
Institut Eurécom
Department of Corporate Communications

2229, route des Crêtes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-09-227

An Efficient Comparison Technique for Sanitized XML
Trees

May 5th, 2009
Last update May 5th, 2009

Mohammad Ashiqur Rahaman, and Yves Roudier

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {mohammad.rahaman,yves.roudier}@eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members: BMW Group Re-
search & Technology - BMW Group Company, Bouygues Télécom, Cisco Systems, France Télécom,
Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

An Efficient Comparison Technique for Sanitized XML
Trees

Mohammad Ashiqur Rahaman, and Yves Roudier

Abstract

When comparing different versions of large tree structured data the detec-
tion of changes and according generation of the minimum cost edit script is a
CPU and disc I/O intensive task. State of the art requires the complete XML
trees to be in memory and intermediate normalized trees to be computed be-
fore any comparison may start. Furthermore, the comparison of sanitized
XML trees is not addressed in these techniques.

In this paper, we propose a comparison technique for sanitized XML doc-
uments which ultimately results into a minimum cost edit script that trans-
forms an initial version of XML tree to a target tree. This method makes use
of encrypted integer labels which encode the original XML structure and con-
tent. The content of the sanitized XML is readable only by a legitimate party.
Based on this encoding, any third party can compare the tree nodes on the
fly without relying on any intermediate normalized trees. Besides, it allows
partial comparison as opposed to computing the full trees a-priori of start-
ing any matching operation. To support our approach a modular algorithm
describing the comparison technique is provided along with its complexity
analysis.

Index Terms

Large XML, Sanitized XML, Partial comparison, Encryption

Contents

1 Introduction 1

2 Related Work 3

3 Tree vs Event Based Parsing 4

4 Solution Overview 5

5 XML Parsing and Edition Model 6
5.1 Parsing Model . 6
5.2 Edit Operations . 8
5.3 Edit Script and Cost Model . 10

6 Determining Edit Script 11
6.1 Algorithm Overview . 11
6.2 Appropriate Matching . 11
6.3 Edit Cases . 13
6.4 Rearranging Sibling Nodes . 14
6.5 Minimum Cost Edit Script Algorithm 17

7 Complexity Analysis 18

8 Conclusion 19

9 Appendix 21

v

List of Figures

1 The running example of comparing two trees, Tx (initial) and Ty (edited).
Solid lines represent appropriate matches. 3

2 Solid and dotted lines represent explicit memory footprint and no mem-
ory footprint respectively. (II,III) are implicit hierarchy representations
of (I). 6

3 Basic edit operations on encrypted tree structured data. 7
4 Deleting an internal node, b, (Del(18)) using EBOL-based XML parsing.

The FIFO queue stores the nodes of the current level and keeps track

of the current parsed node shown as
[I..V]−−−→. The nodes including the

dummy nodes in one level are delimited by two li entries. 9
5 Inter level moving of node n in 1st level of T1 to 2nd level of T2. 10
6 An appropriate match with rearranging the sibling nodes. 14
7 Algorithm Minimum Cost Edit Script(MCES) 16
8 Functions exist, UpdateMatch, ArrangeSibling, FindSibling invoked by

MCES algorithm. 17
9 (I) The tree Tx to be transformed to Ty . (II,III,IV,V) The transformed

trees T1, T2, T3, and T4 after edit operations Upd(59, d′), Ins(53, n, 19),
Move(59, 53), and Del(48) respectively and T4 = Ty 22

vi

1 Introduction

Updating tree-structured data such as XML documents result in different ver-
sions of the original XML document. Detecting changes or similarity of tree struc-
tured data has many applications such as aggregation of similar XML databases,
difference queries, versioning, merging of documents. Regarding sensitive data,
both structure and content wise, comparison techniques must not allow the com-
parer, being a third party, to identify plain XML structure and content as these may
contain confidential information such as about organizational strategy, marketing
and financial data. Although comparison techniques for tree structured data and
the generation of a minimum cost edit script using intermediate normalized trees
have been extensively studied [1–3], they fall short with respect to enabling (1)
partial comparison of large XML documents and (2) preserving confidentiality of
the sensitive data. The main reason is that the full trees and intermediate normal-
ized trees need to be in memory and thus more computation time and space are
required. Typically comparison is assumed to be performed by a legitimate party.
However, outsourcing any comparison activity requires a different approach.

We consider large XML documents where XML elements, its attributes and
content are encrypted and thus not readable for any match maker or comparer who
does not have the necessary decryption key. Imagine a company A uses various
web services from another company B. A and B have a shared key and as such,
B always provides encrypted WSDLs which only A can read. Now A appoints a
third party C to compare different encrypted WSDLs provided by B over a period
to determine the changes. C can compare such WSDLs and can detect the changes
which A can decrypt and see if there are operations added or removed for example.

The differences between two versions of hierarchical structured data can be
described in the form of minimum cost edit script which is defined as a sequence
of edit operations such as node update, insert, delete, and subtree move performed
sequentially over the transformed versions starting with the initial version. A well
known approach to find such a script is to have initial matches of node pairs com-
puted over the full trees of two versions for which comparison functions and ap-
proximations are applied [2]. However, this approach requires parsing of both the
source and normalized trees multiple times (i.e. in pre-order, in-order, post-order)
and thus the algorithms require multiple iterations.

An XML document typically consists of multiple level of tree nodes where
nodes that have the same depth are positioned in the same level. In this paper, we
propose a comparison technique of two tree structured data. We use a hybrid tech-
nique of tree and event based parsing, i.e. DOM [4] and SAX [5] respectively to
parse the tree versions, detailed in our previous work [self reference]. It is possible
to represent each level of XML nodes by DOM for a SAX event, i.e. startElement,
and thus allowing processing such as compare or edit. This XML parsing tech-
nique assigns encrypted integer labels to nodes, i.e. XML element tags, attributes,
text content of each level in breadth-first order to encode the original structural in-
formation, i.e. location, depth, number of nodes and is thus unreadable to a third

1

party. However, the encrypted labels on nodes act as unique identifiers and allow
a third party to compare nodes of different XML tree levels without knowing the
node names. Note that, if there would be no confidentiality requirement then a
plaintext breadth-first order label also achieves the uniqueness of the node.

The proposed comparison technique in this paper has five key characteristics:

1. Large XML. We focus on large hierarchical structured information such as
enterprise XML documents. One such large WSDL of a SAP purchase order
can be found in [6]. This schema contains 442 element definitions, of which
36 may occur unboundedly. Existing literature tackles the tree comparison
problem using at least a complete representation of the trees in memory [2],
then transforming those into possibly multiple normalized forms such as,
binary branch [7], which make those techniques infeasible for large XML
documents.

2. Partial Comparison. The comparison technique should enable partial com-
parison so that two document portions, e.g. one level of tree nodes, from two
versions can be compared as opposed to comparing two complete trees. For
example, a WSDL document containing different service operations that are
only changed by adding or removing service operations resulting into some
insertions or deletions of few elements in the same level in the new version.

3. Confidential Information. In order to support the outsourcing of comparison
tasks to specialized third parities we require techniques for not only plaintext
XML tree but also sanitized XML both structure and content wise. Here
the challenge is to let the encrypted XML nodes to be compared without
exposing sensitive structural information, e.g. number of nodes, size of the
document, and content information such as plaintext values, e.g. element
name, attribute name value pairs, text content. We assume a symmetric and
deterministic encryption is used to encrypt the XML nodes.

4. Edit Operations. The edit operations are performed on an encrypted tree
node of a level as opposed to its plaintext value. To enable partial compar-
ison, the edit operations in this paper are defined with respect to sibling re-
lationships of XML nodes in a level rather than their parent-child hierarchy.
We allow four edit operations, i.e. update, insert, delete, move where each
operation is performed on a single sibling node. The sibling node can be a
leaf or internal as opposed to existing work which only allows for instance
to delete a leaf node in a specific order, e.g. post-order.

5. Minimum Cost Edit Script. The minimum cost edit script is generated in a
single pass algorithm on the document versions. The algorithm starts with
an empty match and edit script and as it proceeds it finds the appropriate
matches of nodes and the minimum cost edit script.

In the rest of the paper we focus on comparing encrypted tree structured data
while the technique equally applies to a plaintext tree structured data. The paper is
structured as follows. Section 2 reviews related work and positions our work in that

2

a

bb

e f e f
98938273

3519

7

d'n
5953

Tya

bb

e f e f
98938273

3519

7

c d
48 59

Tx

Figure 1: The running example of comparing two trees, Tx (initial) and Ty (edited). Solid
lines represent appropriate matches.

context. A high level solution overview of the comparison technique is provided
in Section 4 which is elaborated incrementally in later sections. Section 5 briefly
introduces the XML parsing model that ensures encoding of the XML tree nodes
and which are then utilized further in minimum cost edit script algorithm. This
section also formalizes the edit operations and their cost model. The algorithm of
determining a minimum cost edit script is described in Section 6. A complexity
analysis of the algorithm is provided in Section 7.

2 Related Work

Tree comparison techniques are in general based on ideas from the string match-
ing literature [8–11]. A comprehensive survey of edit script computation, known
as tree edit distance, can be found in [12]. Due to inherent differences of tree
structured data from flat data the computation technique for the former varies from
different dimensions, namely atomic vs bulk edit operation, order of operation,
ordered vs unordered trees, key vs keyless data and usage of intermediate trees.

In [13–15], authors support insertion and deletion anywhere in the tree whereas
in [13] insertion is supported only before deletion. In [16] insertion and deletion
of single nodes at the leaf level and updating of nodes anywhere in the tree are
allowed. In [2] a subtree movement (bulk operation) for the ordered trees is in-
troduced. For unordered tree comparison the authors in [1] introduce comparison
techniques including copy operation for unordered trees. In our paper, four atomic
edit operations (i.e. update, insert, delete, and move) are defined with respect to a
single node; to be more specific a sibling node of a level of an XML document.
Edit operations can be performed independently of each other except the update
operation which needs to be performed before any of the other operations for a
level (details in Sections 5.2 and 6).

The matching algorithms to find initial matches of node pairs for ordered trees
are presented in [15, 17]. The algorithm of [15] runs in O(n2log2n) which is fur-
ther improved by the authors in [2] as their matching algorithm runs in O(ne+e2);
where n and e are the number of leaf nodes and the ’weighted edit distance’ re-

3

spectively. The minimum cost edit script algorithm of [2] runs in O(ND) time;
where N is the total number of nodes of the two source trees and D is the number
of misaligned nodes. The fundamental difference of our proposed algorithm (de-
scribed in Section 6) from the work of [2, 15] is that we do not consider any initial
set of ”matches of node pairs” between the XML nodes of the source trees which
would then need to be parsed fully (against our motivation of partial comparison).
The ”matches of node pairs” are computed as a side effect of the minimum cost edit
script computation. Our proposed algorithm (i.e. MCES) enabling partial compar-
ison proposed in this paper runs in O(N) time; where N is the maximum number
of nodes of the two levels of the source trees.

The authors in [7] proposed the tree edit distance between two trees should be
computed based on the so called ’string edit distance’ and in [7] the authors sug-
gest ’binary branch distance’ for the same computation. Both of these techniques
require intermediate normalized trees of the source trees to be computed as for the
former two sequences of nodes by pre-order and post-order traversal and for the
later two binary tree representation of the source trees are required. The algorithm
proposed by us does not require any intermediate form of a tree except a FIFO
queue storing one level of tree nodes.

The comparison technique of [2] for the ordered trees assumes that tree node
contains keyless data for which comparison is considered to be harder for the same
problem of ordered trees. In addition, several domain characteristics are consid-
ered (e.g. semantic tagging of nodes in the source trees, nearly no duplicate tree
nodes) to find an efficient solution. We consider the XML data to be keyless, but
our encrypted breadth first order labeling over XML nodes during parsing time
assigns unique identifiers for the parsed nodes in a level (details in Section 5.1).
Furthermore, our only assumption is that the number of similar nodes between two
levels of source trees is greater than that of dissimilar nodes (described in Section
6.2).

3 Tree vs Event Based Parsing

Tree structured data such as XML documents consume memory space not only
for the XML nodes but also for their hierarchy and sibling relationship. For ex-
ample, an empty element <e/> (4 bytes for the source file) could easily take 200
bytes of tree storage in Java [18].

For any enterprise XML processing in an enterprise application (e.g. ERP,
SCM, CRM), the related document part must be in memory for useful processing.
There are two general ways to parse XML documents: Tree and event based pars-
ing. The Document object model (DOM) [4], Java Optimized DOM (JDOM) [19],
simple API for XML (SAX) [5] and streaming API for XML (StAX) [20] are the
defacto standard APIs for tree based and event based processing. DOM and JDOM
require the whole document to be in memory whereas required memory for related
document part might be less. For example, an empty element <e/> (4 bytes for the

4

source file) could easily take 200 bytes of tree storage for these 4 bytes of source
with empty information in Java [18]. JDOM optimizes the representation of XML
nodes in memory by avoiding unrelated nodes but yet it needs to parse the whole
document before the application can do any useful processing. SAX and StAX re-
quire only the current document node1 in memory and an associated event is raised
which any application specific event listener can then process.

Using StAX, applications can control the required events whenever they need
to process rather than processing after receipt of an associated event from SAX
even if the processing is not required. With respect to memory space and process-
ing time, event based parsing (e.g. SAX, StAX) outperforms DOM [5]. However,
if document updates (adding elements, attributes, changing them) are required fre-
quently DOM is better than event based parsing [21] as tree based API (e.g. DOM)
preserves the hierarchical structure of the XML documents.

As enterprise documents are large and sometimes update intensive we face
contradicting requirements of consuming less memory and low processing time
but maintaining hierarchy of document nodes to do the updates. To address these
contradicting requirements we propose a hybrid approach. In particular, purely
view based application scenarios where updates are not required should follow the
event based technique. For update intensive applications, event based parsing can
be used to get an event for each node for which tree based parsing (e.g. DOM)
will then be used to get the children of it. While the former technique allows
straightforward pre-order labeling, the latter allows labeling the nodes of each level
in breadth first fashion on the fly and to free the extra memory required by DOM
before moving to the next level of nodes.

4 Solution Overview

We consider XML documents (possibly with mixed content) of ordered nodes
where nodes can be elements, attributes, and text. Attributes of an element can be
represented as the first set of children before its sub-elements and text.

As a running example, consider two trees, Tx and Ty of Fig 1, each having two
levels of nodes where Tx is the initial and Ty is the edited tree, any comparer (e.g.
third party) wants to find the differences between them. Accordingly, the task is
to find an appropriate transformation as described by the minimum cost edit script
from Tx to Ty. In other words, to determine the correspondence (i.e. appropriate
matching) among nodes of these two trees as shown by the solid lines in the figure.
Appropriate matching also identifies an insertion or deletion of nodes as shown in
the figure for the nodes n and c respectively (without solid lines). In our context,
the nodes to be matched are encrypted values of XML nodes, i.e. elements, text,
attributes, as opposed to plaintext values that may be updated in different versions.
Whenever, we refer to the node name we refer to its encrypted value unless stated
otherwise.

1XML elements, attributes, comments, space.

5

a

cb

d e f g

a

cb

d e f g
7,26,25,24,2

3,12,1

1,0 a

cb

d e f g
103,2787,2766,2748,27

35,1419,14

7,8

(I) XML Document (III) Encrypted BOL (EBOL)(II) Breadth First Order Labeling (BOL)

Figure 2: Solid and dotted lines represent explicit memory footprint and no memory
footprint respectively. (II,III) are implicit hierarchy representations of (I).

Recall Partial Comparison of Section 1 which implies comparing two trees,
level by level from root to leaves as opposed to bottom-up approaches (i.e. leaf to
root). A special XML parsing technique (described in Section 5) allows us to de-
termine each node’s identity by location and depth wise, keeping (both the location
and depth) its confidentiality. It also allows us to edit XML nodes independently
of their hierarchy relationship. For example, we are able to delete any node (leaf
or internal) irrespective of its children nodes. Hence, our strategy is to utilize this
unique identity and thus to use a node’s sibling relationship as opposed to using
parent-child hierarchy in the matching process. Given two trees Tx and Ty, a node
x in the level l of Tx will be compared first with the same level l nodes of Ty. If any
node of Tx in level l remains unmatched the other levels of Ty can be considered
to find the appropriate matching. Surely this strategy finds the appropriate matches
(if exists) in the same level without parsing the complete tree.

One level of a tree Tx is said to be isomorphic [2] to a level of another tree
Ty if they are identical except for node names. We need to transform Tx to a tree
T ′x which is level wise isomorphic to Ty using a sequence of edit operations. As
Tx is transformed to T ′x an appropriate matching between the nodes of T ′x and Ty
that incurs the cheapest cost must be determined. So our goal is to generate the
minimum cost edit script by finding these appropriate matches. The minimum cost
edit script algorithm is described in details in Section 6.

5 XML Parsing and Edition Model

As mentioned in Section 1 we want to enable partial comparison (level wise) of
large encrypted XML documents. To achieve this, the first step is to parse the XML
documents level by level. In the following, the XML parsing model is described
first and followed by an edition model that formalizes the edit operations and their
cost model.

5.1 Parsing Model

We parse two XML document versions to be compared in breadth first or-
der [22]. While interested readers find the details of this parsing technique in [self
reference], we briefly describe it in the following. For each level of a tree version,

6

a

bb

e f e f
98938273

3519

7

c d
48 59

a

bb

e f e f
98938273

3519

7

c d'
48 59

Upd(59, d’)

Upd(59, d)

Ins(53,n,19)

Del(53)

a

bb

e f e f
98938273

3519

7

c d'
48

n
53

Mov(59,53)

Mov(59,48)

a

bb

e f e f
98938273

3519

7

n d'
53 59

c
48

Del(48)

Ins(48,c,35)

a

bb

e f e f
98938273

3519

7

d'
59

n
5359

T0 T1
T2 T3

T4s1 s2 s3 s4

Figure 3: Basic edit operations on encrypted tree structured data.

take the sibling nodes (having the same parent) in a FIFO queue and associate
an integer pair to those as these nodes are fetched from the queue in FIFO order.
Each such node, having associated integer pair, captures various structural prop-
erties without consuming any memory footprint for hierarchical relationships (i.e.
parent-child, siblings, left/right child) of the parsed XML node.

Breadth First Order Labels (BOL): A BOL is a pair of integers associated
to an XML node as it is parsed in breadth first order . The first integer in the pair
is the order associated with a node whose left siblings and ancestors have already
been parsed and thus have associated BOLs. The second integer is the depth of the
node in the document which is increased by one as new depth level is reached. The
BOL starts with (1,0) as illustrated in Fig. 2 (the example given is a binary tree,
but BOLs can be defined on any type of tree)

Let a be the parent of two nodes b, c ∈ di. We denote its BOL as Ba. Let
forder and flevel be two functions operating on a BOL respectively returning the
BOL order (first attribute of the BOL pair) and BOL depth (second attribute). Let
us assume that b is the last child of a parsed and that c is to be parsed next. c
will be associated a BOL with forder(Bc) = forder(Bb) + 1. flevel(Ba) uniquely
identifies the depth level of the node a in d. The order of the BOL exhibits the
following structural properties:

1. forder(Ba) uniquely identifies node a in document d and the subtree da
rooted at a.

2. Let Ba
Highest be the largest BOL order of a parsed node in document portion

da; then Ba
Highest > forder(Bz) > forder(Ba), where z ∈ da.

3. forder(Bc) > forder(Bb) > forder(Ba).

The first property is used to identify and extract a specific XML node from the
FIFO queue. The second property being the depth of a node along with the first
property allows us to determine all the nodes in a level. The final property shows
that the BOL assigns integer values by maintaining a strict inequality among sibling
nodes which are stored in the FIFO queue in that order.

A BOL is by definition plaintext and thus may reveal important structure spe-
cific information such as number of nodes and thus the size of the document and

7

even hierarchy relationship among the nodes to an adversary. Encryption over such
BOL numbers protects this undesired information disclosure.

Encrypted BOL (EBOL): Let Ba be the BOL of an XML node a. Let fe be an
order preserving encryption function [23]. The EBOL of a, denoted as Ea is a pair
of integers defined as : (fe(forder(Ba)), fe(flevel(Ba))). While fe(forder(Ba)) is
performed for each node a, fe(flevel(Ba)) is performed if a is the first node in a
level.

An EBOL-based parsed XML node in a level has a unique identifier and its n
children where each child node xi has 0..i−1 left sibling and i + 1..n right sibling
nodes respectively. Intuitively, it avoids explicit hierarchy representation and as
such all the figures show the dotted lines among parent and its children. For each
node, x, we assume a dummy first child node exists, (not shown in the figures)
denoted as xε which is used in different edit operations (details follow).

Example: Fig 2 (III) is the EBOL representation of (II). The EBOL of the node c is
pair of integers 35 and 14. The first and second integers are order preserving encrypted
values computed over the unique integer, 3 of the BOL associated to c and the c’s depth
level, 1. �

The EBOL preserves exactly the same properties of BOL (see Fig 2). The
EBOL value hides the actual node number and its depth level as opposed to the
BOL numbers and thus prevents disclosure of structural information infereable
with respect to a node. Most importantly, it implicitly preserves a node’s hierar-
chy information that allows to design reach edit operations based on solely node’s
sibling relationship (details in next section). For example, in Fig 4, we are able to
delete an internal node b without deleting its children. When an event of startEle-
ment of the node b is sent, b’s child nodes, i.e. d, e, including the dummy child node
bε are queued in the FIFO II−→. The memory required for parent-child relationship
of b and its children; and sibling relationship of its children can be freed as the
sibling nodes, i.e. children, are stored in sibling order in the queue and thus sibling
relationship is preserved implicitly. It is also possible to move an internal node as
its child nodes are put into the queue in similar fashion.

5.2 Edit Operations

In this section we formalize the edit operations on an XML structure. We refer
to the node with the identifier x, its encrypted name value with the valx and to an
EBOL-based parsed XML document with the tree, Ti for conciseness. Ti refers to
the tree on which an edit operation is performed and Ti+1 refers to the resulting
tree. Formally, the edit operations are as follows:

• Update: The update of the value of a node x in Ti, denoted as Upd(x,val).
This operation leaves Ti+1 as the same Ti except that in Ti+1, the value of x
is val. This is depicted in T0 and T1 of Fig 3 for Upd(59,d’).

• Insert: The insertion of a new node x with a value v into Ti, denoted as
Ins(x,v,k). A node x with value v is inserted after the node k as its immediate

8

a

b

d e
6648

19

7

c
35

l0

a
l1

b
c
l2

c

d
e

a€

a€

b€

l1

l2

d
e

c€

l3

b€

I

III

V

II

IV
e

c€

d€

l3
c€

d€

e€

a

d e
6648

7

c
35c

d
e

a€

b€

l2IIDel(19)

Figure 4: Deleting an internal node, b, (Del(18)) using EBOL-based XML parsing. The
FIFO queue stores the nodes of the current level and keeps track of the current parsed node

shown as
[I..V]−−−→. The nodes including the dummy nodes in one level are delimited by two

li entries.

right sibling node in Ti. In particular, if r1, ..., rm are the right sibling nodes
of k in that order in Ti, then x, r1, ..., rm are the right sibling nodes of k in
Ti+1. In case of an insertion of a node as a first sibling node k is considered to
be the dummy node as mentioned in Section 5.1. Insertion can be performed
after any leaf or internal node. (T1 and T2 of Fig 3 for Ins(53,n,19).

• Delete: The deletion of a node x from Ti, denoted as Del(x). The resulting
Ti+1 is the same as Ti without the node x. In particular, if l1, ...ln, x, r1, ..., rm
is the sibling sequence in a level of Ti, then l1, ...ln, r1, ..., rm is the sibling
sequence in Ti+1. To delete a leaf sibling node is straightforward as depicted
in T3 and T4 of Fig 3 for Del(48). When deleting an internal sibling node,
its children are stored in the FIFO queue as shown in Fig 4 so that these
nodes can be fetched from the queue and thus be considered for the next
level comparison.

• Move: The move of a node x after the node y, denoted as Mov(x,y) in Ti.
Ti+1 is the same as Ti, except x becomes the immediate right sibling of y.
The children of the moved node are kept in the queue in similar fashion as
the delete operation. (T2 and T3 of Fig 3 for Move(59,53))

If the target level of the moved node is the same as its previous level then it is
an intra level move (as in Fig 3). However, for any inter level move, for instance in
Fig 5, the node n of T1 is moved after the node e to the lower level (or higher level),
the plain strategy mentioned in Section 4 may not find the appropriate match in the
same level. In particular, for the first level comparison it will be identified as n is

9

Mov(53,73) a

bb

e f e f
98938273

3519

7

d'
59

53

T2

n

a

bb

e f e f
98938273

3519

7

cd'
4859

n
53

T1

c
48

Figure 5: Inter level moving of node n in 1st level of T1 to 2nd level of T2.

deleted (or inserted) whereas it is moved to another level. Intuitively, when a node
is moved upwards in a higher level it would be matched in for insert case as it is a
new node for that level. In order to find an appropriate match, an edit cost model is
required. In this regard, we also maintain an array of currently matched node pairs
and the current edit script using which such an inter level move is detected (details
in a later section).

5.3 Edit Script and Cost Model

The basic formalizations of edit script and cost model have been extensively
studied in the literature [2,7,24,25] and as such we utilize the formalizations from
there.

Consider, T0
s1−→ T1 where T1 is the result of applying the edit operation s1

to T0. An edit script, S, is a sequence of edit operations when applied to T0

transforms it to Ti. Given a sequence S = s1 . . . si of edit operations, we say
T0

S−→ Ti if there exist T1, T2, . . . Ti−1 such that T0
s1−→ T1

s2−→ T2 . . . Ti−1
si−→ Ti.

S = {Upd(59, d′), Ins(53, n, 19), Mov(59, 53), Del(48)} is an edit script that trans-
forms T0 to T4 of Fig 3.

There are three interesting features of this edit script. (1) The edit operations
are defined with respect to sibling relationships. (2) The edit script generation
algorithm does not require any initial matches. Instead it computes the appropriate
matches during algorithm execution. (3) The algorithm requires only one pass to
generate the minimum cost edit script and to compute the matches as it traverses
one level of the trees in breadth first order.

There may be several edit scripts that transforms T0 into the same resulting tree
T4. For example, the following edit script, S′ ={Del(59), Ins(59, d′, 48), Ins(53, n,-
19), Del(93), Del(98), Del(35),Ins(35, b, 48), Ins(93, e, bε), Ins(98, f, 93), Del(48)},-
when applied in Fig 3 it also transforms T0 to T4. Note that, for the insertion of
Ins(93, e, bε) the dummy node bε is considered as mentioned in Section 5.2.

Clearly, the edit script, S′, performs more work than that of S and thus it is an
undesirable edit script to transform T0 to T4. In effect, to determine a minimum
cost edit script a cost model is required. The cost of an edit operation depends on
the type of operation and the nodes involved in the operation. Let Cd(x), Ci(x),

10

Cu(x), and Cm(x) denote respectively the cost of deleting, inserting, updating and
moving operations respectively. In general, these costs may depend on the value of
x, as well as its position in the tree. In particular, the encrypted value represented
by node x and its position in the sibling order in a level.

In this paper, we use a simple cost model similar to [2] where deleting, in-
serting, and moving a node are considered to be unit cost operations, i.e. Cd(x)=
Ci(x) = Cm(x) = 1 for all x. For the cost Cu(x) of updating an encrypted value
associated to a node x, a function diff is defined as follows: diff(valx, valy) that
returns 0 if encrypted values represented by valx and valy are same otherwise a
nonzero value is returned indicating that there has been an update.

6 Determining Edit Script

This section describes the algorithm to determine the minimum cost edit script.
We refer to a level of XML nodes of Tx as l(Tx), to a node x as a node in a level
and to a two dimensional array M as consisting of matching node pairs (xi, yj),
where xi∈Tx and yj∈Ty. We define a function exist() when applied on a tree Ty
(or M), returns the valy (or TRUE) if Ex matches any node y in Ty (or xi matches
any node in M as a peer node) i.e. ∃Ey =Ex or ∃xk=xi in M , where valy is the
encrypted node value associated to y. Recall from Section 5.1, Ex is the EBOL
value of x.

6.1 Algorithm Overview

Given a tree Tx (the initial tree), a tree Ty (the edited tree), the algorithm gener-
ates a minimum cost edit script that transforms Tx to Ty. It does not take any initial
matches as mentioned in Section 5.3 and as such it determines the matches during
the execution of the algorithm. It starts with an empty edit script S and adds edit
operations to S as it follows through. Consequently, the algorithm requires only
one pass as opposed to multi phases on the trees as motivated in Section 1.

We assume two root nodes match without loss of generality. The algorithm
takes one level of nodes at once consisting of all the sibling nodes from one tree and
compares these with a level of sibling nodes of the other tree. Once a matching pair
of nodes is found, denoted as (xi, yj), the pair is added to M . The corresponding
edit operation is added to S as it is applied to Ti = Tx which is then transformed
to Ti+1. Here, x and y are the matched peer nodes and i and j are their respective
position in the sibling order which might change upon an edit operation (details
follow). When the algorithm terminates each node in Tx has an appropriate match
in Ty as shown by the solid lines in Fig 9(V) (see Appendix).

6.2 Appropriate Matching

The straightforward way to find appropriate matches of node pairs is to start
with an initial set of matches [7] determined by predefined similarity evaluation

11

functions. Depending on the data set and domain of the matching this evaluation
may vary. For example, if the comparing versions of the XML versions have keys
or unique identifiers then evaluation would first match the keys of the versions. If
the data set is keyless then some domain dependent matching rules or criteria are
used as evaluation characteristics. Intuitively, a criteria stating that a match is better
than other if the former incurs cheaper edit cost than the later.

We consider different versions of XML trees to be keyless. However, EBOL-
based parsing associates each XML node with an encrypted integer value pair that
acts as a unique identifier to that node as described in Section 5.1.

As mentioned earlier, we would like to find appropriate matching pairs of nodes
during the execution of the minimum cost edit script algorithm rather than finding
an initial match and then updating that. The rationale is as follows: (1) Initial
match finding requires parsing the large XML documents and their normalized
forms into memory before the algorithm execution which is undesirable in our
context. (2) We want to enable partial comparison of level of trees as motivated in
Section 1 that requires appropriate matching of sibling nodes without knowing their
descendants. (3) In our case, the matching should be performed over encrypted
values as opposed to plaintext values and thus it is not straightforward. For (1), we
utilize the EBOL based parsed nodes of a level as a first class values for comparison
without generating any memory and CPU intensive intermediate normalized form
of the trees. For (2), we define matching criteria for a node that do not require
comparing descendant nodes of the other node except its direct children that are
stored in the queue. For (3), matching criteria are applied over the encrypted values
as the XML node names are not plaintext. Therefore we formalize the criteria
that allow us to match nodes as a side effect during the algorithm execution. The
first matching criteria can be stated informally as follows: nodes having dissimilar
encrypted values should not be matched with each other.

Criteria 1: Sibling nodes x∈Tx and y∈Ty can match only if Ex=Ey. Recall
that Ex denotes the EBOL value of the node x.

Given the first criteria is fulfilled two nodes can match after invoking the func-
tion diff(valx, valy). Recall that diff() returns 0 if valx and valy are same oth-
erwise a nonzero value, where they denote the encrypted values of the nodes x and
y respectively. For the latter an updated node is detected and is used in the algo-
rithm as an update edit case. As mentioned in Section 1, we rely on symmetric
and deterministic encryption, this check is then only matching the corresponding
ciphertexts.

The second matching criteria is about the similarity of sibling nodes having
direct children. To state informally, two nodes can match if their direct children
(as stored in their corresponding queues) also potentially match. Two functions
same(x, y) and max(|x|, |y|) are defined where x and y are the nodes to be com-
pared and |x| and |y| are their number of children. The former returns the number
of child nodes having the same EBOL and the latter returns an integer representing
the maximum number of child nodes of the two nodes.

12

Criteria 2: Sibling nodes x∈Tx and y∈Ty can match only if

same(x, y)
max(|x|, |y|)

> t; where 0 ≤ t ≤1.

The value of t is a threshold that depends on the domain and chosen by the com-
parer. For instance, if the comparing XML trees are two purchase order documents
having lot of item, price, quantity elements then it is quite likely that two
documents may have lot of same elements in a level and as such, the comparer can
choose a higher value for t≥ 1

2 . If two WSDL documents are compared to check
for operations change (addition or remove) then probably the value of t is lower,
i.e. t≤ 1

2 as the number of operations are less.
Finally, we assume that the number of nodes in a level of a tree that are similar

to a level of nodes of another tree is not smaller then that of dissimilar nodes in
the same level. As such, one node has bigger chance to match with another node
if their sibling nodes also potentially match. This assumption reflects the goal of
partial comparison where two versions of a document differs mostly in the same
level as mentioned in Section 1.

Assumption: For a domain dependent threshold value t, nodes x∈ l(Tx) and
y ∈ l(Ty), the number of nodes that satisfy (Ex = Ey) is ≥ t, for t as defined in
criteria 2.

Now, we describe the insight of the algorithm using different edit cases, i.e.
update, insert, delete, and move. While the first criteria is used for the first three
cases, the second criteria is used for the move case.

6.3 Edit Cases

We illustrate with the running example in Fig 9 to determine a minimum cost
edit script incrementally (level by level) that transforms Tx = T0 to T4 by finding
appropriate matches shown by the solid lines. Intuitively, T4 is level wise isomor-
phic to Ty.

Update Case. In update case, for each node x of T0 the function exist() is
invoked to find whether xi exists in Ty. If successful the function returns valy,
then the function diff(valx, valy) is called. For a nonzero value, we add the edit
operation Upd(x, valy) to S, and we add a match (xi, yj) to M . Consequently,
we apply the update operation to T0. Ultimately, we have transformed T0 to T1

by assigning valx = valy such that Ex = Ey for each node x in T0 which has a
corresponding identifier in Ty (exist(xi,−, U,−) in Ty). Note that, even if there
is no updated node in Ty meaning a 0 is returned from diff , M may have pairs
where each peer node in a pair has a corresponding matched node from the other
tree. Fig 9(II) shows Upd(59, d′) when applied to T0, the transformed tree is T1.
Fig 9(II) also shows all the matching node pairs in M .

Insert Case. To find the inserted nodes in Ty, we take the nodes, w of Ty
such that w is not a peer in any of the pairs in M . For each such w we add the edit
operation Ins(w, valw, k) to S, meaning w will be inserted after node k in Tx with

13

Figure 6: An appropriate match with rearranging the sibling nodes.

the encrypted value valw. The position k is determined with respect to the sibling
relationship of already matched pairs of M . In particular, the peer node xi of Tx in
M(xi, yj) for which w is the immediate right sibling of yj , is the node k in Tx. We
apply the insert operation to Tx and add the node pair, (xk+1, wj+1) to M . If w
is the first sibling in Ty, i.e. left most child, then k is considered to be the dummy
child node of the level in question of Tx. In effect, insertion operation changes
the sibling positions of existing peer nodes of Tx in M . The running example of
Fig 9(III) shows the resulting tree T2 after Ins(53, n, 19) and the updated sibling
positions of peer nodes in M . For clarity, only the new solid line resulted for the
new matched pair is shown in the figure.

Move Case. In this case we consider the pairs of M for which peer node’s
sibling positions are not the same. If it is the case we say peer nodes are miss
arranged. In the Fig 9(III) nodes 35, 59 in T2 are miss arranged with respect to
their respective sibling positions in Ty as depicted in M . We add move operations
to S to arrange the sibling order. We explain the details in Section 6.4. In the
running example a Mov(59, 53) is added to S, and applied to T2 to transform it to
T3 (Fig 9(III) to (IV)). Note that no new match is found by this operation, however
the sibling position is changed as depicted in M .

Delete Case. To find the deleted nodes of Tx, we take the nodes x in Tx such
that x is not a peer in any of the pairs in M . For each such node x, we say that either
it is deleted from the level it was in Tx or it is moved to some other level. For the
partial comparison purpose as motivated in Section 1 we can safely conclude the
former. Accordingly we can add edit operation Del(x) to S which in turn changes
the existing sibling positions in M as insertion and move cases. Fig 9(V) shows
the resulting tree T4 after performing Del(48) on T3.

While the insert, move and delete cases can be applied independently of each
other, the update case is required to be performed first so that first set of matching
pairs is determined which are then used in other cases. After applying the edit
script E =(Upd(59, d′), Ins(53, 19), Move(59, 53),Del(48)) the first level of the
initial tree T0 is transformed to T4 which is isomorphic to Ty with respect to first
level and S is the final edit script conforming to the first level, and M contains the
matched peer nodes in that level.

6.4 Rearranging Sibling Nodes

As mentioned in the move case and shown in Fig 9(III) there might be miss
arranged peer nodes in M . In general, (1) there may be more than one sequence of

14

moves that will arrange the siblings in the order of the edited tree. For example, Fig
6 that shows the siblings of Fig 9(III), there are at least three sequences to arrange
the sibling nodes of T2 to transform to T3. The first consists of moving nodes c
and d′ after n in that order. The second consists of moving the node b after d′. The
third consists of moving the node d′ after n. All yield the same transformed tree.
Clearly, the first is undesirable as it requires more moves and thus concedes more
cost. However, to pick the desired one from the rest two having one move is also
tricky as the former has direct children as opposed to the latter and thus the former
potentially require more moves than the latter. In case of several sequences having
the same number of moves any one can be picked.

To ensure that the edit script generated by the algorithm is of minimum cost,
we must first find the shortest sequence of moves to arrange the siblings. In this
context, we may utilize EBOL-based encrypted identifiers for XML nodes. Re-
call from Section 5 that identifiers are integers that follow an equality from left to
right in a sequence of siblings. The idea is to find a common sequence of sibling
nodes that maintain this inequality and move the nodes that are not in the common
sequence. This strategy might be useful for a potentially smaller number of mis-
sarranged nodes, indicating majority of the sibling nodes are in order with respect
to EBOL inequality. However, we can not rely on the EBOL inequality property
as there might be lot of missarranged nodes due to multiple insertion, deletion and
moving of the nodes. As such, we use the second criteria of Section 6.2 as part of
the common sequence definition.

Let the sequence of EBOLs of siblings in a level of Tx and Ty are Lx =
x1, ..., xi and Ly = y1, ..., yj where i and j are the respective position of the peer
nodes x and y in the sibling order and let (xi, yj) ∈ M for any i, j ∈ N. A
subsequence of L can be found by removing any number of EBOLs from L.

The longest sibling subsequence of Lx and Ly, denoted as LSS(Lx, Ly) is a
sequence Lxy = (x1, y1)...(xi, yi) of matched pair nodes such that (1) x1...xi is
a subsequence of Lx; (2) y1...yi is a subsequence of Ly; (3) for 1 ≤ k ≤ i,
yk = exist(xk,−, U,−); (4) for 1 ≤ k ≤ i, same(xk,yk)

max(|xk|,|yk|) > t; where 0≤ t ≤ 1;
and (5) there is no sequence L′ that satisfies previous four conditions and longer
than or equal to Lxy. Note that, the condition four refers to the second matching
criteria.

We are required to rearrange the sibling nodes, xi in Tx, which are not in the
longest sibling subsequence Lxy, i.e. xj 6∈ Lxy, using move operations. Accord-
ingly, we move such nodes, xj of Tx that transforms Tx to an isomorphic tree of
Ty. In Fig 6, for Lx=19, 53, 35, 59 and Ly =19, 53, 59, 35, the LSS is 19, 53, 35
that corresponds the matching pairs (191, 191), (532, 532), (353, 354) respectively.
Then the shortest sequence of move operations is Mov(59, 53) as 59 is not in
19, 53, 35.

In [2], a similar strategy is used to determine the shortest sequence of move
operations. Due to the condition four which only considers the direct children as
opposed to all the descendants, we are able to determine the shortest sequence of

15

1. Input: l(Tx), l(Ty); Output: M and S.

2. M = ε; S = ε

3. Load the nodes of l(Tx) and l(Ty). /*load one level of Tx and Ty*/

4. Update Case: for each node x ∈ l(Tx)

(a) valy = exist(x,−, U,−)

(b) if valy! = NULL
UpdateMatch((x, y), Update).
v = diff(valx, valy). /*appropriate matching*/

i. if(v! = 0)

A. Append Upd(x, valy) to S.
B. Apply Upd(x, valy) to Tx.

5. Insert Case: for each yj ∈ l(Ty); if exist(−, yj ,−,M) = FALSE /*yj 6∈ M ; yj as a
peer node*/

(a) k = FindSibling(yj).

(b) UpdateMatch((k, yj), Insert).

(c) Append Ins(yj , valyj , k) to S.

(d) Apply Ins(yj , valyj , k) to Tx.

6. Move Case: Take the sequences of miss arranged siblings: Lx, Ly;

(a) X = ArrangeSibling(Lx, Ly) /*Missarranged nodes of Tx*/

(b) for each xi ∈ X
i. kn = FindSibling(xi).

ii. if n>i then UpdateMatch((xn+1, yj), Delete).
/*if moved to right*/
if n<i then UpdateMatch((xn+1, yj), Insert).
/*if moved to right*/

iii. Append Mov(xi, k) to S.
iv. Apply Mov(xi, k) to Tx.

7. Delete Case: for each xi ∈ Tx; if exist(xi,−,−,M) = true /*if xi 6∈ M ; xi as a peer
node*/

(a) UpdateMatch((xi,), Delete).

(b) Append Del(xi) to S.

(c) Apply Del(xi) to Tx.

Figure 7: Algorithm Minimum Cost Edit Script(MCES)

moves without parsing and loading the descendants into memory. We also use the
algorithm of [8] in similar fashion of [2] that can compute the LSS of two sequences
in time O(ND), where N = |Lx|+|Ly| and D=N−2|LSS(Lx, Ly)|.

16

1. Function exist(xi, yj ,U,M)

(a) if (U) then for each node yj ∈ l(Ty); /*update case*/
do if Ey =Ex return valyj ; else return NULL; endfor

(b) if (M) then for each node pair ∈M
if yj 6∈M ; return true; /*insert case*/
if xi 6∈M return true; /*delete case*/

2. Function UpdateMatch((xi, yj), editcase)
q, t, u, v are integers

(a) if (editcase=Update)
then M [q] = (xi, yj), such that ∀t, 0< t< q; M [t] = (xu, yv) and i > u. /*adding
pair nodes in M*/

(b) if (editcase=Insert) for each pair M [q] = (xu, yv), such that u > i, do M [q + 1] =
(xu, yv). endfor
M [i]=(xi, yj) /*updating sibling position*/

(c) if (editcase=Delete) for each right sibling node, xu>i of xi, such that (xu, yv)∈M do
/*updating sibling position*/
replace u with u− 1; i.e. (xu−1, yv) = (xu, yv). endfor

3. Function ArrangeSibling(Lx, Ly)
Compute Lxy =LSS(Lx, Ly). return ∀x 6∈Lxy; /*miss arranged peer node*/

4. Function FindSibling(yk)
for each (xi, yj)∈M
if (yk is the right sibling of yj) return xi. /*left peer node*/

Figure 8: Functions exist, UpdateMatch, ArrangeSibling, FindSibling invoked by MCES
algorithm.

6.5 Minimum Cost Edit Script Algorithm

Now we present the complete algorithm to generate a minimum cost edit script,
S, that transforms a level of an initial version, l(Tx) to be isomorphic to a level of
the target version l(Ty) by computing the necessary matching node pairs. The
algorithm, shown in Fig 7, takes one level of tree nodes from Tx and Ty and uses
four other functions, namely, exist, ArrangeSibling, UpdateMatch, and FindSibling
shown in Fig 8. Additionally, it makes use of a two dimensional array, M , to
compute the matching pairs in sibling order. It combines all the edit cases in one
breadth-first traversal of Tx and Ty.

As mentioned in Section 6.3, edit cases are independent and as such any two
edit cases may update the matches in M and the edit script, S in parallel. We
assume there is a multi threading control mechanism exist that disallows updating
M and S by an edit case while another is updating them and thus is not depicted
in the algorithm. An edit case adds the edit operation to S and applies the edition
to Tx only if it has access to M and S. As mentioned before that two roots of Tx
and Ty are matched without any loss of generality.

The function exist(xi, yj ,U,M) is called from update, insert, and delete cases
where parameters are filled in depending on a calling case. For update xi, U , for

17

insert yj , M and for delete xi, M are filled in. For update, the nodes in l(Tx)
and for others the node pairs in M are compared. Each edit case generates the
matching node pairs and preserves the current sibling order of Tx in the array M by
invoking the function UpdateMatch. Recall from Section 5.2 an edit operates with
respect to node sibling order. Depending on the invoking edit case UpdateMatch
takes care of the sibling order (see Fig 8). For insert case, the function inserts the
new pair in the right position by moving the existing pairs and for the delete case,
updates the sibling position of the pair in M according to the sibling position of
Tx. The move case invokes the UpdateMatch with delete or insert parameter when
a node is moved to right or left respectively. The insert and move cases invoke
the FindSibling function to determine the node after which node it should insert
or move. The ArrangeSibling function computes the LSS as described before and
returns the nodes of Tx to be moved when invoked by the move case. All edit cases
append the edit operation to S and apply it to Tx after successful matching.

When the algorithm runs for the first level T4 becomes first level isomorphic to
Ty (Fig 9). Intuitively, the algorithm can be applied repeatedly for other levels and
as such Tx can be transformed to an isomorphic tree of Ty in one pass of the algo-
rithm. In Fig 9 the tree T4 happens to be isomorphic to Ty for the next level also.
To address the inter level moving as shown in Fig 5 a simple approach is followed.
For a node x ∈ Tx which is detected as deleted in a level, the exist(x,−, U,−)
function can be called in Ty for other levels in Ty. If a non null value, y, is returned
then FindSibling(y) is called further to get the sibling position k for which y is
the immediate right sibling (like an insert case). Now we can replace the Del(x)
with the Move(x, k) in S.

7 Complexity Analysis

The complexity of the minimum cost edit script algorithm is analyzed space
and time wise. Let the number of nodes in a level of Tx and Ty be m and n
respectively; and let d be the maximum number of levels of both trees.

Space. As described in Sections 1 and 5 EBOL-based XML parsing avoids
explicit hierarchy representation of XML nodes in memory, clearly the algorithm
requires less memory as opposed to existing techniques. As such, the space com-
plexity is only about the nodes that are stored in the FIFO queue. Let the average
space required for a node x and its EBOL identifier be sx and se respectively. As
mentioned in Section 6, the algorithm takes one level of nodes from Tx to be com-
pared with one level of nodes from Ty at once and free the memory afterwards.
So, the required space is proportional to O(msxnsyse

2) which would have been
2d times of this proportion if the full trees and their normalized trees would be in
memory.

Running Time. Let cd and ce be the average cost of computing diff() and
exist() respectively; let p and q be the number of comparisons required to find the

18

right position of a pair in M and for the function FindSibling (i.e. to find the node
in Tx after which a node is inserted or moved) respectively.

The update case takes time O(m(ce+cd)p) to match the nodes of a level of Tx
with the nodes of a level of Ty. Now, let nx and ny be the number of unmatched
nodes of a level of Tx and Ty for update case respectively. From the assumption of
Section 6.2, we know that such number is bounded by <t. Consequently, nx and
ny nodes will be matched by delete and insert cases respectively.

The insert case running time is proportional to O(ncepq) and for the delete
case it is O(mcep).

For the move case, it requires to compute the same() function on the FIFO
queues for the missarranged nodes x and y. From the same assumption of Section
6.2, we know that the number of nodes having equal EBOL is bounded by >t and
as such considering the number of missarranged nodes is |X| (see Fig 7), we may
approximate the time takes for moving nodes of Tx is O(|X|qpt).

Based on this analysis we prove the following theorems (see Appendix).
Theorem 1 The MCES algorithm computes the minimum cost edit script S and

does it in time O(N) where N is the maximum number of nodes in a level of Tx
and Ty.

Theorem 2 The edit script S that is generated by the MCES algorithm trans-
forms Tx to an isomorphic tree of Ty.

8 Conclusion
We have provided a comprehensive technique and an algorithm to compare

two encrypted tree structured data and generate a minimum cost edit script. The
script transforms one initial tree into a tree which is isomorphic to the edited tree.
The script is comprised of edit operations that are performed on single sibling
nodes. The algorithm does not take any input matching pairs of nodes but generates
a complete set of matched node pairs along with the minimum cost edit script.
We showed how to achieve partial comparison over such trees without any of its
intermediate normalized forms. While the solution is geared to the sanitized XML
data it is equally applicable to any plaintext tree. To this end, we showed the space
and time required for the algorithm are O(msxnsyse

2) and O(N) respectively.

References

[1] S. S. Chawathe and H. Garcia-Molina, “Meaningful change detection in
structured data,” in SIGMOD ’97: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data. New York, NY, USA:
ACM, 1997, pp. 26–37.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change de-
tection in hierarchically structured information,” in SIGMOD ’96: Proceed-
ings of the 1996 ACM SIGMOD international conference on Management of
data. New York, NY, USA: ACM, 1996, pp. 493–504.

19

[3] A. Nierman and H. V. Jagadish, “Evaluating structural similarity in xml doc-
uments,” 2002, pp. 61–66.

[4] P. L. Hgaret, R. Whitmer, and L. Wood, “Document Object Model (DOM),
http://www.w3.org/dom/.” [Online]. Available: http://www.w3.org/DOM/

[5] “About Sax, http://www.saxproject.org/.” [Online]. Available: http://www.
saxproject.org/

[6] “A Purchase Order WSDL Document, SAP Enterprise Services Workplace,
http://esoadocu.sap.com/socoview(bd1lbizjptgwmczkpw1p
bg==)/get wsdl.xml?packageid=dbbb6d8aa3b382f191e00
00f20f64781&id=0afcbb068cee3d59a67b420bc73f2f1b.”

[7] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-
structured data,” in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data. New York, NY, USA:
ACM, 2005, pp. 754–765.

[8] E. W. Myers, “An o(nd) difference algorithm and its variations,” Algorith-
mica, vol. 1, pp. 251–266, 1986.

[9] R. A. Wagner, “On the complexity of the extended string-to-string correction
problem,” in STOC ’75: Proceedings of seventh annual ACM symposium on
Theory of computing. New York, NY, USA: ACM, 1975, pp. 218–223.

[10] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” J.
ACM, vol. 21, no. 1, pp. 168–173, 1974.

[11] S. Wu, U. Manber, G. Myers, and W. Miller, “An o(np) sequence comparison
algorithm,” Inf. Process. Lett., vol. 35, no. 6, pp. 317–323, 1990.

[12] P. Bille, “A survey on tree edit distance and related problems,” Theoretical
Computer Science, vol. 337, pp. 217–239, 2005.

[13] T. Jiang, L. Wang, and K. Zhang, “Alignment of trees - an alternative to tree
edit,” in CPM ’94: Proceedings of the 5th Annual Symposium on Combina-
torial Pattern Matching. London, UK: Springer-Verlag, 1994, pp. 75–86.

[14] D. Shasha and K. Zhang, “Approximate tree pattern matching,” in In Pattern
Matching Algorithms. Oxford University Press, 1997, pp. 341–371.

[15] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM J. Comput., vol. 18, no. 6, pp.
1245–1262, 1989.

[16] S. M. Selkow, “The tree-to-tree editing problem.” Inf. Process. Lett., vol. 6,
no. 6, pp. 184–186, 1977.

20

[17] D. Shasha and K. Zhang, “Fast parallel algorithms for the unit cost editing
distance between trees,” in SPAA ’89: Proceedings of the first annual ACM
symposium on Parallel algorithms and architectures. New York, NY, USA:
ACM, 1989, pp. 117–126.

[18] M. Kay, “An anatomy of an xslt processor,
http://www.ibm.com/developerworks/xml/library/x-xslt2/.” [Online]. Avail-
able: http://www.ibm.com/developerworks/xml/library/x-xslt2/

[19] “Java Document Object Model, http://www.jdom.org/.” [Online]. Available:
http://www.jdom.org/

[20] “The Streaming Api for XML, http://stax.codehaus.org/.” [Online]. Avail-
able: http://stax.codehaus.org/

[21] B. Siddiqui, “Understanding DOM, IBM
Developerworks,http://www.ibm.com/developerworks/edu/x-dw-xudom-
i.html.”

[22] C. E. L. Thomas H. Cormen and R. L. Rivest, “Introduction to Algo-
rithms, http://highered.mcgraw-hill.com/sites/0070131511/.” [Online]. Avail-
able: http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3440

[23] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving encryption
for numeric data,” in SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data. New York, NY, USA:
ACM, 2004, pp. 563–574.

[24] H. Lee, R. T. Ng, and K. Shim, “Extending q-grams to estimate selectivity
of string matching with low edit distance,” in VLDB ’07: Proceedings of the
33rd international conference on Very large data bases. VLDB Endowment,
2007, pp. 195–206.

[25] E. Ukkonen, “Approximate string matching with q-grams and maximal
matches,” Tech. Rep., 1991.

9 Appendix

Theorem 1 The MCES algorithm computes the minimum cost edit script S and
does it in time O(N) where N is the maximum number of nodes in a level of Tx
and Ty.

Proof: To proceed with the proof we simplify the individual edit case analysis
as follows. We take N =max(m, n) instead of m, n, and use Ced=ce+cd.

With this simplification the required time for update, insert and delete cases
are pO(NCed), pqO(Nce), pO(Nce) and |X|pq respectively. p, q and |X| refer
to constant amount of work by the algorithm. As such combining the later three

21

Figure 9: (I) The tree Tx to be transformed to Ty . (II,III,IV,V) The transformed trees
T1, T2, T3, and T4 after edit operations Upd(59, d′), Ins(53, n, 19), Move(59, 53), and
Del(48) respectively and T4 = Ty .

cases we get the time proportional to O(Nce) which then can be combined with the
update case time and the total time required for the algorithm is O(NCed + Nce).
Further simplifying Ced and ce as being constant time the algorithm takes O(N)
in total.

We now show that S is a minimum cost edit script. Any edit script computed by
MCES must contain at least one of the followings:

• one update operation for each node xi ∈ Tx such that yj = exist(xi,−, U,−) and
valxi

=valyj
;

• one insert operation for each unmatched node in Ty;

• one delete operation for each unmatched node in Tx; and

22

• one move operation for each pair of matched nodes (xi, yj) ∈M such that i! =
j(considering leaf nodes).

This is straightforward that MCES generates one edit operation for each of the
above mentioned operations. Now, considering the nodes having direct children
stored in the FIFO queue to be moved using fewest sequence of moves. The Arran-
geSibling function that in turn uses the longest sibling sequence LSS conditions
ensure such a shortest sequence. Hence, S is a minimum cost edit script.

Theorem 2 The edit script S that is generated by the MCES algorithm transforms
Tx to an isomorphic tree of Ty.

Proof: We prove this by edit cases during one breadth first traversal of one
level of nodes xi ∈ l(Tx) and yj ∈ l(Ty) inductively. Recall one level of nodes are
stored in the respective FIFO queues. In the update case a first set of matching
pairs M = (xi, yj) are determined for all nodes xi with the yj that have same
EBOL.

The unmathced nodes of l(Tx) are deleted from Tx in the delete case and simi-
larly the unmatched nodes in l(Ty) are inserted in Tx in insert case. At this point,
the l(Tx) contains exactly the same nodes of l(Ty). The missarragned nodes get
arranged in the move case. As nodes are deleted, inserted and moved the respec-
tive sibling positions are ensured by the invoked UpdateMatch and FindSibling
functions. So, the algorithm transforms one level of Tx to isomorphic to a level of
Ty.

Inductively, for the further levels of comparison similar arguments apply. So
after the algorithm runs for all the levels of Tx and Ty, Tx is transformed into an
isomorphic tree of Ty.

23

