ci = Di(αi, αj ∈ νi)+Oi(αi)+Ei(αi, α∗i) =

{
log
(
ĉi

α2
i

+ 1
αi

+
(
αi

α∗i

)2)
if |νi| ≥ ni

+∞ otherwise

where the additive terms represent:

– Degradation cost, Di: a target file availability can only be achieved if ni units
of data can be stored on |νi| distinct peers; hence this term indicates whether
the selected file availability can be reached, that is when the neighbor set
size |νi| ≥ ni; if this is the case, the degradation cost decreases with the
“quality” of peer i’s neighborhood given by the profiles αj of its members;
hence, Di is simply the aggregate profile of the neighbor set of peer i:

Di =
∑
j∈νi

1
αj

=
∑
j∈νi

kj = |νi|kj ≡ k2
i ĉi =

ĉi
α2
i

– Opportunity cost, Oi: describes the cost for peer i due to the loss of lo-
cal storage space dedicated to hold data for other peers and it is inversely
proportional to peer i’s profile; by Def. 4, a high profile implies a small re-
dundancy factor thus a smaller či; hence, Oi is simply the storage overhead
compared to an ideally reliable system:

Oi =
či
ĉi

= ki ≡
1
αi

– Effort cost, Ei: this term describes the cost induced by a variation in the
“quality” of resources peer i offers to the system; the effort cost Ei is not
trivial to derive: it follows from the non-linearity of Eq. 2 and the variation
in the quality of resources peer i offers compared to the initial state.

We now build upon the user model defined in this Section and formalize the
neighbor selection process.

5 Selfish neighbor selection

We study selfish neighbor selection using tools akin to non-cooperative game
theory. First, we give a formal definition of the game, then we focus on the
algorithmic nature of the optimization problem driving the neighbor selection
process. As outlined in [15], selfish neighbor selection can be casted as a stable

exchange (SE) game built on Def. 6 in which peer profiles constitute a (global)
preference ordering. Indeed, the SE game belongs to the family of matching
problems and, as in their simplest version (e.g. the stable marriage problem [16]),
peers prefer links to remote peers holding a high profile.

Definition 7. The stable exchange game is defined as follows:

– I denotes the player set (N is the number of players);
– S is the strategy sets available to players: S = (Si) for ∀i ∈ I; Si accounts

for the combination of the two strategic variables: αi ∈ [0, 1] and νi;
– Ci denotes the cost to player i on the combination of the strategy sets.

In the SE game every peer i seeks to minimize the cost function Ci by setting
appropriately the two strategic variables αi and νi. Note that Ci also depends
on the strategic choice of other players j and that the creation of a link between
two peers is conditioned to a bilateral agreement [17]. We now define the optimal
strategy for a peer i and the Nash equilibrium of the SE game:

Definition 8. The best response strategy for peer i, s∗i = (α∗i , ν
∗
i) ∈ Si is ob-

tained by solving the equation arg minαi,νi
Ci(si) In (Nash) equilibrium we have

that Ci(s∗i , s∗−i) ≤ Ci(s′i, s∗−i) for any player i and for any alternative strategy
s′i 6= s∗i , where s∗−i = (αi, n−i)∗ depicts the composition of equilibrium strategy
of players other than i.

Due to space limitations, the proof of the existence of the Nash equilibrium will
be included in an extended version of this work.

Informally, we can interpret the SE game as follows: there are three forces
that drive the decision process of player i, expressed in the function Ci. The
opportunity cost pushes player i to increase αi because this implies a lower re-
dundancy factor ki hence a decreased amount of local storage offered to the
system. The effort cost drives player i to a lower αi, i.e., reduced on-line prob-
ability pi and allocated bandwidth bi. The degradation term helps in balancing
the two first opposing forces: depending on storage requirements ĉi, the profile
αj of other peers and the number of remote peers with αj ≥ αi that are eligible
for a bilateral agreement, peer i could be better off increasing or decreasing αi.

Neighbor selection brings to system stratification, which is the phenomenon
we observe in our game. Our system stabilizes when peers are grouped into
clusters, pooling users that have similar profiles3. A cluster of peers characterized
by high profiles has lower operational costs than one with lower profiles. First,
the redundancy factor used by peers in a high-profile cluster is small compared to
a low-profile cluster, hence peers will have to dedicate a smaller amount of local
space to other peers. Second, reliable peers store data on similarly reliable peers
while unreliable peers are bound to store data on other unreliable peers, and are
compelled to improve the quality of resources they dedicate to the system as the
number of unreliable peers shrinks.
3 Analytical proofs of the existence, number and size of clusters is out of the scope of

this paper and will be addressed in our future work.

We now describe how we implement in an efficient way the iterated best-
response [18] algorithm to the SE game in order to find an equilibrium. We split
the optimization problem that player i faces regarding the strategic variables αi
and νi: profile selection and neighborhood construction are interleaved. The pro-
file selection is implemented using a technique based on the simulated annealing
method [19]: in each iteration of the best-response algorithm, player i randomly
modifies αi by a discrete, fixed value and estimate the alteration of the cost Ci
due to the change. A decreasing function fk(Cki) of the total cost at iteration k
of the algorithm is then used to decide whether the new value of α should be
adopted or discarded. Once profiles are set, the algorithm solves an instance of
the stable matching problem using an extension [15] of the Irving’s algorithm to
the stable fixtures problem [20]. This procedure is repeated until an equilibrium
is found. In [15] we show that the iterated best response algorithm described
above runs in polynomial time.

It is important to note that, in practice, only once the process of neighbor
selection reaches a steady state for all peers, that is, no peer has an incentive to
re-wire to other remote peers, the actual data transfer will take place. We also
emphasize that our model accounts for a static system set during the neighbor-
hood selection process. Targeting the bootstrap issue of a real growing system
is on our agenda.

6 Numerical evaluation

In this section we focus on a numerical evaluation of the neighbor selection
process. We built a synchronous simulator, in which time is slotted, and imple-
mented the iterated best-response algorithm discussed in Sec. 5. We examine
a closed system in which |I| = N = 100 and bootstrap profiles are normally
distributed with mean α = 0.55. We assume ĉi = 10∀i ∈ I.

Our goal is to examine the properties of the equilibrium of the SE game
(labeled strategic) and to compare equilibrium solutions to a simulated DHT-
based system (labeled random). The implicit hypothesis, to make the two cases
comparable, is that peers evaluate their costs similarly. Our evaluation is based
on the following metrics:

– Total cost: C(t) =
∑
i∈I Ci(t), which cumulates the cost that every peer has

to cover for storing their data in the system;
– Average user profile: α(t) = 1/N

∑
i∈I αi(t), which is the average profile

computed at each round of the iterated best-response algorithm;
– Cumulative Distribution Function (CDF) of equilibrium user profiles;
– Profile improvement: ∆i = αi − α∗i for ∀i ∈ I;
– Redundancy factor: ki ∀i ∈ I. Since clusters may not be exactly uniform in

terms of user profiles we report worst, mean and median values;

Due to the randomized nature of our algorithm, the results presented in
the following are averaged over 10 simulation runs. In the following, the legend
“round” stands for the iteration number of the best-response algorithm.

0 50 100 150 200
120

130

140

150

160

round

T
ot

al
 C

os
t

strategic
random

− 20 %

(a)

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

round

av
er

ag
e

pr
of

ile

strategic
random

(b)

Fig. 1. Time-series of the aggregate cost C(t) and the average user profiles α(t) for the
random and strategic neighbor selection.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

profile

re
du

nd
an

cy
 f

ac
to

r

worst−case
average
median

Random

Fig. 2. Redundancy factor adopted by each peer (sorted by their profile) for random
and strategic neighbor selection.

Fig. 1(a) illustrates the improvement of strategic neighbor selection when
compared to the random neighbor selection: by rewiring their connections ac-
cording to the iterated best-response to the stable exchange game, peers are able
to reduce their costs, and the aggregate figure decreases by 20%. The underlying
reason for reduced operational costs is shown in Fig. 1(b). Starting from the same
random bootstrap profiles α∗i , strategic peers increase their profiles while in the
random case peer profiles do not change in time and remain fixed to bootstrap
values.

Fig. 2 illustrates the redundancy factor adopted by each peer in the system,
when using the random or strategic neighbor selection policy. In the random
case every peer uses the same redundancy factor: due to the bootstrap profile
distribution, the median and mean redundancy factors coincide, and sum to
roughly 2 (indicated in the figure with a dashed horizontal line). In the worst
case, the redundancy factor is 10 (which corresponds to the y-axis limit). Instead,

the strategic neighbor selection differentiates peers in clusters. Peers with a high
profile (close to 1) use a lower redundancy factor than peers belonging to a cluster
with lower profile (closer to 0). We enriched Fig. 2 to illustrate the clustering
phenomenon that emerges at the end of the rewiring process. Peer clusters are
emphasized with dotted circles around groups of peers holding similar profile.
On the upper-left corner of the figure we notice the presence of outliers: for
these peers, the effort cost becomes predominant, hence their redundancy factor
is very high.

Fig. 3(a) shows the difference between the bootstrap and the equilibrium pro-
files. We observe that peers holding “extreme” profiles (either high or low values)
have less incentives to improve their ranking. We notice a maximum improve-
ment (which amounts to almost 35% difference) for peers with a profile slightly
less than the average profile. The exact value of the maximum improvement de-
pends on the input setting to the stable exchange game. Finally, Fig. 3(b) shows
that the majority of peers apply a substantial improvement to their profiles as
compared to the initial profile distribution.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bootstrap profile

Im
pr

ov
em

en
t d

el
ta

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

profile

C
D

F

strategic
random

(b)

Fig. 3. Improvement and distribution of equilibrium profiles

7 Conclusion and future work

Armed with the realization that current P2P backup and storage applications re-
quire complex mechanisms to foster peer cooperation in this paper we presented
an alternative system design in which peers, as opposed to previous works, are
left with the choice of selecting locations to store data. We introduced a distinc-
tion in the amount and the quality of resources peers contribute to the system
and showed that selfish neighbor selection alone contributes to the key feature
of our approach: incentives to share local resources and to improve their quality
are embedded in the system design. In this paper we modeled data placement as
a game in which peers minimize the cost for storing data in the system; we also
gave a polynomial-time algorithm to compute the equilibrium of the system.

We simulated the selfish neighbor selection process and showed that the sys-
tem converges to a stratified state: peers are clustered based on their contribu-

tions and storage costs are inversely proportional to clusters’ quality. This result
represented the key motivation for a peer to improve the quality of resources
dedicated to other peers.

The results presented in this paper open paths for several future directions:
our ultimate goal being the real implementation of such a system we will focus
on the analysis of the convergence properties of selfish neighbor selection in an
asynchronous setting and on a distributed implementation. We will also focus
on the evaluation of system overhead, both in terms of monitoring and repair
activities.

References

1. Amazon S3, http://aws.amazon.com
2. Wuala, http://wua.la
3. AllMyData, http://allmydata.org
4. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, W. Vogels, “Dynamo: amazon’s highly available
key-value store,” ACM/USENIX SOSP, 2007

5. D. Grolimund, L. Meisser, S. Schmid, R. Wattenhofer, “Havelaar: A Robust and
Efficient Reputation System for Active Peer-to-Peer Systems,” NetEcon, 2006

6. J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, B. Zhao, “Oceanstore: An architecture for
global-scale persistent storage,” ACM ASPLOS, 2000

7. A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. How-
ell, J. Lorch, M. Theimer, R. Wattenhofer, “FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment,” USENIX OSDI, 2002

8. R. Bhagwan, K. Tati, Y. Cheng, S. Savage, G. M. Voelker, “TotalRecall: System
Support for Automated Availability Management,” ACM/USENIX NSDI, 2004

9. B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek, J.
Kubiatowicz, R. Morris, “Efficient Replica Maintenance for Distributed Storage
Systems,” ACM/USENIX NSDI, 2006

10. P. Maille, L. Toka, “Managing a Peer-to-Peer Data Storage System in a Selfish
Society,” IEEE JSAC, 2008

11. J. Li, F. Dabek, “F2F: reliable storage in open networks,” IPTPS, 2006
12. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, S. Shenker, “On a

Network Creation Game,” ACM PODC, 2003
13. L. P. Cox, B. D. Noble, “Samsara: Honor Among Thieves in Peer-to-Peer Storage”,

ACM/USENIX SOSP, 2003
14. A. Duminuco, E.W. Biersack, T. En-Najjary, “Proactive replication in distributed

storage systems using machine availability estimation,” ACM CONEXT ,2007
15. L. Toka, P. Michiardi, “A dynamic exchange game,” ACM PODC, 2008
16. D. Gale, L. S. Shapley, “College Admissions and the Stability of Marriage,” Amer-

ican Mathematical Monthly, N. 69, 1962
17. J. Corbo, D. C. Parkes, “The price of selfish behavior in bilateral network forma-

tion,” ACM PODC, 2005
18. D. Fudenberg, J. Tirole, “Game Theory,” MIT Press, 1991
19. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Anneal-

ing,” Science, V. 220, N. 4598, 1983
20. R. W. Irving, S. Scott, “The stable fixtures problem - A many-to-many extension

of stable roommates,” Discrete Applied Mathematics, V. 155 N. 17, 2007

