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Abstract

The last ten years has seen an explosion in uses of wireless technologies.
This, in turn, has driven a demand for more spectrum to support these uses.
A recent spectrum license auction by the Federal Communications Commis-
sion (FCC), which regulates all civilian uses of wireless technologies in the
United States, found that the existing spectrum utilization can be improved
through opportunistic access to the licensed bands without interfering with
the existing users. Notably, it is suggested that Dynamic Spectrum Access
Networks as well as cognitive radio networks, will provide high bandwidth
to mobile users via heterogeneous wireless architectures and dynamic spec-
trum access techniques. Cognitive radio networks, however, impose several
research challenges due to the broad range of available spectrum as well as
diverse Quality-of-Service (QoS) requirements of applications. These het-
erogeneities must be captured and handled dynamically as mobile terminals
roam between wireless architectures and along the available spectrum pool.

In this dissertation, we study spectrum pooling strategies based on central-
ized and distributed resource allocation techniques. Throughout this work,
we consider different system models in which cognitive users compete for
a chance to transmit simultaneously or orthogonally with the primary sys-
tem. On the basis of these models, we define the specific resource allocation
problem addressed in this work in view of maximizing network capacity and
at the same time, insuring a QoS for the primary system. In particular, we
analyze the resource allocation problem and offer insights into user selection
strategies and spectrum sensing in a cognitive radio network environment.

We initially investigate the problem of orthogonal communication scenar-
ios between the primary system and cognitive users. For the first time,
our study attempts to quantify the asymptotic (with respect to the band)
achievable gain of using orthogonal spectrum pooling communications in
terms of spectral efficiency. We then derive the total spectral efficiency as
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iv Abstract

well as the maximum number of possible pairwise communications of such
a spectrum pooling system.
Having looked at orthogonal communication scenario, we then extend the
cognitive protocol to allow the cognitive users to transmit simultaneously
with the primary. We proceed to propose algorithms for simultaneous
communication schemes to maximize the sum network capacity. These ap-
proaches allow cognitive radios to support and guarantee QoS when shar-
ing spectrum while limiting the interference to the incumbent user. In the
first approach, we employ a cognitive radio protocol where a virtual noise-
threshold is used as a proxy for the primary user to allow cognitive users to
profit from the primary user resources in an opportunistic manner, and at
the same time, to maintain a guarantee of service to the primary user when
cognitive communication is considered. The key idea is that the primary
user has a certain quality of service to fulfill. This gives the secondary user
a transmitting opportunity since the primary user will not, in any case, use
all its rate as long as it has its quality of service satisfied.
The previous approach relies on a virtual noise threshold assumption. The
approach is reminiscent of the interference temperature concept. However,
as a practical matter, the FCC abandoned the interference temperature ap-
proach due to the fact that it is not a workable concept and would result in
increased interference in the frequency bands where they were to be used.
Accordingly, to determine the spectrum band allocation that meets the QoS
requirements of different users, we propose, in the second approach, a dif-
ferent way to efficiently protect primary systems from secondary system
interference, based on outage probability. We particularly propose a joint
distributed algorithm for power allocation and user selection that tends to
decrease control overhead in large cognitive radio networks.
In the end, we look at the problem of sensing in spectrum pooling scenar-
ios. The proposed approach is based on an information-theoretic sub-space
analysis for the detection of vacant sub-bands in a large spectrum context.
We also investigate empirical techniques and compare results to UMTS real-
world measurements as well as to other simulated signals in order to analyze
the robustness of the proposed approach in presence of increased levels of
noise.
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Chapter 1

Introduction

1.1 Overview

New technologies in the area of adaptive wireless networks have the potential
to utilize the large amount of unused spectrum in an intelligent way while
not interfering with other incumbent devices in frequency bands already li-
censed for specific uses. These technologies fall in the category of adaptive,
spectrum agile and cognitive radios techniques, which are enabled by the
rapid and significant advancements in radio technologies. Observing that in
some locations or at some times of day, 70% of the allocated spectrum may
be sitting idle, the FCC has recently recommended [1] that significantly
greater spectral efficiency could be realized by deploying wireless devices
that can coexist with the licensed (primary) users, generating minimal in-
terference while taking advantage of the available resources. The current
approach for spectrum sharing is regulated so that wireless systems are as-
signed fixed spectrum allocations, operating frequencies and bandwidths,
with constraints on power emission that limits their range. Therefore, most
communication systems are designed in order to achieve the best possible
spectrum efficiency within the assigned bandwidth using sophisticated mod-
ulation, coding, multiple antennas and other techniques. The most advanced
systems are approaching Shannon’s channel capacity limit [2], so further in-
crease in capacity would require additional system bandwidth. The growing
interest in cognitive radio network (CRN) research from signal processing
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2 Chapter 1 Introduction

and communication communities has spurred an increasing number of pa-
pers in the recent years. There are a large number of proposals for all
communication layers, but the system infrastructure has not been clearly
defined. In addition, most of these research results rely on theoretical anal-
ysis or computer simulations. In order to influence and convince regulators,
these theoretical results should be demonstrated in realistic scenarios.

Thus, with the tremendous growth of wireless applications, many spec-
trum segments have been allocated following the spectrum property rights
model. These licensees (primary users) have the exclusive rights to exploit
this authorized spectrum for commercial or public use. However, recent
measurements have shown that some of these licensed spectrum resources
were not fully exploited depending on the locations and time [1, 3] (see Fig-
ure 1.1). As a result, the FCC has recently suggested [1] that significantly
greater spectral efficiency could be realized by considering cognitive radio
[4]. Such a scheme would define at least two classes of spectrum users. The
first would be primary user (PU) who already possess a license to use a
particular frequency. The second would be secondary user (SU) or cogni-
tive user consisting of ”unlicensed” user1. Primary users would always have
full access to the spectrum when they need it while secondary users could
use the spectrum when it would not harmfully interfere with the primary
user. Clearly, the introduction of intelligent radios poses many new tech-
nical challenges in protocol design, power allocation, interference metrics,
environment awareness, sensing, new distributed algorithms and quality of
service (QoS) guarantees [5]. In particular, one of the greatest challenges is
to build a radio capable of intelligently finding and handling the available
frequency band without any compromise on the QoS. Overcoming these is-
sues becomes very challenging due to the scarcity of radio resource (i.e.,
spectrum), the inherent transmission impairments of wireless links (multi-
path, fading, noise) and user mobility. Thus, there are many challenges
across all layers of a cognitive radio system design, from its application to
its implementation [6, 7].

1The term ”unlicensed” is a misnomer that has created serious confusion in the regu-
latory treatment of these devices. The term will, however, continue to appear throughout
this article because it has been so widely adopted in this use that attempting to substitute
a more appropriate term proves both cumbersome and confusing.
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Figure 1.1: Spectrum utilization.

1.2 Challenges

The rising demand in wireless communication for free available spectrum
goes along with increasing restrictions to spectrum utilization, i.e., Quality-
of-Service (QoS) requirements, as for instance in consumer electronics or
other multimedia applications. Efforts such as the DARPA neXt Genera-
tion (XG) communications program [8, 9] also known as Dynamic Spectrum
Access Networks (DSANs), the National Science Foundation Programmable
Wireless Networking (NSF-ProWiN) program [10], the agile spectrum pol-
icy initiatives conducted in the US, Canada and the European Union, and
the standardization work taking place under the IEEE auspices [6, 11] in-
dicate the level of activity in the field which has the potential to unleash
tremendous spectrum capacity for a plethora of new applications. These
approaches allow cognitive radios to support and guarantee QoS when shar-
ing spectrum without requiring direct information exchange in observing
past spectrum utilization. A recent spectrum license auction by the Federal
Communications Commission, which regulates all civilian uses of wireless
technologies in the United States, generated almost 14 billion dollars [12].
To combat this overcrowding, the FCCs most recent report on the wireless
industry found that all uses of licensed wireless services, from mobile tele-
phone use to fixed wireless data services, continued to grow at an astounding
rate. At the same time, a multi-billion dollar industry has grown in the use
of ”unlicensed” spectrum. In fact, the FCC has maintained precisely such a
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hierarchy, assuring licensees superior rights to users of unlicensed spectrum.
But recent recommendations by the FCCs Spectrum Task Force, as well as
proposals supported by technology companies and advocates of the commons
school of spectrum reform, have prompted the FCC to consider new alter-
natives [5]. Indeed, because users of unlicensed spectrum enjoy economies of
scale and do not pay for expensive spectrum licenses, unlicensed spectrum
can offer a less expensive and more readily deployable form of wireless ser-
vice than licensed spectrum albeit at a trade off for quality of service and
protection from interference. With this rise in intensive use, the FCC has
also faced pressure to open more spectrum for unlicensed use. At the heard
of these challenges, lies the ability to exploit the resource as efficiently as
possible. This is exactly the issue tackled in this work where the cogni-
tive radio behavior is studied and evaluated with a particular attention to
primary system QoS and control overhead reduction.

1.3 Scenario and Assumptions

Throughout this dissertation, we focus our study on non-real time data
transmission services since they are delay insensitive. Such an opportunistic
data transmission is facilitated by the time-varying user interference profile
owing to mobility, fading, and power control [13]. This work was motivated
by the fact that future personal communication systems are supposed to
support a variety of services, including real-time and non-real time services
(web browsing, e-mail, fax, file transfer, etc.). However, although we focus
on non-real time services, we emphasize that our analysis also holds for ac-
commodating real time data traffic.
Another technique that has been increasingly popular is Time Division Du-
plex (TDD) in which the same carrier is used for both links in different time
slots. One property of such systems is that, since the same frequency is
used, the channel characteristics are nearly the same in both links, provided
the channel does not change too rapidly.
Cooperative communication has been known recently as a way to overcome
the limitation of wireless systems. In some recent works, the cognitive ra-
dios are allowed to cooperate for sensing the spectrum, so that the hidden
terminal issues are addressed [14, 15]. In most of the approaches that can
be found in the literature, the need may exist for centralized knowledge
of all channel for all nodes in the network. To circumvent this problem,
the design of so-called distributed resource allocation techniques is crucial.
Distributed optimization refers to the ability for each user to manage its
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local resources (e.g. rate and power control, user scheduling) based only
on locally observable channel conditions such as the channel gain between
the access point and a chosen user, and possibly locally measured noise and
interference. In this thesis, we study the spectrum sharing methods where
multiple systems coexist and interfere with each other. Chapter 2 is devoted
to the discussion about the different scenarios in cognitive radio systems. We
will discuss cooperation in centralized networks and decentralized networks
separately. The centralized network is a network whose size is fixed by the
coverage area of the access point or base station. The decentralized net-
work has a size that can be scaled up more flexibly by allowing intermediate
nodes in the transmission path as a relay. Also, the de-centralized man-
ner of cognitive radio broadens the scope of its applications. Cooperative
decentralized systems are usually modeled as cooperative ad-hoc networks
[16]. With cooperation, systems can support more users because of the
improved spectrum-management strategy. An extensive analysis on coop-
eration in both networks is discussed in this dissertation. We also propose
new schemes to deal with the coexistence issue of the cognitive network
while limiting the interference to the incumbent user.

1.4 Contributions

In this dissertation, we attempt to define schemes for accessing to the radio
spectrum and posing several constraints in the management and in the shar-
ing strategies for such a precious resource. Within this setting, we consider
different system models in which cognitive users compete for a chance to
transmit simultaneously or orthogonally with the primary system. On the
basis of these models, we define the specific resource allocation problem and
offer insights into how to design user selection strategies in a cognitive radio
network environment. We initially investigate the problem of orthogonal
communication scenarios between the primary system and cognitive users.
Thus, within this setting, a device transmits over a certain time or frequency
band only when no other user does. Next, we extend the cognitive protocol
to allow cognitive users to transmit simultaneously with the primary user in
the same frequency band as long as the level of interference with the primary
user remains within an acceptable range. We first introduce the notion of
the virtual noise threshold which represents a proxy for the primary user to
allow cognitive user to profit from the primary user resources in an oppor-
tunistic manner, and at the same time, to maintain a guarantee of service
to the primary user when cognitive communication is considered. Then, we



6 Chapter 1 Introduction

investigate the problem of joint power allocation and user selection in a CRN
consisting of multiple secondary transmitters and receivers communicating
simultaneously in the presence of the primary system. We emphasize on the
capability of the proposed approach to allow cognitive devices to support
and guarantee QoS for the primary user, while sharing spectrum. In resolv-
ing the question set forth above, we should, as a general rule, favor primary
system QoS rather than attempting to enhance unlicensed spectrum access.
This is not, as we will argue in this dissertation, at the expense of exclusively
licensed services, since we must still ensure that these unlicensed services do
not interfere with existing licensed services.
In Chapter 2, we begin by presenting the system model and assumptions
used throughout most of this dissertation. We consider an ad-hoc channel
architecture in which the primary and the cognitive user wish to commu-
nicate, subject to mutual interference. We introduce the scope of resource
allocation, focusing on power allocation. We define the figure of merit used
throughout this work as the sum rate. We then formulate the optimization
problem for sum-rate maximization, for which we will investigate solutions
and algorithms in later chapters.

In Chapter 3, we consider a generic spectrum pooling scenario where
users communicate in an orthogonal manner enabling public access to the
new spectral ranges without sacrificing the transmission quality of the ac-
tual license owners. For the first time, our analysis attempts to quantify
the achievable gain of using spectrum pooling with respect to classical ra-
dio devices. The goal here is to obtain a characterization of the achievable
spectral efficiency as well as the maximum number of possible pairwise com-
munications within such a scenario.

The work in this chapter has been submitted for publication in:

M. Haddad, M. Debbah and A. Hayar ,“Spectral Efficiency for Cogni-
tive Radio Systems”, IEEE Global Telecommunications Conference (GLOBE-
COM 2007), Washington, D.C, USA, 2007.

M. Haddad, A. Hayar and M. Debbah,“Spectral Efficiency of Spectrum
Pooling Systems”, IET Special Issue on Cognitive Spectrum Access, Vol.
2, No. 6, pp. 733-741, July 2008.

In Chapter 4, we present two cognitive radio protocols which are believed
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to be potential promising candidates for future cognitive radio network de-
ployment and offer insights into how to design such scenario in a cognitive
radio network environments. The first part of the chapter is a description
of the cognitive radio protocol based on virtual noise threshold. We also
propose an algorithm to gather the primary user channel state information
(CSI) in both cooperative and non cooperative scenario. In the second part,
we characterize the fundamental performance of the proposed optimal power
allocation policy in terms of the achievable rate. The key idea within this
chapter is that, using a virtual noise-threshold as a proxy for the primary
user a cognitive radio can vary its transmit power in order to maximize the
sum capacity, while maintaining a guarantee of service to the primary user.

The work in this chapter has been submitted for publication in:

M. Haddad, M. Debbah and A. Hayar ,“Distributed Power Allocation
for Cognitive Radio”, International Symposium on Signal Processing and
its Applications (ISSPA 2007), Sharjah, United Arab Emirates, 2007.

M. Haddad, M. Debbah and A. Hayar ,“Optimal Power Allocation For
Cognitive Radio Based on a Virtual Noise Threshold”, The First
International Workshop on Cognitive Wireless Networks (CWNets 2007),
Vancouver, Canada, 2007.

Results in Chapter 4 showed that cognitive protocols can be extended
to allow the SU to transmit simultaneously with the PU in the same fre-
quency band. This is exactly the setup in Chapter 5, where the cognitive
radio behavior is generalized to allow secondary users to transmit simul-
taneously with the primary system as long as the level of interference to
primary users remains within an acceptable range by means of outage prob-
ability. Specifically, it is proposed in this chapter to combine cognitive radio
with multi-user diversity technology to achieve strategic spectrum sharing
and self-organizing communications. Our analysis treats both uplink and
downlink scenarios. We also address the problem of user selection strategy
in the context of CRN where both centralized and distributed solutions are
presented.

The work in this chapter has been submitted for publication in:

M. Haddad, A. Hayar, G. E. Øien and S. G. Kiani,“Uplink Distributed
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Binary Power Allocation for Cognitive Radio Networks”, Crown-
Com 2008, Singapore, May 2008.

M. Haddad, A. Hayar and G. E. Øien,“Downlink Distributed Binary
Power Allocation for Cognitive Radio Networks”, PIMRC 2008,
Cannes, France, September 2008.

B. Zayen, M. Haddad, A. Hayar and G. E. Øien “Binary Power Allo-
cation for Cognitive Radio Networks with Centralized and Dis-
tributed User Selection Strategies”, Phycom Journal, ELSEVIER vol.
1, Issue 3, 2008.



Chapter 2

Scenarios and System
Models

In this chapter, we begin by presenting the system model and assumptions
used throughout most of this dissertation. We consider both cooperative and
non cooperative architecture in which the primary and the cognitive user
wish to communicate, subject to mutual interference. However, we draw
the reader’s attention that some of the results presented in later chapters
also carry forward to the distributed case. Due to users fully sharing the
same spectral resource, co-channel interference is experienced from concur-
rent transmissions. The advantage of such models is that it is independent
of the underlying radio interface and can be used to evaluate the system per-
formance for a number of radio access mechanisms, e.g. TDMA, OFDMA,
orthogonal-CDMA, etc. We then formulate the power allocation problem
for sum-rate maximization in a cognitive radio network, for which we will
investigate solutions and algorithms in later chapters.

9
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2.1 Performance metric

The end goal of this dissertation is to propose practical and distributed
schemes for CRN resource allocation with the view of (1) improving the
spectral efficiency, and (2) maintain a QoS guarantee for the primary sys-
tem which will thus be our main figure of merit. In order to characterize
the achievable performance limit of such systems, the system performance
criterion is directly dependent on the application requirements. Therefore,
in order to differentiate real-time service from non real-time service, three
capacities measures can be found in the literature. A comprehensive review
of these concepts can be found in [17].
Usually, when the coherence time Tc is smaller than the codeword length
(fast fading), the relevant performance metric is the ergodic capacity, namely
[18]:

Cerg = E
{

log2

(
1 + SNR |h|2

)}
(b/s/Hz) (2.1)

The ergodic capacity was developed for non-real time applications. It deter-
mines the maximum achievable rate over all fading states without a delay
constraint. The corresponding optimum power allocation is the well-known
water-filling allocation [19]. However, for real-time applications in a slow
fading environment, substantial delay can occur when averaging over the
fading states and the decoding error probability can not be made arbitrarily
small. To address this issue, the notion of information outage probability
defined as the probability that the instantaneous mutual information of the
channel is below the transmitted code rate was introduced in [20]. Accord-
ingly, the outage probability is:

Pout(R) = P {I(x;y) ≤ R} (2.2)

where I(x;y) is the mutual information of the channel between the trans-
mitted vector x and the received vector y and R is the target data rate in
(bits/s/Hz). Additional definitions related to outage probability are those
of:

• Zero outage capacity [21]: also called delay-limited capacity. It repre-
sents the maximum data-rate R for which the minimum outage prob-
ability is zero.

• Outage capacity [22]: is the maximum target rate that can be achieved
over the channel with an outage probability less than ε.
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Note that we should in fact use [bit/s/Hz], since the capacity is normalized
with respect to the bandwidth; however, due to the bandwidth normaliza-
tion, we can use the term ”capacity” or ”rate” with unit [bit/s] throughout
the dissertation without causing any confusion. Accordingly, capacity ex-
pressions are given in [bits/s/Hz], where normalization to the respective
bandwidth W is performed if required in the rest of the dissertation. The
sum here is done over the stationary instantaneous distribution of the fading
channel on each user l.

In what follows, we present the two cognitive radio protocols we have con-
sidered in the first part of this dissertation. Specifically, we present two
schemes employing varying degrees of cooperation : (1) cooperative, where
the cognitive user to get the primary user’s channel state information (CSI)
communicate with the primary base station (BS) and (2) non-cooperative,
where the cognitive system is assumed to communicate with its own BS
independently from the primary system.

2.2 The cooperative scenario

Cooperative communication has been known recently as a way to overcome
the limitation of wireless systems. In some recent works, the cognitive ra-
dios are allowed to cooperate for sensing the spectrum, so that the hidden
terminal issues are addressed [14].

2.2.1 The single operator scenario

Let us first consider a single operator scenario where the primary and the
cognitive users attempt to communicate with a common base station, sub-
ject to mutual interference (see Fig. 2.1). A particularly noteworthy target
in this context, where the primary user is supposed to be oblivious to the
presence of potential secondary users, is how the cognitive user would gather
the instantaneous CSI of the primary user without any cooperation with the
primary system.
To do so and because there are many channel responses that are propor-
tional to the number of cognitive users in a multi users system, the feedback
overhead may be too large and thus reverse-link channel capacity may be
greatly wasted. To reduce the feedback information in such cases, we pro-
pose a new communication scenario wherein no feedback is assumed.
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Figure 2.1: The single cognitive radio channel.

2.2.2 The heterogeneous network scenario

As mentioned before, there exist temporally unused spectrum holes in the
licensed spectrum band. Hence, CRN networks can be deployed to exploit
these spectrum holes through cognitive communication techniques. As a
general framework, we propose in Figure 2.2 a heterogeneous architecture
where the cognitive network coexists with the primary network at the same
location and on the same spectrum band. Although the main purpose of
the CRN is to determine the best available spectrum, CRN functions in the
licensed band are mainly aimed at the detection of the presence of primary
users. The channel capacity of the spectrum holes depends on the inter-
ference at the nearby primary users. Thus, the interference avoidance with
primary users is the most important issue in this architecture. Furthermore,
if primary users appear in the spectrum band occupied by cognitive users,
users should vacate the current spectrum band and move to the new avail-
able spectrum immediately, called spectrum handoff. In particular in our
work, we consider a system where the primary and the cognitive users are
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supposed to communicate to different receivers, subject to mutual interfer-
ence. Such an accurate modeling of the cognitive radio channel is a key
to understand the actual benefits brought by cognitive radio in the later
chapters. Though the system model presented herein is related to a sin-
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Figure 2.2: Dynamic spectrum access in cognitive radio network.

gle operator model, notations and analysis will carry to the heterogeneous
model case as well.

2.2.3 System Model

Consider the baseband discrete-frequency model at a receiver l with N sub-
bands

yi
l = hi

l

√
pi

l(h
i
l)s

i
l + ni

l, for i = 1, ..., N (2.3)

where:

• the sub-band index i lies from 1 to N ,

• the user index l is taken equal to 1 for the primary user and lies from
2 to L for secondary users,

• hi
l: is the block fading process of user l on the sub-band i,



14 Chapter 2 Scenarios and System Models

• si
l: is the symbol transmitted by user l on the sub-band i,

• pi
l(h

i
l): is the power allocation of user l on the sub-band i,

• ni
l: is the additive Gaussian noise at the ith sub-band.

We further assume that the channel hl stays constant over each block fading
length (i.e. coherent communication). The assumption of coherent reception
is reasonable if the fading is slow in the sense that the receiver is able to track
the channel variations. We statistically model the channel gains hl to be i.i.d
distributed over the L Rayleigh fading coefficients and E

{
|hl|2

}
= 1 for

l = 1, ..., L. The additive Gaussian noise nl at the receiver is i.i.d circularly
symmetric and nl ∼ CN(0, N0)) for l = 1, ..., L.

2.2.4 Problem formulation

We propose to study the instantaneous capacity per sub-band in bits/s/Hz,
also called spectral efficiency, namely [23]:

Cl =
1
N

N∑

i=1

log2

(
1 +

pi
l | hi

l |2
N0

)
; l = 1, ..., L (2.4)

The goal here is to maximize the sum capacity over the system expressed
as:

Csum,N =
L∑

l=1

Cl,N (2.5)

where L represents the number of users transmitting.
Let us now assume the baseband discrete-time model within a coherence

time period T when each user l for l = 2, ..., L has N sub-bands or sub-
channels:

yi
l(k) = ci

l−1,l(k)
√

pi
l−1(h

i
l−1)s

i
l−1(k) + ni

l−1(k), (2.6)

where ci
l−1,l(k) is the block fading process from user l−1 to user l on the ith

sub-band, at time k. We further assume that 0 ≤ k ¿ βT and β < 1, i.e.
the coherence time is sufficiently large so that the channel stays constant for
samples and jumps to a new independent value (block-fading model).
In chapter 3, the cognitive protocol behavior is assumed to allow only one
user to simultaneously transmit over the same sub-band by virtue of orthog-
onal power allocation. The received signal of user l can therefore be written
as:
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yi
l(k) =





ci
l−1,l(k)

√
pi

l−1s
i
l−1(k)

︸ ︷︷ ︸
+ni

l−1(k)︸ ︷︷ ︸, if pi
l−1 6= 0

signal noise
ni

l−1(k), otherwise

(2.7)

2.3 The non-cooperative scenario

In a realistic network, centralized system coordination is hard to implement,
especially in fast fading environments and in particular if there is no fixed
infrastructure for SUs, i.e., no back-haul network over which overhead can be
transmitted between users. In fact, centralized channel state information for
a dense network involves immense signaling overhead and will not allow the
extraction of diversity gains in fast-fading channel components. To alleviate
this problem, we present a CRN with secondary users attempt to communi-
cate independently from the primary system. In particular, we expose the
core problem of resource allocation in the multiuser context addressed in
chapter 5.

2.3.1 Joint Distributed Binary User Resource Allocation

Consider a CRN that consists of a primary user, a base station, and M
pairs of secondary users randomly distributed over the system (see Fig.
2.3). The channel gains are i.i.d random variable. Our study treats both
downlink and uplink communication systems. In the coverage area of the
primary system, there is an interference boundary within which no SUs can
communicate in an ad-hoc manner. Thus, as can be seen in Figure 2.3,
for the impairment experienced by the primary system to be as small as
possible, a SU must be able to detect very reliably whether it is far enough
away from a primary base station, i.e., in the area of possible cognitive
radio operation. A peak transmit power constraint pmax is imposed at each
SU and to simplify exposition, we shall assume that it is identical for all
transmitters.

2.3.2 System Model

We consider a wireless CRN with a collection of users randomly distributed
over the system. Users can be both transmitters and receivers. By virtue of
a scheduling protocol, N PUs and M pairs of secondary users are simultane-
ously selected from these users to communicate at a given time instant, while
others remain silent. The channel gains are assumed i.i.d random variable.
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Each PU user is allocated a unique resource slot from the N sub-carriers so
that he transmits in an orthogonal manner with respect to other PUs within
his coverage area, i.e. no interference between different PUs like in the Or-
thogonal Frequency-Division Multiple Access-based (OFDMA-based). In
order to facilitate the problem formulation of the joint resource allocation
problem, we state the following notations:

• the index of PUs (or equivalently the number of sub-bands) i lies
between 1 and N ,

• the index of SUs j lies between 1 and M ,

• hpu,n denotes the channel gain from the PU indexed by pu to a desired
SU n,

• hpu,pu denotes the channel gain between the base station (BS) and the
PU,

• hj,n denotes the channel gain from SU j to a desired SU n,

• the data destined from the primary system is transmitted with power
ppu.

• the data destined from SU j is transmitted with power pj .
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Figure 2.3: The Cognitive Radio Network.



2.3 The non-cooperative scenario 17

In the coverage area of the primary system, there is an interference boundary
within which no SUs can communicate in an ad-hoc manner. Thus, as
can be seen in Figure 2.3, for the impairment experienced by the primary
system to be as small as possible, a SU must be able to detect very reliably
whether it is far enough away from a primary base station, i.e., in the area
of possible cognitive radio operation. We further assume that only one
PU is allowed to transmit during a resource slot. Nevertheless, with the
same goal of sum secondary capacity maximization, we emphasize that the
proposed study is still valid for the multi-PU case. The algorithm is simply
run independently over all the PUs in parallel since we suppose that PUs
are assumed to operate in an orthogonal manner with respect to other PUs
(OFDMA-based system). For OFDMA, the proposed algorithm is simply
run independently over the N sub-carriers in parallel. With the same goal
of cognitive capacity maximization, the proposed algorithm can be easily
extended to multi-carrier systems.

2.3.3 Problem formulation

Secondary users offer the opportunity to improve the system throughput over
the system by detecting the PU activity and adapting their transmissions
accordingly while avoiding the interference to the PU by satisfying the QoS
constraint on outage. The motivation behind the proposed technique is
that, via opportunistically adapting their transmit power with the guide of
the proposed strategy, SUs can maximize the achievable sum rate under the
constraint of maintaining the outage probability of the PU not degraded.
The expression of the ith PU (on the ith sub-band) instantaneous capacity
is

Ci
pu = log2

(
1 +

ppu | hi
pu,pu |2

M∑

j=1

pj | hj,pu |2 +σ2

)
; for i = 1, ..., N (2.8)

where σ2 is the ambient noise variance. Although this is not a restriction
of the proposed analysis and for the sake of simplicity, we assume that only
one PU is allowed to transmit within the interference boundary. The multi-
PU case will be discussed afterwards in detail. Subsequently, unless stated
otherwise, we will find it convenient to drop the primary user index i. On
the other hand, by making SUs access the primary system spectrum, the jth

SU experiences interference from the PU and all neighboring co-channel SU
links that transmit on the same band. Accordingly, the jth SU instantaneous
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capacity is given by:

Cj = log2 (1 + SINRj) ; for j = 1, ..., M (2.9)

where

SINRj =
pj | hj,j |2

M∑

k=1
k 6=j

pj | hk,j |2 +ppu | hbs,j |2 +σ2

(2.10)

SUs need to recognize their communication environment and adapt the pa-
rameters of their communication scheme in order to maximize the per-user
cognitive capacity, expressed as

Csum =
1
M̃

M̃∑

j=1

Cj , (2.11)

while minimizing the interference to the primary users, in a distributed fash-
ion. The sum here is made over the M̃ SUs allowed to transmit. Moreover,
we assume that the coherence time is sufficiently large so that the channel
stays constant over each scheduling period length. We also assume that SUs
know the channel state information (CSI) of their own links, but have no
information on the channel conditions of other SUs. No interference can-
celation capability is considered. Power control is used for SUs both in an
effort to preserve power and to limit interference and fading effects.

2.3.4 Non-cooperative Optimization Problem

Our goal within this work is thus to determine, under the assumption that
the PU is oblivious to the presence of the cognitive users, what would be the
cognitive system capacity (which can also be viewed as the total increase in
system capacity due to the SUs’ activity) and, at the same time, the max-
imum number of cognitive communication links allowed in such a system.
We present a distributed algorithm for power allocation in the sense that it
requires a SU to decide distributively to either transmit data or stay silent
over the channel coherence time depending on a specified threshold. The
optimization problem can therefore be expressed as follows:

Find {p1∗, ..., pM∗} = arg max
p1,...,pM

Csum (2.12)
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subject to:




pj ∈ {0, pmax}, for j = 1, ...,M

pi
out = Prob

{
Ci

pu ≤ Ri
pu | Ri

pu, q
} ≤ q, for i = 1, ..., N

where Ri
pu is the ith PU transmitted data rate. By writing the outage

probability as:

pi
out = Prob

{
Ci

pu ≤ Ri
pu

} ≤ q, ∀ i = 1, ..., N (2.13)

the following holds: Ci
pu ≤ Ri

pu ⇒ Ci
pu ≤ max

i
Ri

pu, ∀ i.

Within this setting, if Prob

{
Ci

pu ≤ max
i

Ri
pu

}
≤ q,∀ i, we have also guaran-

teed that pi
out ≤ q,∀ i. Following this trend, the outage probability condition

in (2.13) can be resumed to the worst case primary system constraint. As a
consequence of this assumption, we will find it convenient to drop the sub-
band index i in chapter 5 and consider only the worst case. Alternatively,
the information about the outage failure can be carried out by a band man-
ager that mediates between the primary and secondary users [24], or can
be directly fed back from the PU to the secondarys transmitter through
collaboration and exchange of the CSI between the primary and secondary
users as proposed in [25].
In chapter 5, we will focus on only one sub-band. As a consequence of
this assumption, we will find it convenient to drop the sub-band index i in
the rest of our derivation in chapter 5. Nevertheless, with the same goal
of sum secondary capacity maximization, the proposed algorithm can be
easily extended to multi-band systems. The central theme of this disser-
tation thus arises: How to deal with the coexistence issue of the cognitive
network while limiting the interference to the incumbent user, within rea-
sonable complexity and signaling constraints? and how could secondary
users exploit the primary user spectrum without interfering with During
the course of this thesis, we will present practical scheme and constructive
results which demonstrate the value of CRN resource allocation and provide
insight into solving this problem. Moreover, we will also focus on distributed
algorithms requiring only local information, which would be the first step
to making some of these strategies realizable in practice.

In the first instance, we try to gain an insight into the behavior of ex-
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pected SUs’ interference in large wireless networks. Specifically, it is pro-
posed to combine cognitive radio with multi-user diversity technology to
achieve strategic spectrum sharing and self-organizing communications. The
motivation behind such a strategy is to derive a simple algorithm where a
secondary user can decide to either transmit data or stay silent over the
channel coherence time depending on a specified threshold, without affect-
ing the primary users’ QoS.



Chapter 3

Spectral Efficiency of
Orthogonal Spectrum
Pooling Systems

In this chapter, we investigate the idea of using spectrum pooling to reuse
locally unused spectrum to increase the total system capacity. We consider a
multiband/wideband system in which the primary and cognitive users wish to
communicate to different receivers, subject to mutual interference. We as-
sume that each user knows only his channel and the unused spectrum through
adequate sensing. The basic idea under the proposed scheme is based on or-
thogonal transmissions in a spectrum pooling scenario. The idea is quite
simple: a cognitive radio will listen to the channel and, if sensed idle, will
transmit during the voids. It turns out that, although its simplicity, the pro-
posed scheme showed very interesting features with respect to the spectral
efficiency and the maximum number of possible pairwise cognitive commu-
nications. We impose the constraint that users successively transmit over
available bands through selfish water filling. Notice that, although a water
filling power allocation strategy is adopted in this analysis, we emphasize that
this is not a restriction of the proposed protocol. For the first time, our study
has quantified the asymptotic (with respect to the band) achievable gain of
using spectrum pooling in terms of spectral efficiency compared to classical
radio systems. We then derive the total spectral efficiency as well as the

21
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maximum number of possible pairwise communications of such a spectrum
pooling system.

3.1 Introduction

The basic idea within the chapter is based on spectrum pooling. The notion
of spectrum pooling was first mentioned in [26]. It basically represents the
idea of merging spectral ranges from different spectrum owners (military,
trunked radio, etc.) into a common pool. It also reflects the need for a
completely new way of spectrum allocation as proposed in [27]. The goal of
spectrum pooling is to enhance spectral efficiency by overlaying a new mo-
bile radio system on an existing one without requiring any changes to the
actual licensed system. Motivated by the desire for an effective and practical
scheme, our study treats the problem of spectrum pooling from sensing to
achievable performance. We consider an asynchronous TDD communication
scenario in which hierarchical strategy is adopted. Typically, one primary
user and multiple cognitive users detecting unoccupied spectrum bands and
adapting the transmission to those bands while avoiding the interference to
the primary user. However, contrary to the work addressed in next chap-
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Figure 3.1: The cognitive radio network for spectrum pooling.

ter, in this contribution, we impose as a first step that only one user can
simultaneously transmit over the same sub-band using successive water fill-
ing (see Figure 3.1). Especially OFDM based WLANs like IEEE802.11a
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and HIPERLAN/2 are suitable for an overlay system like spectrum pooling
as they allow a very flexible frequency management on a carrier-by-carrier
basis. We examine the total spectral efficiency of the spectrum pooling sys-
tem and show that the overall system spectral efficiency can be considerably
enhanced by considering cognitive communications with respect to the tra-
ditional system (without cognition). In particular, it is of major interest,
in this context, to quantify the spectral efficiency gain in order to show
the interest behind using spectrum pooling terminals with respect to clas-
sical systems (without cognition). In fact, although spectrum polling have
spurred great interest and excitement, many of the fundamental theoretical
questions on the limits of such technologies remain unanswered. The merits
of our approach lie in the simplicity of the proposed scheme and, at the same
time, its efficiency. Results showed very interesting performance in terms
of the number of cognitive users allowed to transmit as well as the system
spectral efficiency gain we get. Such an accurate and simple system mod-
eling presents a key to understand the actual benefits brought by spectrum
pooling technology.

The rest of the chapter is organized as follows: In Section 3.3, we describe
the spectrum pooling protocol. In Section 3.4, we address the problem of
sensing. Section 3.5 details the spectral efficiency analysis adopted through-
out this chapter when the number of sub-bands is limited. In Section 3.6, we
investigate the asymptotic performance of such a system in terms of spectral
efficiency. Performance evaluation is provided in Section 3.7 and Section 3.7
concludes the chapter.

3.2 The channel model

The baseband discrete-frequency model at the receiver Rl (see Figure 3.2)
is:

yi
Rl

= hi
l

√
pi

l(h
i
l)s

i
l + ni

l, for i = 1, ..., N and l = 1, ..., L (3.1)

where:

• the sub-band index i lies from 1 to N ,

• the user index l is taken equal to 1 for the primary user and lies from
2 to L for secondary users,

• hi
l: is the block fading process of user l on the sub-band i,
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Figure 3.2: The cognitive radio channel in a wideband/multiband context
with N sub-bands.

• si
l: is the BPSK signal transmitted by user l on the sub-band i ,

• pi
l(h

i
l): is the power control1 of user l on the sub-band i,

• ni
l: is the white additive Gaussian noise at the ith sub-band.

As already considered in the last chapter, we further assume that the channel
hl stays constant over each block fading length (i.e. coherent communica-
tion). The assumption of coherent reception is reasonable if the fading is
slow in the sense that the receiver is able to track the channel variations.
We statistically model the channel gains hl to be i.i.d distributed over the
L Rayleigh fading coefficients and E

{
|hl|2

}
= 1 for l = 1, ..., L. The ad-

ditive Gaussian noise nl at the receiver is i.i.d circularly symmetric and
nl ∼ CN(0, N0)) for l = 1, ..., L.

1Throughout the rest of the chapter, we will find it convenient to denote by pi
l the

power allocation policy of user l on sub-band i, rather than pi
l(h

i
l).
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3.3 The Spectrum pooling Protocol

We consider an asynchronous TDD communication scenario in which one
primary system and L− 1 cognitive users wish to communicate to different
receivers, subject to mutual interference. The basic idea under the proposed
protocol is quite simple: the cognitive users listen to the wireless channel
and determine, either in time or frequency, which part of the spectrum is
unused. Then, they successively adapt their signal to fill detected voids in
the spectrum domain. Each transmitter Tl for l = 1, ..., L estimates the
pilot sequence of the receiver Rl in order to determine the channel gain hl

(see links (1) and (3) in Fig. 3.2). Notice here that since we are in a TDD
mode, when we estimate the channel in one way, we can also know it the
other way. Thus, each user l is assumed to know only his own channel gain
hl and the statistical properties of the other links (probability distribution).
We further assume that the channel does not change from the instant of
estimation to the instant of transmission.
A particularly noteworthy target in this context, when we employ a ”listen-
before-talk” strategy, is to reliably detect the sub-bands that are currently
accessed by a specified user in order to be spared from the coming users
transmission. This knowledge can be obtained from two manners: In a cen-
tralized mode where the proposed system would require information from
a third party (i.e. central database maintained by regulator or another au-
thorized entity) to schedule users coming. Alternatively, an extra signalling
channel is dedicated to perform the collision detection so that cognitive users
will not transmit at the same moment. Specifically, the primary user comes
first in the system and estimates his channel gain. The second user comes
in the system randomly, for instance in a Poisson process manner, and es-
timates his channel link. Such an assumption could be further justified by
the fact that in an asynchronous context, the probability that two users
decide to transmit at the same moment is negligible as the number of users
is limited. Thus, within this setting, the primary user is assumed not to
be aware of the cognitive users. It communicates with his receiver in an
ad-hoc manner while a set of spectrum pooling transmitters that are able
to reliably sense the spectral environment over a wide bandwidth, decide
to communicate with theirs respective receivers only if the communication
does not interfere with the primary user. Accordingly, under our oppor-
tunistic approach, a device transmits over a certain sub-band only when no
other user does. Such an assumption is motivated by the fact that when Rl

sends his pilot sequence to Tl, it will not interfere with Tl−1 for l = 2, ..., L.
The sensing operation will be discussed in the next section. Throughout
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the rest of the chapter, we will adopt this framework to analyze the achiev-
able performance of such a system in terms of spectral efficiency as well
as the maximum number of possible pairwise communication within this
scenario. Such an accurate and simple system modeling presents a key to
understand the actual benefits brought by spectrum pooling technology. In
fact, although cognitive radios have spurred great interest and excitement
in industry, many of the fundamental theoretical questions on the limits of
such technologies remain unanswered.
Moreover, in order to characterize the achievable performance limit of such
systems, three capacity measures can be found in the literature. A com-
prehensive review of these concepts can be found in [17]. The relevant
performance metric of the proposed protocol is the instantaneous capacity
per sub-band in bits/s/Hz, also called spectral efficiency, namely [23]:

Cl =
1
N

N∑

i=1

log2

(
1 +

pi
l | hi

l |2
N0

)
; l = 1, ..., L (3.2)

The sum here is done over the stationary instantaneous distribution of the
fading channel on each user l. The instantaneous capacity determines the
maximum achievable rate over all fading states without a delay constraint.
In this work, we allocate transmit powers for each user (over a total power
budget constraint) in order to maximize its transmission rate. In fact, when
channel state information is made available at the transmitters, users know
their own channel gains and thus they will adapt their transmission strategy
relative to this knowledge. The corresponding optimum power allocation is
the well-known water filling allocation [2] expressed by2:

pi
l =

(
1
γ0
− N0∣∣hi

l

∣∣2
)+

(3.3)

where γ0 is the Lagrange’s multiplier satisfying the average power constraint
per sub-band:

1
N

N∑

i=1

pi
l = P (3.4)

Without loss of generality, throughout the rest of the chapter, we take P = 1.
The water-filling strategy affords a significant performance gain over the
constant-power strategy at low SNR. The intuition is that when there is

2(x)+ = max(0, x).
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Figure 3.3: One primary user and two cognitive users in a spectrum pooling
system with 8 sub-bands.

little transmit power, it is much more effective to expend it on the strongest
sub-channel of the system rather than spread the power evenly across all
modes. On the contrary, in high SNR regime the transmitter tends to spread
its power among all its available sub-bands. Thus, in the first case the op-
portunistic link has plenty of free dimensions, while in the second one, it is
effectively limited. This power allocation behavior has been also reported in
[28] and [29]. Notice that, although a water filling power allocation strategy
is adopted in this analysis, we emphasize that this is not a restriction of the
proposed protocol. In fact, as mentioned before, one important task when
implementing spectrum pooling is that cognitive users operate on the idle
sub-bands of the licensed system delivering a binary channel assignment as
shown in Fig. 3.3. Hence, our study is valid for any binary power control
without resorting to the restriction assumption of successive water filling.
For clarity sake, let us take the following example with N = 8 sub-bands. As
shown in Figure 3.3, the primary user is always prioritized above cognitive
users by enjoying the entire band while cognitive users adapt their signal
to fill detected voids with respect to their order of priority. As a first step,
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the primary user maximizes its rate according to its channel process. As
mentioned before in expression (3.3), only user with a channel gain hi above
a certain threshold equal to γ0.N0 transmits on the sub-band i (Ψ2). User
2, comes in the system randomly, senses the spectrum and decides to trans-
mit only on sub-bands sensed idle. Thus, following its fading gains, user 2
adapts its signal to fill these voids in the spectrum domain in a complemen-
tary fashion (Ψ3). Similarly, user 3 will sense the remaining sub-bands from
user 1 and user 2 and decides to transmit during the remaining voids (Ψ4).

3.4 Sensing issue

So far, we have focused on pairwise communications between transmitters
and receivers (see links 1 and 3 in Fig. 3.2). Let us now investigate the
inter-transmitter communications (link 2 in Fig. 3.2) in order to analyze
the problem of sensing. To this effect, let us assume the baseband discrete-
time model within a coherence time period T when each user l for l = 2, ..., L
has N sub-bands as described in Figure 3.2:

yi
l(k) = ci

l−1,l(k)
√

pi
l−1(h

i
l−1)s

i
l−1(k) + ni

l−1(k), (3.5)

where ci
l−1,l(k) is the block fading process from user l−1 to user l on the ith

sub-band, at time k. We further assume that 0 ≤ k ¿ βT and β < 1, i.e.
the coherence time is sufficiently large so that the channel stays constant for
samples and jumps to a new independent value (block-fading model).
The proposed sensing techniques hinge on the assumption that all devices
operate under a unique standard so that they know the pilot sequence used
by the other users. As stated above, in this work, the spectrum pooling
behavior is assumed to allow only one user to simultaneously transmit over
the same sub-band. The received signal at user l can therefore be written
as (see link 2 in Fig. 3.2):

yi
l(k) =





ci
l−1,l(k)

√
pi

l−1s
i
l−1(k)

︸ ︷︷ ︸
+ni

l−1(k)︸ ︷︷ ︸, if pi
l−1 6= 0

signal noise
ni

l−1(k), otherwise

(3.6)

By assuming that βT is an integer equal to M and by making βT sufficiently
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large, the mean received power over the detection duration at receiver Rl is:

lim
M→∞

1
M

M∑

k=1

∣∣yi
l(k)

∣∣2 =





∣∣∣ci
l−1,l

∣∣∣
2
pi

l−1 + N0, if pi
l−1 6= 0

N0, otherwise
(3.7)

Accordingly, in order to determine which part of the spectrum is unused,
cognitive user has just to detect the received power and compare it to the
noise power N0. However, in addition to the fact that it supposes that
M →∞ (i.e. infinite time coherence period), the proposed method would be
not efficient at low SNR-regime (see Figure 3.4). In fact, the quality of such
a technique is strongly degraded with the reduction in the precision of the
noise threshold [30][31]. The principal difficulty of this detection is to obtain
a good estimation of the noise variance. In the setting of spectrum pooling
mechanism, we would need a channel sensing method that continuously
senses the channel. Thus, the channel sensing should be performed with
a very high probability of correct detection (to assure very low probability
of interference with the primary system). Weiss et al. proposed in [32]
a distributed spectrum pooling protocol where all the nodes participate in
channel sensing so that all cognitive users perform detection. Moreover,
formulas for the calculation of the detection and false alarm probability in
a spectrum pooling system have been derived in [33] for the general case of
an arbitrary primary systems covariance matrix.

3.5 Spectral efficiency analysis

Let us first define the set of the number of sub-bands sensed occupied by
user l by:

Ψl =
{
i ∈ {1, ..., N}; pi

l−1 6= 0
}

(3.8)

where Ψl obeys to the following properties:




Ψ1 = ø,

L+1⋃

l=1

Ψl ⊆ {1, ..., N},

L+1⋂

l=1

Ψl = ø

(3.9)
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Figure 3.4: BER v.s number of symbols (M) in dB for BPSK in AWGN
using power detection where SNR are in dB.
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The spectral efficiency per sub-band of user l, given a number of sub-bands
N , is:

Cl,N =
1

card(Ωl)

∑

i∈Ωl

log2

(
1 +

pi
l | hi

l |2
N0

)
bits/s/Hz (3.10)

where Ωl represents the set of the remaining idle sub-bands sensed by user
l, namely:

Ωl =

{
i ∈ {1, ..., N}

⋂ ⋃

k=1...l

Ψk

}
(3.11)

For a given number of sub-bands N , the optimal power allocation which
maximizes the transmission rate of user l is the solution to the following
optimization problem:

max
p1

l ,...,p
card(Ωl)

l

Cl,N , for l = 1, ..., L

subject to the average power constraint per sub-band:




1
card(Ωl)

∑

i∈Ωl

pi
l = 1,

pi
l ≥ 0,

(3.12)

The resulting optimal power control policy is given by (3.3). Notice that
the maximum number of users L allowed by such a system must satisfy the
condition that card(ΩL) 6= 0.
Let us now derive the spectral efficiency of such a system. The spectral
efficiency per band of user l is given by:

Φl,N =
1
N
·
∑

i∈Ωl

log2

(
1 +

pi
l | hi

l |2
N0

)
(3.13)

By multiplying and dividing (3.13) by card(Ωl), we obtain3:

Φl,N =
card(Ωl)

N
.Cl,N , for l = 1, ..., L (3.14)

3Notice that since the primary user enjoys the entire bandwidth, we have: card(Ω1) =
N .
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As expected, when l = 1, the spectral efficiency without cognition is equal
to the primary user spectral efficiency C1,N . We define ∆l,N as the band
factor gain of user l for N sub-bands, namely:

∆l,N , card(Ωl)
N

, for l = 1, ..., L (3.15)

In other words, the band factor gain represents the fraction of the band
unoccupied at user l. The spectral efficiency per band of user l can therefore
be expressed by:

Φl,N = ∆l,N · Cl,N , for l = 1, ..., L (3.16)

and the sum spectral efficiency of a system with N sub-bands per user is
given by:

Φsum,N =
L∑

l=1

Φl,N (3.17)

3.6 Asymptotic Performance

Let us now study the achievable performance when devices operate in a
wide-band context (i.e. N → ∞). The spectral efficiency of user l for a
large number of sub-bands in (3.10) becomes:

Cl,∞ =
∫ ∞

0
log2

(
1 +

pl(t) · t
N0

)
· f(t)dt, for l = 1, ..., L (3.18)

where pl is subject to the average constraint:
∫ ∞

0
pl(t) · f(t)dt = 1 (3.19)

Although this is not a restriction of our approach, from now on we assume
that the channel gains are i.i.d Rayleigh distributed. However, all theoretical
results as well as the methodology adopted in this chapter can be translated
immediately into results for any other probability distribution function of
the channel model. In this way, the term f(t) in (7.16) will be replaced by
the appropriate probability distribution function. The spectral efficiency of
user l for i.i.d Rayleigh fading is given by:

Cl,∞ =
∫ ∞

0
log2

(
1 +

pl(t) · t
N0

)
· e−tdt, for l = 1, ..., L (3.20)
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where pl is subject to the average constraint:
∫ ∞

0
pl(t) · e−tdt = 1 (3.21)

and γ0 is the Lagrange’s multiplier satisfying4:

1
γ0

∫ +∞

γ0·N0

e−tdt−N0 · Ei (γ0 ·N0) = 1 (3.22)

Numerical root finding is needed to determine different values of γ0. Our
numerical results, in section , show that γ0 increases as N0 decreases, and γ0

always lies in the interval [0,1]. On the other hand, an asymptotic expansion
of (7.17) in [34] shows that at very high SNR-regime, γ0 → 1.
Moreover, the spectral efficiency of user l can be computed for l = 1, ..., L
as follows:

Cl,∞ =
∫ ∞

0
log2

(
1 +

pl(t) · t
N0

)
· e−tdt

=
∫ ∞

γ0N0

log2


1 +

(
1
γ0
− N0

t

)
· t

N0


 · e−tdt

=
∫ ∞

γ0N0

log2

(
t

γ0 ·N0

)
· e−tdt

=
1

ln(2)
· Ei (γ0 ·N0)

(3.23)

In order to characterize the achievable performance of such system in terms
of spectral efficiency, we define the spectral efficiency within the frequency
bandwidth W, as [35]:

Cl,∞(W ) =
1
W

∫ W
2

−W
2

log2

(
1 +

pl(f). |Hl(f)|2
N0

)
df (3.24)

By identifying expression (3.20) with (3.24), we obtain a characterization of
the frequency variation f as function of the channel gains t, namely:

f = −W · e−t +
W

2
, (3.25)

4Ei(x) is the exponential integral function defined as: Ei(x) =
∫ +∞

x
e−t

t
dt.
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Similar to our approach in the previous section, we define the band factor
gain ∆∞ as the fraction of the band sensed idle from user l to user l+1 over
the total bandwidth W for an infinite number of sub-bands:

∆∞ , ∆f

W
(3.26)

where ∆f represents the frequency interval where the fading gain in (3.25)
is below a certain threshold equal to γ0 · N0. By deriving the appropriate
vacant band ∆f when t ∈ [0, γ0 ·N0] in (3.25), we obtain:

∆∞ = 1− exp (−γ0 ·N0) (3.27)

Accordingly, the asymptotic spectral efficiency of user l is given by:

Φl,∞ = ∆∞ · Cl,∞, for l = 1, ..., L (3.28)

Similar to the case where the number of sub-bands is fixed, when l = 1, the
spectral efficiency without cognition is equal to the primary user spectral
efficiency C1,∞. In particular, it is of major interest to quantify the spectral
efficiency gain ∆∞ in order to show the interest behind using spectrum
pooling terminals with respect to classical systems (without cognition). To
do so, following the same procedure and going from user 2 to L, we obtain
the expression of the asymptotic spectral efficiency as function of C1,∞:

Φl,∞ = ∆l−1
∞ .C1,∞, for l = 1, ..., L (3.29)

The overall asymptotic sum spectral efficiency for a system with L users is
therefore:

Φsum,∞ =
L∑

l=1

Φl,∞

=
L−1∑

k=0

∆k
∞C1,∞

=
1−∆L∞
1−∆∞︸ ︷︷ ︸

·C1,∞

≥ 1

(3.30)

Thus, the sum spectral efficiency obtained by considering cognitive commu-
nications is greater than or equal to the spectral efficiency without cognition
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C1,∞. Such a result, rather intuitive, justifies the increasing interest behind
using cognitive radio terminals in future wireless communication systems
since the sum spectral efficiency of such systems performs always better
than classical communication systems (without cognition).
On the other hand, by substituting C1,∞ by its expression in (3.23), we ob-
tain the final expression of the achievable sum spectral efficiency in such a
system:

Φsum,∞ =
1

ln(2)
· 1−∆L∞
1−∆∞

· Ei (γ0 ·N0) (3.31)

This result is very interesting as, by only knowing the statistics of the chan-
nel gains (through γ0) and the SNR (through N0), one can derive the achiev-
able spectral efficiency as well as the potential gain resulting from using
spectrum pooling.

3.7 Performance evaluation

In order to validate our approach in the previous Section, we compare the
theoretical expression of the sum spectral efficiency in (3.31) to expression in
(3.17). We model L i.i.d Rayleigh channels (one for each user) and assume
perfect sensing of the idle-sub-bands. Our numerical result in Figure 3.5,
tends to validate the asymptotic analysis we adopt throughout the chapter.
It clearly shows that the sum spectral efficiency in (3.17) matches expres-
sion (3.31) even for a moderate number of sub-bands N (from N = 16).
Moreover, since the maximum number of users is not theoretically limited,
we will consider only L that satisfies the condition that card(ΩL) 6= 0,
otherwise, the L-th spectral efficiency would be negligible. Figure 3.6 char-
acterizes the maximum number of users L as function of the received signal
energy per information bit Eb/N0 for different number of sub-bands N . As
expected, we remark that the maximum number of users allowed to trans-
mit increases with the number of sub-bands especially at low Eb/N0 region.
Furthermore, the maximum number of cognitive users ranges from 1 to 8.
As an example, the proposed scheme, although its simplicity allows up to 4
cognitive users to benefit from the licensed spectrum at 8 dB for N = 2048
sub-bands.
In [36], we analyzed the different configurations of the sum spectral effi-

ciency for a system with 5 users as function of the SNR. We showed that at
low SNR region, the spectral efficiency is significantly increased with respect
to the traditional system without cognition while, at high SNR regime, the
maximum sum spectral efficiency reaches C1,∞. In this chapter however, we
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will focus on the sum spectral efficiency gains as function of Eb/N0. In fact,
the Eb/N0 versus spectral efficiency characteristic is of primary importance
in the study of the behavior of the required power in the wideband limit
(where the spectral efficiency is small). The key idea behind doing so is to
find the best tradeoff between transmitted energy per information bit and
spectral efficiency [35]. It is also useful for the sake of comparing results
obtained for different configurations to represent the fundamental limits in
terms of received energy per information bit rather than the Signal-to-noise
ratio. By replacing the SNR in (3.23) by its equivalent expression in terms
of Eb/N0, the spectral efficiency of the primary user becomes:

C1,∞ =
1

ln(2)
· Ei

(
γ0

Eb
N0
· C1,∞

)
(3.32)

In such a case, the explicit solution of the spectral efficiency versus Eb/N0

is not feasible. In Figure 3.7, we plot the sum spectral efficiency gains (with
respect to the configuration where only the primary user enjoys the entire
band) as function of Eb/N0 where solutions are given by the implicit equation
in (3.32). The goal here is rather to quantify the spectrum pooling spectral
efficiency gain from user to user. Simulation results were obtained through
dichotomic algorithms in Figure 3.7. We found out that the maximum spec-
tral efficiency gain can not exceed the range of 60% for a configuration with
one primary user and 4 cognitive users. Notice that, as Eb/N0 increases, all
the configurations tend towards the configuration where only the primary
user enjoys the entire band. This can be justified by the fact that, at high

Eb/N0 regime, the water-level
1
γ0

is becoming greater than the quantity
N0

|h|2
and more power is poured within each sub-band (see equation(3.3)).

To proceed further with the analysis, we resort to performance comparison
of the proposed scheme with respect to a traditional system where no cogni-
tion is used. As far as sum spectral efficiency comparison is concerned, this
can be conducted by considering the two following configurations:

• the non-cognitive radio configuration (NCR): where the primary user
enjoys the entire bandwidth following an average power constraint per
sub-band given by:

1
N

N∑

i=1

pi
l = L · P (3.33)

where L is the maximum number of users at each SNR (as shown in
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Fig. 3.6). The primary user can accordingly distribute (N ·L ·P ) over
the N sub-bands in order to maximize its capacity,

• the cognitive configuration: where (L− 1) cognitive users coexist with
the primary user while sharing the N sub-bands available. Each user
has to maximize its capacity with respect to the average power con-
straint per band of (card(Ωl) · P ) as in (4.2).

Figure 3.8 validates the expectation from the analysis in (3.30). It clearly
shows that the spectrum pooling strategy performs always better than tra-
ditional communication system using the same spectral resources due to
the multi-user diversity gain. In particular, the spectrum pooling system
achieves 1 bit per second per hertz more than the NCR system. Let us now
focus on the band factor gains expressions. So far, we have quantified the
spectral efficiency gains of different configurations with five users. Let us
now investigate how the simulated spectral efficiency gain (with a finite N)
converges to the theoretical one (when N is assumed to be infinite). Let us
first write the spectral efficiency of each user l as follows:

Φl,∞ = αl,∞ · C1,∞, for l = 1, ..., L (3.34)

where:
αl,∞ = ∆l−1

∞ , for l = 1, ..., L (3.35)

Note here that αl,∞ represents the band factor gain from the primary user
to user l. In Figure 3.9, numerical simulation is carried out by considering
a system with four cognitive users. We compared simulated values of αl,N

based on equation (3.14) to theoretical values in (3.35) for each user l and
for SNR = 10 dB. We remark that as N increases, the simulated band factor
gain tends to αl,∞. Moreover, simulation results show that α2,N converges
more rapidly to the associated theoretical gain factor value than for user 3
or user 4.

3.8 Conclusion

In this chapter, we have considered orthogonal communications in a generic
spectrum pooling scenario enabling public access to the new spectral ranges
without sacrificing the transmission quality of the actual license owners.
For the first time, our analysis has quantified the achievable gain of using
spectrum pooling with respect to classical radio devices. We found out
that though its simplicity, the proposed scheme is effective to provide a
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higher spectral efficiency gain than the classical scheme does. We further
obtained a characterization of the achievable spectral efficiency as well as
the maximum number of possible pairwise communications within such a
scenario. Simulation results validate our theoretical claims and offer insights
into how much one can gain from spectrum pooling in terms of spectral
efficiency. As a future work, it is of major interest to generalize the problem
to limited feedback in order to characterize the sum spectral efficiency gain
of such cognitive protocols with respect to the proposed scenario. It would
be further interesting to measure the throughput of the proposed protocol
given a realistic primary system model (e.g., ethernet traffic) compared to
an OFDM/TDD overlay cognitive radio system.
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Chapter 4

Cognitive Radio using
Virtual Noise

As we have seen, spectrum pooling promises significant system spectral effi-
ciency gains in cognitive radio networks. However, the approach presented
in the previous chapter relies on orthogonal communications between the
primary system and cognitive users. In this chapter, we consider a multi-
band/wideband system with two users, one primary (licensed) user and one
secondary (cognitive) user attempting to communicate simultaneously in the
same frequency band subject to mutual interference. At the core lies the idea
that the primary user has a certain quality of service to fulfill. This gives the
secondary user a transmitting opportunity since the primary user will not, in
any case, use all its rate as long as it has its quality of service satisfied. We
determine, under the assumption that the primary user is oblivious to the
presence of the cognitive user, the optimal power allocation policy for such a
system. The proposed strategy is proved to be the optimal one that achieves
the maximum rate for both users under the constraint that the secondary user
guarantees a quality of service for the primary user. We explicitly derive the
capacity of the primary as well as the secondary user. Asymptotic analysis
shows that (i) the sum system capacity of such a cognitive scenario using
a virtual noise threshold as a proxy for the primary user performs always
better than classical communication system where the primary user selfishly
maximizes its capacity, and (ii) the sum system capacity is maximized for
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a particular value of the virtual noise threshold, while maintaining a quality
of service for the primary user.

4.1 Introduction

Interference in wireless networks is known to hinder reliable communication
and ultimately limit the achievable network capacity. Thus, in such environ-
ments, the capacity is a direct function of the total interference level seen
at any receiver. Modeling interference for such specific scenarios has thus
become a critical task and is receiving increasing attention in the literature.
In light of the arguments presented above, here we consider a TDD-uplink
communication scenario in which the primary and the secondary user wish
to communicate, subject to mutual interference in a heterogeneous network
where devices operate in a wideband/multiband context. One property of
such systems is that, since the same frequency is used, the channel charac-
teristics are nearly the same in both links, provided the channel does not
change too rapidly. Under this scheme, we allow the secondary user to trans-
mit simultaneously with the primary user as long as the primary user has not
its quality of service affected. In particular, we impose that the secondary
user can transmit simultaneously with the primary user as long as the level
of interference with the primary user remains lower than a specified virtual
noise threshold.

The notion of virtual noise threshold is chosen to be a proxy for the primary
user to allow cognitive user to profit from the remaining vacant sub-bands
and, at at the same time, it maintains a guarantee of service to the primary
user when cognitive communication is considered. This strategy hinges on
the assumption that, in any case, the primary user will not necessarily need
all that rate. In fact, as long as all its target rate is achieved, he does not
care about what it leaves unused.
The virtual noise level is in fact initially imposed by the primary system
depending on the primary user requested rate. Based on this, the following
questions may naturally arise. First, for a given virtual noise level σ2

v , is the
sum system capacity maximized for a particular value of σ2

v , and how can
we design a simple and efficient algorithm to approximate the theoretical
optimal virtual noise level, while avoiding a feedback overhead to achieve
such an optimization? In particular, is the constraint based on asymptotic
assumption still holds for a finite number of sub-bands? Second and partic-
ularly noteworthy question in the context of cognitive radio, when we seek
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to optimize the sum system capacity, what is the impact of this optimization
on the primary user QoS? Will there be an inherent incompatibility between
system capacity maximization and primary user QoS guarantee? In other
words, does the primary user requested rate considerably degrades and, how
much does the primary loose in terms of outage probability? Finally, do dif-
ferent coding strategies adversely affect the achievable throughput of the
proposed cognitive radio protocol?

In this chapter, we present two cognitive radio protocols which are be-
lieved to be potential promising candidates for future cognitive radio net-
work deployment. We provide analytical and simulated insights towards
addressing these important questions. We propose an asymptotic constraint
to achieve the maximum possible sum capacity and validate the proposed
result with a finite number of sub-bands. In both cases, we address the
achievable performance with and without SIC strategy. We determine, un-
der the assumption that the primary user is oblivious to the presence of
the cognitive user, the acceptable interference level within a given quality
of service. We also give an interesting way to acquire the primary user’s
side information. The proposed strategy is proved to be the optimal in the
sense that it achieves the maximum rate for each of the two users under the
constraint that the secondary user maintains a guarantee of service to the
primary user when cognitive communication is considered.

In the second part of the chapter, we explore the achievable rate of the
primary and the secondary user as well. We derive and compare expressions
for the capacity when single user decoding strategy is used and when the two
users are jointly decoded using a successive interference cancelation (SIC)
scheme. In both configurations, the sum capacity of the proposed cogni-
tive protocol performs always better than classical communication system
where the primary user selfishly maximizes its capacity. Simulations show
that SIC does not provide a lot of capacity gain with respect to the case
where only single user decoding is used. Our analysis treats the case where
devices operate on a finite number of sub-bands and when the number of
sub-bands grows large (wideband context). In the latter case, we show that
the sum system capacity is maximized for a particular value of the virtual
noise threshold.

The last part of the chapter is dedicated to the design of the virtual noise
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level. Our study offers some insights into how to characterize the virtual
noise in real cognitive radio network by taking into account the primary
system QoS guarantee via outage constraint consideration. Simulations re-
sults validate our theoretical claims and show that the empirical constraint
converges to the optimal condition predicted from our asymptotic theory
even at moderate number of sub-bands.

The remainder of the chapter is organized as follows: In section 4.2, we
introduce the notion of the virtual noise threshold. We also describes the
cognitive radio scenario and give a simple way for the secondary user to
acquire the primary user’s side information. Section 4.3 details the optimal
power allocation policy for each user by considering two different coding
schemes. We also determine what would be the average rate of the primary
and the secondary user depending on the characteristic of the coding scheme
used. In Section 4.4, we study the asymptotic behavior of the capacity as the
number of sub-bands grows large. Optimum virtual noise threshold design
as well as QoS issues are addressed in Section 4.5. Simulation results are
provided in Section 4.6. Section 4.7 concludes the chapter.

4.2 The Cognitive Radio Protocol

Spectrum utilization can be improved by making a secondary user to access
a spectrum hole unoccupied by the primary user at the right location and
the right time. In current cognitive radio protocol proposals, the device
listens to the wireless channel and determines, either in time or frequency,
which part of the spectrum is unused. It then adapts its signal to fill this
void in the spectrum or time domain. Thus, a device transmits over a cer-
tain frequency band or time only when no other user does, like in [14]. In
the same context, authors showed in [36] how we can improve the overall
system spectral efficiency on classical approaches by considering orthogo-
nal cognitive communications if there is ordering in the transmission. The
contribution of some recent studies [37] and [25] has extended the cognitive
protocol to allow the cognitive users to transmit simultaneously with the
primary users in the same frequency band. Similarly, in [38], a linear pre-
coder based on Vandermonde matrices allows an OFDM radio to co-exist
with similar pre-existing terminals without generating any additional inter-
ference. The idea is to exploit the redundancy of the OFDM cyclic prefix
and frequency selectivity of the channel. This is exactly the question tackled
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in this work where the cognitive radio behavior is generalized to allow the
secondary user to transmit simultaneously with the primary user as long as
the level of interference with the primary user remains within an acceptable
range.

4.2.1 Scenario Description

In traditional systems, when the primary user considers only the ambient
noise level σ2, it will exploit all the resources by water-filling [2] on this noise
level and therefore, leaves no resources for the secondary user to transmit.
In our case, the primary base station implicity over-estimates the noise level
which is considered as thermal noise plus interference. In fact, whether the
primary user considers only the ambient noise level σ2, he will send at the
maximum achievable rate and there will be no resources left for the cognitive
user. The notion of virtual noise threshold is therefore chosen to be a proxy
for the primary user to allow cognitive user to profit from the remaining
vacant sub-bands like in [39]. Subsequently, we refer to the above defined
over-estimate noise level as the virtual noise level. A key idea behind doing
so is that, in any case, the primary user will not necessarily need all available
rate. In fact, the primary user has a target rate to be achieved (as it has
a certain QoS), and as long as that this target rate is satisfied, it does not
care about what it leaves more. Accordingly, assuming that the primary
user over-estimates the actual thermal noise, two questions are noteworthy
in this context: (i) how can the secondary user benefit from that? (ii) in
which over-estimation case does the secondary user maximize its rate?

Moreover, contrary to the recent work addressed in [37] and [25], in this
contribution, it is proposed that each user is assumed to know only its own
channel gain. In [37], the cognitive user is assumed to obtain an a-priori
knowledge of the information that will be transmitted by the primary user.
In [25], authors allow the primary and the secondary systems to cooperate
and jointly design their encoder-decoder pairs. However, in practice, pri-
mary system should be unaware about the existence of the cognitive radio
(unlicensed) system and operates according to the demands of the popula-
tion of primary terminals. This implies that it is the role of cognitive radios
to recognize their communication environment and adapt the parameters of
their communication scheme to maximize the QoS for the secondary users,
while minimizing the interference to the primary users in a distributive fash-
ion. Accordingly, the virtual noise threshold has a double role:

• it allows cognitive user to profit from the primary user resources in an
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opportunistic manner,

• it limits the interference to the incumbent (primary) user when cogni-
tive communication is considered.

We found out that a cognitive user can vary its transmit power in order to
maximize its own capacity, while maintaining a guarantee of service to the
primary user.
Consider a given virtual noise-threshold σ2

v , the maximum achievable rate
that the primary user can obtain over the N sub-bands is given by:

C1,N =
1
N

N∑

i=1

log2

(
1 +

pi
1 | hi

1 |2
σ2

v

)
(bits/s/Hz) (4.1)

The optimal power allocation which maximizes the transmission rate of the
primary user is solution of the optimization problem of:

{p1∗
1 , ..., pN∗

1 } = arg max
p1
1,...,pN

1

C1,N ,

subject to: 



1
N

N∑

i=1

pi
1 = P ,

pi
1 ≥ 0, for i = 1, ..., N

(4.2)

where P is the average power constraint. In [2] authors looked at the prob-
lem of maximizing instantaneous capacity subject to an average power con-
straint, and showed that the optimum power allocation follows from Shan-
non’s principle of water-filling, namely 1:

pi∗
1 =

(
1
γ0
− σ2

v∣∣hi
1

∣∣2
)+

, i = 1, ..., N (4.3)

where γ0 is the Lagrange’s multiplier satisfying the average power in (4.2).

1(x)+ = max(0, x).
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Figure 4.1: The Multiple Access Channel (MAC) cognitive uplink channel
in a wideband/multiband context.

Within this chapter, we present two cognitive radio protocols which are
believed to be potential promising candidates for future cognitive radio net-
work deployment and offer insights into how to design such scenario in a
cognitive radio network environments.

4.2.2 The Multiple Access Channel (MAC)

Let us consider a scenario where the primary and the cognitive users attempt
to communicate with a common base station, subject to mutual interference
(see Fig. 4.1). A particularly noteworthy target in this context, where the
primary user is supposed to be oblivious to the presence of potential sec-
ondary users, is how the cognitive user would gather the instantaneous CSI
of the primary user without any cooperation with the primary system.
To do so and because there are many channel responses that are propor-
tional to the number of cognitive users in a multi users system, the feedback
overhead may be too large and thus reverse-link channel capacity may be
greatly wasted. To reduce the feedback information in such cases, we pro-
pose a new communication scenario wherein the power allocation policy of
the PU, rather than his full channel state information, is fed back to the
cognitive user. By feeding back the transmit power assignment, the feed-
back burden can be greatly reduced. As far as primary channel estimation
is concerned, this can be conducted in three steps:
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i) Each user estimates the pilot sequence transmitted by the BS in order
to determine its channel gain via link (1) in Fig. 4.1. Note here that since
we are in a TDD mode, when the users estimate the channel in one way,
they can also know it on the reverse link,

ii) In the second frame, the primary user broadcasts a pilot sequence so
that the BS estimates the channel h1 (see link (1) in Fig. 4.1),

iii) In a third step, when the primary user sends its information with power
p1, this information can be overheard by the secondary user and it can es-
timate the power knowing the inter-user channel ci

1 in link (2). In other
words, assuming that the two users operate on a unique standard, the sec-
ondary user first estimates the inter-user channel via link (2) and then can
learn about the primary user power pi

1 at each sub-band i.

iv) Finally, the secondary user can gather the primary users’ channel gains
by reverse engineering. In fact, by only knowing the virtual noise threshold
(σ2

v) and the power allocation policy of the primary user (i.e. water-filling),
the cognitive user can obtain the primary users’ channel gains following
equation (4.3). Given a set of power

{
p1
1(h

1
1), p

2
1(h

2
1), ..., p

N
1 (hN

1 )
}

and the
average power constraint in (4.2), we obtain a system of (N + 1) equations
in (N +1) unknowns, i.e.,

{
γ0, h11, ..., hN

1

}
. The steps of the proposed algo-

rithm are described in Box 1. For brevity, only the key steps are detailed.

4.2.3 The interference channel

In a realistic network, such a system coordination may not be practical
because it requires large signaling overhead for the feedback and exchange
of full channel state information among multiple nodes. To this end, we
consider a TDD-uplink communication scenario (see Fig. 4.2) where devices
attempt to communicate with their own base station, like in the cognitive
X-channel widely used in the literature [37] [25]. Accordingly, the primary
and the primary and the cognitive users are supposed to communicate to
different receivers, subject to mutual interference. Although such a scheme
is akin to the general ad-hoc scheme, it can also be viewed as a hierarchical
cell structure configuration of a microcell hotspot being operated within
a macrocell using the same frequency band like in [13]. Although this is
not a restriction of the proposed analysis and for the sake of simplicity,
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Algorithm 1 : Primary user channel estimation
initialize

{
p1
1(h

1
1), p

2
1(h

2
1), ..., p

N
1 (hN

1 )
}

1: BS broadcasts a preamble which contains σ2
v to all users in the system,

2: PU and SU estimate their own channels,

3: PU broadcasts a preamble to the BS overheard by SU,

4: SU estimates the inter-user channel,

5: SU ← {
p1
1(h

1
1), p

2
1(h

2
1), ..., p

N
1 (hN

1 )
}

6: Given σ2
v and the power allocation policy (water-filling), resolve the

following system:




1
N

N∑

i=1

pi
1 = P

pi∗
1 =

(
1
γ0
− σ2

v∣∣hi
1

∣∣2
)+

, for i = 1, ..., N

7: SU ← {
h1

1, h
2
1, ..., h

N
1

}



54 Chapter 4 Cognitive Radio using Virtual Noise

Figure 4.2: The interference cognitive radio uplink channel.

from now on we will treat the MAC framework. We draw the reader’s
attention however to the fact that the following study still stands for the
interference channel model. Typically, the primary interferer contribution
h1, respectively the secondary interferer contribution h2, is replaced in the
interference term by the appropriate channel gain from the primary user to
the secondary BS h3, respectively from the secondary user to the primary
BS h4 (see Fig. 4.2). This knowledge can be gathered by users through
communication exchange with the appropriate base stations.
We derive the optimum power allocation policies of each user in terms of
maximizing their own capacity and determine what would be the average
capacity rate of the primary and the secondary user in this setting.
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4.3 The achievable rate for the Cognitive user

The secondary user offers the opportunity to improve the sum capacity over
the system by reliably detecting primary user activity and adapting its trans-
mission, while avoiding the interference to the primary user by satisfying
constraint in (4.5). In fact, the spectrum utilization can be improved by
making a secondary user to access to the primary user spectrum at the right
location and the sub-band in question. In this section, we will first derive
the optimal power allocation policy for both primary and secondary user
depending on the characteristic of the coding scheme and then analyze the
corresponding performance in terms of achievable capacity. On the other
hand, one basic assumption throughout this chapter is that a cognitive user
can vary its transmit power in order to maximize the capacity, while main-
taining a guarantee of service to the primary user. Thus, when channel state
information is made available at the primary user, it will adapt its trans-
mission strategy relative to this knowledge by transmitting at the target
rate less than the real data rate with an error-free transmission in order to
maintain a guarantee of service. This implies the following inequality:

log2

(
1 +

pi
1

∣∣hi
1

∣∣2
σ2

v

)
≤ log2

(
1 +

pi
1

∣∣hi
1

∣∣2
pi
2 | hi

2 |2 +σ2

)
(4.4)

Reliable communication can therefore be achieved when the virtual noise
threshold is higher than the cognitive interferer contributes, yielding:

σ2
v ≥ pi

2 | hi
2 |2 +σ2, i = 1, ..., N (4.5)

4.3.1 Two–User Multiple Access Channel

With the same goal of capacity maximization, let us focus on the achievable
rate of a system in a non cognitive scenario (when the primary user selfishly
water-fills on the ambient noise level σ2) and compare it to the achievable
rate of the proposed virtual noise-based system (when the primary user
experiences the virtual noise σ2

v). Consider the achievable rates in an AWGN
multiple access channel with two users. Let Rp and Rs denote the primary
and the secondary transmit rates at the receiver, respectively. Then both
the primary and the secondary signal can be decoded if their respective data
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Figure 4.3: The region of achievable rate pairs R = (Rs, Rp) in a two–user
multiple access channel.

rates Rp and Rs are chosen within the convex region defined by:

Rp ≤ 1
N

N∑

i=1

log2

(
1 +

pi
1 | hi

1 |2
σ2

v

)
(4.6)

Rs ≤ 1
N

N∑

i=1

log2

(
1 +

pi
2 | hi

2 |2
σ2

)
(4.7)

Rp + Rs ≤ 1
N

N∑

i=1

log2

(
1 +

pi
1 | hi

1 |2
σ2

v

+
pi
2 | hi

2 |2
σ2

)
(4.8)

This convex region is illustrated on Fig. 4.3.
The strategies to achieve the rate pairs at the border segment AB involve

Successive Interference Cancelation (SIC) at the receiver. This is done in
two stages. Consider the rate pairs on point B. In the first stage, the receiver
decodes the data of the primary user, treating the signal from the secondary
user as interference. The maximum rate secondary user can achieve is pre-
cisely given by (4.7). Once the receiver decodes the data of the primary
user, it can reconstruct primary users signal and subtract it from the ag-
gregate received signal. An opposite strategy is used for the rates on the
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other corner point A. All the other rate points on the segment AB rep-
resent the optimal operating points of the channel. They can be obtained
by time-sharing between the multiple access strategies in point A and point
B as suggested in [2]. Nevertheless, in a traditional scheme (when the pri-
mary user experiences σ2) no resources will be left for potential cognitive
users. Considering the proposed virtual noise-based scheme, the primary
user over-estimates the actual thermal noise. Following the above trend, the
capacity region of the primary user is reduced as Fig. 4.3 shows. In what
follows, we will study the impact of such an over-estimation on the primary
user achievable rate with respect to traditional systems.

4.3.2 Achievable rate without SIC

Consider the rate pairs on point D in Fig. 4.3. The expression of the sec-
ondary user instantaneous capacity is given by:

C2,N =
1
N

N∑

i=1

log2

(
1 +

pi
2 | hi

2 |2
pi
1 | hi

1 |2 +σ2

)
(4.9)

The optimal secondary user power allocation which maximizes the ca-
pacity of the system is solution of the optimization problem:

{p1∗
2 , ..., pN∗

2 } = arg max
p1
2,...,pN

2

C2,N (4.10)

subject to2:





1
N

N∑

i=1

pi
2 = 1 (4.11a)

pi
2 ≥ 0; for i = 1, ..., N (4.11b)

σ2
v ≥ pi

2 | hi
2 |2 +σ2; for i = 1, ..., N (4.11c)

2Without loss of generality, we take P = 1 in the average power constraint.
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Theorem 4.1 Consider the system model described in Section 4.2. The
optimal secondary user power allocation solution of the optimization problem
(4.10) under the constraints in (4.11) is:

pi∗
2 =





σ2
v − σ2

∣∣hi
2

∣∣2 ; if λ ≤
∣∣hi

2

∣∣2
pi
1 | hi

1 |2 +σ2
v

(
1
λ
− pi

1 | hi
1 |2 +σ2

∣∣hi
2

∣∣2
)+

; otherwise

(4.12)

where λ is the Lagrange multiplier solution of the following equation:

1
N

N∑

i=1

[
σ2

v − σ2

| hi
2 |2

]
− 1

N

N∑

i=1

[
σ2

v − σ2

| hi
2 |2

−
(

1
λ
− pi

1 | hi
1 |2 +σ2

| hi
2 |2

)+
]+

= 1

(4.13)

The proof is given in Appendix 7.1. The first part of the theorem follows
from the convex optimization problem by using Lagrange multipliers and
Karush-Kuhn-Tucker conditions in [40]. A sketch of this proof can be found
in Appendix 7.1. Accordingly, the optimal power allocation for this problem
is shown to be a mixture of channel inversion and water-filling allocation.
Note here that the proposed strategy prevents to obtain infinite power in
extreme fading environments, i.e. for bad fading states hi

2, the power allo-
cation policy is the water-filling.

The second part of the theorem asses the viability of such a power control
policy. The proof of this result follows directly from the three regions defined
in the proof of Theorem 4.2. Formally, we can show that the secondary user
power in (4.12) can be written as:

pi∗
2 =

σ2
v − σ2

| hi
2 |2

−
[

σ2
v − σ2

| hi
2 |2

−
(

1
λ∗
− pi

1 | hi
1 |2 +σ2

∣∣hi
2

∣∣2
)+]+

(4.14)

By taking the sum over the N sub-bands and by considering the average
power constraint in (5.15b), we get the following constraint on λ which is
more tractable in terms of calculations.
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Discussion: Assume σ2
v and hi

1 fixed. For good hi
2 the optimal power-control

law is the channel inversion policy. On the contrary, for bad values of hi
2

the optimal power-control law is water-filling on the inverse of the channel
gain. This stands in contrast to the traditional case of channel inversion
policy where more power is allocated when the channel is bad than when
the channel is good. Notice that in the event of deep fades, i.e. hi

2 tends
to be zero, the proposed policy prevents from obtaining infinite power since
the secondary user power allocation is zero.

For the sake of completeness and for future use, we obtain a closed-form
expression of the secondary user capacity, while considering the optimal
power control in Theorem 4.1.

Theorem 4.2 Consider the optimal secondary user power allocation given
in Theorem 4.1. The secondary user capacity is then given by:

C2,N =
1
N

N∑

i=1

log2 (max {min [T1, T2(λ)] , 1}) (4.15)

where:

T1 = 1 +
σ2

v − σ2

pi
1 | hi

1 |2 +σ2
(4.16)

and

T2(λ) =
| hi

2 |2
λ

(
pi
1 | hi

1 |2 +σ2
) (4.17)

The proof is given in Appendix 7.2. The result follows from a direct deriva-
tion of the expression of the optimal secondary user power allocation given in
Theorem 4.1. Accordingly, we only have to compute the quantity max {min [T1, T2(λ)] , 1}
with respect to the lagrange multiplier λ to obtain the secondary user ca-
pacity.
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4.3.3 Achievable rate with SIC

Let us now focus on the secondary user capacity when the secondary user is
assumed to have perfect knowledge of the primary user’s side information.
The BS can then decode the primary user’s signal at the appropriate rate
and its contribution to the interference is then perfectly subtracted using
SIC. The expression of the secondary user instantaneous capacity on point
C in Fig. 4.3 is given by:

C2,N =
1
N

N∑

i=1

log2

(
1 +

pi
2 | hi

2 |2
σ2

)
(4.18)

Similar to the case without SIC, the optimal secondary user power allocation
solution of the problem (4.10) under the constraints in (4.11) is:

pi∗
2 =
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; otherwise

(4.19)

where λ′ is the Lagrange’s multiplier satisfying the average power con-
straint in (4.11).

Moreover, the secondary user capacity is the same than for the case
without SIC, where:

C2,N =
1
N

N∑

i=1

log2
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max

{
min

[
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′
2(λ

′)
]
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(4.20)

where:

T ′1 =
σ2

v

σ2
(4.21)

and

T ′2(λ
′) =

| hi
2 |2

λ′σ2
(4.22)

and λ′ is solution of the following equation:
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Figure 4.4: Simulated secondary capacity in (4.9) respectively (4.18) vs
Theoretical secondary capacity in (4.15) respectively (4.20) for σ2

v = 1 and
N = 10.

The following expressions follows from the same reasoning as in the previous
subsection.
We compare our exact analytical expressions with Monte Carlo simulations;
the latter are carried out by generating 10 i.i.d Rayleigh distributed channels
and evaluating (4.20) and (4.15) respectively. As expected, the comparison
shows an excellent agreement between analysis and simulation. Indeed, Fig-
ure 4.4 clearly shows that the theoretical secondary user capacity curve in
(4.9), respectively (4.18) and theoretical ones in (4.15), respectively (4.20)
perfectly match.

4.4 Asymptotic Performance

So far, we have derived optimum power allocations for each user in order
to maximize their own capacity given a virtual noise threshold σ2

v given a
finite number of sub-bands N . To proceed further with the analysis, we
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resort to asymptotic analysis when devices operate in a wide-band context
i.e. under the assumption that N →∞. We investigate the performance of
such system in terms of achievable rates assuming independent fading. The
goal here is to prove the utility of using such cognitive radio scheme with
respect to traditional communication systems. Without loss of generality
and for the sake of simplicity, our study will address the case where the BS
uses SIC strategy. Nevertheless, simulation results in Section 4.6 shows that
Theorem 4.3 still holds for the SIC case.

By making N sufficiently large, each user can compute the virtual noise
level independently based only the channel model statistic. In fact, within
this setting, the average power constraint in (4.5) becomes:

∫ ∞

0
p2(t).f(t)dt = 1

where f(t) is the probability density function (p.d.f) of the channel model.
By substituting p2 by its expression in (4.12), the virtual noise threshold σ2

v

is solution of the following equation

1
λ′

∫ λ′σ2
v

λ′σ2

f(t) dt− σ2

∫ λ′σ2
v

λ′σ2

f(t)
t

dt +
(
σ2

v − σ2
) ∫ ∞

λ′σ2
v

f(t)
t

dt = 1

Obviously, such an approach can be immediately translated into results
for any other probability distribution function of the channel model by re-
placing by the appropriate probability distribution function.

Theorem 4.3 The sum capacity of cognitive systems using a virtual noise
threshold as a proxy for the primary user performs always better than clas-
sical communication system (where the primary user selfishly maximizes its
capacity).

The proof is given in Appendix 7.3. It follows from an approximation
of the expression of the sum capacity by taking N sufficiently large. Such a
result shows the feasibility of allowing secondary users using locally unused
spectrum for their transmissions with dynamic transmit powers and proves
the fundamental constraint on the cognitive radio’s noise-threshold.

4.5 Virtual noise threshold Design

As mentioned before, the virtual noise level is initially imposed by the pri-
mary system depending on the primary user requested rate. Based on this,



4.5 Virtual noise threshold Design 63

−10 −5 0 5 10 15
0

1

2

3

4

5

6

SNR in dB

S
u

m
 S

ys
te

m
 C

a
p

a
ci

ty
 in

 b
its

/s
/H

z

σ
v
2 = 2 * σ2

 

 

NC system

PU experiences σ
v
2

Cognitive system with SIC
Cognitive System without SIC
Channel inversion

Figure 4.5: Sum system capacity for different configurations with σ2
v = 2∗σ2

and N = 10. The sum capacity of the proposed cognitive scheme using
virtual noise optimal power performs always better than classical system
(Non Cognitive (NC) system).

the following questions may naturally arise. When we seek to optimize the
sum system capacity, what is the impact of this optimization on the pri-
mary user QoS? Will there be an inherent incompatibility between system
capacity maximization and primary user QoS guarantee? In other words,
does the primary user requested rate considerably degrades and, how much
does the primary loose in terms of outage probability? Finally, do different
coding strategies adversely affect the achievable throughput of the proposed
cognitive radio protocol?
The motivation of doing so in an environment where two senders share com-
mon resources is to obtain a characterization of the optimum virtual noise
threshold so that it could be designed in the standard and optimized ac-
cordingly. Particularly noteworthy in this setting is that cognitive radios
are considered as lower priority users of spectrum allocated to the primary
user [6]. It turns out necessary to study the primary user achievable rate
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when considering the optimal virtual noise in order to guard against primary
user’s QoS degradation.
In this part, we provide analytical and simulated insights towards addressing
these important questions. We propose an asymptotic constraint to achieve
the maximum possible sum capacity and validate the proposed result with
a finite number of sub-bands. In both cases, we address the achievable
performance with and without SIC strategy.

4.5.1 Optimum virtual noise threshold

Let us first investigate the variation of the sum capacity as function of σ2
v

when the number of sub-bands grows sufficiently large, i.e. under the con-
straint that N →∞.

Theorem 4.4 The sum capacity of a cognitive system using virtual noise
threshold admits a unique optimal virtual noise level. The optimum virtual
noise threshold that maximizes the sum system capacity is satisfied if and
only if the primary user Lagrange multiplier γ0 is equal to the secondary
user Lagrange multiplier λ′, namely

Csum,∞ is maximized ⇔ γ0 = λ′. (4.23)

Proof 4.1 The sum system capacity is given by:

Csum,∞ =
∫ ∞

γ0σ2
v

log2

(
t

γ0.σ2
v

)
.f(t)dt

︸ ︷︷ ︸
+

∫ λ′σ2
v

λ′σ2

log2

(
t

λ′σ2

)
.f(t)dt

︸ ︷︷ ︸
+

∫ ∞

λ′σ2
v

log2

(
σ2

v

σ2

)
.f(t)dt

︸ ︷︷ ︸

(4.24.a) (4.24.b) (4.24.c)
(4.24)

By differentiating each of the three expressions in (4.24) with respect to
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σ2
v we obtain3:

∂(4.24.a)
∂σ2

v

=
∂

∂σ2
v

∫ ∞

γ0σ2
v

log2

(
t

γ0.σ2
v

)
.f(t)dt

=
F (γ0.σ

2
v)− 1

ln(2).σ2
v

.

∂(4.24.b)
∂σ2

v

=
∂

∂σ2
v

∫ λ′σ2
v

λ′σ2

log2

(
t

λ′.σ2

)
.f(t)dt

= λ′f
(
λ′.σ2

v

)
. log2

(
σ2

v
σ2

)

∂(4.24.c)
∂σ2

v

=
∂

∂σ2
v

∫ ∞

λ′σ2
v

log2

(
σ2

v

σ2

)
.f(t)dt

=
1− F (λ′.σ2

v)
ln(2).σ2

v

− λ′f
(
λ′.σ2

v

)
. log2

(
σ2

v

σ2

)

Setting the derivative equal to zero, yields:

∂Csum,∞(σ2
v)

∂σ2
v

=
1

ln(2).σ2
v

[
F (γ0.σ

2
v)− F (λ′.σ2

v)
]

= 0 (4.25)

The optimum value is then obtained when :

F (γ0.σ
2
v)− F (λ′.σ2

v) = 0 (4.26)

The c.d.f F is a strictly increasing and continuous (bijective) function. The
sum capacity Csum,∞ is then maximized if and only if

γ0 = λ′.
3F (x) is the cumulative density function (c.d.f) of x that can be defined in terms of

the probability density function f as follows: F (x) =

∫ x

−∞
f(t) dt.



66 Chapter 4 Cognitive Radio using Virtual Noise

The existence and the uniqueness of such a solution follows from the bijec-
tivity of the c.d.f. On the other hand, simulation results in Section 4.6 show
that the extremum value in (4.25) corresponds indeed to a maximum (see
Fig. 4.8). ¥

Theorem 4.4 points out that, by making N sufficiently large, the op-
timum virtual noise level is only a function of the SNR (through σ2) and
the channel statistics (through the Lagrange multipliers). Accordingly, the
virtual noise level is a parameter that can be designed in the standard based
on the statistics of the channel and can be optimized based on the channel
statistics.

On the other hand, although only SIC case is treated in Theorem 4.4, we
emphasize that our analysis is still valid for the case without SIC as Figure
4.7 clearly shows. The latter observation is particularly verified in the high
SNR region where the Lagrange multipliers are approximatively the same
in the two configurations (see Fig. 4.8). Such an accurate modeling of the
virtual noise is a key to understand the actual benefits brought by cognitive
radio technology.

4.5.2 QoS issues

The rising demand in Cognitive Radio Networks poses the problem to sup-
port Quality of Service requirements for the primary system. In fact, CRN
as defined in the Wireless Regional Area Network (WRAN) standard [6]
are inherently opportunistic. On the other hand, opportunism cannot be
undertaken at the expense of QoS. Overcoming these issues becomes more
and more challenging due to the fact that QoS, in its basic sense, is a metric
of efficiency. There are a large number of proposals for all communication
layers that goes along with increasing restrictions to spectrum utilization
[24][41], but the QoS issue still has not been clearly defined. In addition,
it is unclear how the secondary system opportunism, for instance real time,
is compatible with the support of QoS for both CR systems and primary
systems.

This issue requires special attention in two possible scenario:
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• A secondary device might cooperate with the primary user. Through
explicit signaling, the secondary device would learn when it can op-
erate and when to interrupt service. Traditionally, it is the regulator
who grants permission for secondary access and defines the signaling
protocol. If a primary licensee has sufficient flexibility, it may choose
to grant secondary access instead, presumably for a fee [24]. This
would be a form of secondary market,

• Alternatively, a secondary device would attempt to coexist with the
primary user, such that the presence of secondary devices goes unno-
ticed. Secondary device would then access spectrum opportunistically,
when they determine that doing so would not adversely affect primary
user QoS according to the virtual noise constraint in (4.5). This ap-
proach allows cognitive radios to support and guarantee QoS for the
primary user, while sharing spectrum without requiring direct infor-
mation exchange.

In what follows, we will adopt the latter framework and determine what
would be the average rate loss for the primary user in terms of outage
probability when considering the optimal virtual noise threshold.

4.6 Simulations and Results

Monte-Carlo simulations were carried out using N i.i.d channels with a
Rayleigh distribution to measure the performance of the proposed protocol.
We first compare the achievable rate with different possible configurations
for σ2

v = 2 ∗ σ2. As expected, our scheme outperforms traditional scenarios
where the primary user considers only the ambient noise level σ2. He will
then exploit all the resources by water-filling on this noise level and there-
fore, leaves no resources for the secondary user to transmit. The impact of
this result is two-fold:

• It tends to validate the asymptotic assumptions under which Theorem
3 was derived, including the non-SIC strategy,

• It confirms the basic idea we claim throughout this contribution by
introducing the notion of virtual noise level as a proxy for the primary
user.
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Figure 4.6: Sum system capacity for different configurations with σ2
v = 2∗σ2

and N = 10 as function of the SNR in dB. The sum capacity of the proposed
cognitive scheme using virtual noise optimal power performs always better
than classical system (Non Cognitive (NC) system).

In order to study the impact of such an over-estimation on the primary
user achievable rate, we also compare the capacity of the primary user when
it considers σ2

v to its capacity in a Non Cognitive (NC) system (when the
primary user selfishly water-fills on the ambient noise level σ2). It turns
out that the primary user capacity in the cognitive scenario degrades with
respect to the NC scenario according to the increase of the SNR. Figure 4.6
also shows that SIC strategy do not give us a lot of sum capacity gain with
respect to the case without SIC.

Let us now focus on the virtual noise design. It was shown in Theo-
rem 4.4 that the sum system capacity admits a unique maximum achieved
when the primary user Lagrange multiplier is equal to the secondary user
Lagrange multiplier. In Figure 4.7, we plot the sum system capacity for
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Figure 4.7: Sum system capacity for SIC and without SIC cases for N =
100 as function of the virtual noise.

SIC and without SIC cases for different values of the SNR. It is clear that
the sum capacity admits a unique maximum for a particular value of the
virtual noise level σ2 opt

v . Alternatively, notice that the σ2 opt
v decreases when

the SNR becomes higher. In order to further validate Theorem 4.4, we plot
the difference between the primary user Lagrange multiplier and the sec-
ondary user Lagrange multiplier as function of the number of sub-bands
at the optimum virtual noise of interest. Simulation results in Figure 4.8,
where Lagrange multipliers were obtained through dichotomical root finder,
validate the expectation from the analysis. First, it shows that Theorem 4.4
(initially obtained for the SIC case) still holds for the non-SIC case especially
at high SNR regime. Second, it illustrates that the empirical constraint con-
verges to the optimal condition predicted from our asymptotic theory even
at moderate number of sub-bands. This result tends to validate the assump-
tions under which the formula in Theorem 4.4 was derived, including the
non-SIC strategy.
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Figure 4.8: Difference between the primary user Lagrange multiplier and
the secondary user’s one for SIC and without SIC cases as function of the
number of sub-bands N . Our results show that the asymptotic constraint in
Theorem 4.4 provides a good estimate of the empirical constraint, including
the non-SIC strategy.

This naturally leads to the primary user QoS issues considered in Sec-
tion 4.5.2. In particular, we focus on the achievable rate of the primary user
in a non cognitive scenario (when it experiences the ambient noise σ2) and
compare it to the achievable rate of the proposed cognitive scenario (when
it water-fills on σ2 opt

v ). As can be seen in Fig. 4.9, the primary user capacity
in a NC scenario is slightly better than its capacity using the optimal virtual
noise level. Thus, the proposed cognitive system achieves almost 0.5 bit per
second per hertz more than the NC system at 0-dB of signal-to-noise ratio
and one bit per second hertz more than the NC system at 10-dB of SNR. In
an opposite way, we see that the simulation results exhibit approximately
3-dB of capacity gain beyond traditional NC system even without SIC strat-
egy. Moreover, it turns out that SIC strategy does not exhibit a significant
capacity gain relative to the non-SIC scheme as shown in Figure 4.9. To
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Figure 4.9: Sum system capacity that captures the optimal virtual noise σ2
v

for N = 10. The proposed optimal technique offers approximately 3 dB of
SNR gain and approximately 1 bps/Hz of capacity gain at 10 dB of SNR
beyond traditional NC system even without SIC strategy.

proceed further with the primary user QoS analysis, we resort to outage ca-
pacity analysis in [20]. Suppose that the primary user has a fixed requested
rate depending on its QoS. Then, as shown in Figure 4.10, a rate R = 1
bit/sec/Hz can be satisfied with an outage probability of 27% for the cogni-
tive scenario and with an outage probability of 31% for the NC scenario. In
the general case, we notice a difference of 4% between the two configurations
in terms of outage probability which indicates that the proposed strategy
completely guarantees a quality of service to the primary user. Such results
show the feasibility of allowing secondary users using locally unused spec-
trum for their transmissions with dynamic transmit powers and prove the
fundamental constraint on the cognitive radio’s noise-threshold.
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Figure 4.10: Outage probabilities for optimal σ2
v and N = 10. Notice a

difference of 4% between the NC and the proposed cognitive systems in
terms of outage probability.

4.7 Conclusion

Our contribution within this chapter is two-fold. The first part of this
chapter is a description of the cognitive radio protocol based on virtual
noise threshold. We also proposed an algorithm to gather the primary user
channel state information (CSI). In the second part, we characterize the
fundamental performance of the proposed optimal power allocation policy
in terms of the achievable rate.
Our main result is that using a virtual noise-threshold as a proxy for the
primary user, we showed that a cognitive radio can vary its transmit power in
order to maximize the sum capacity, while maintaining a guarantee of service
to the primary user. In this setting, we showed that the sum system capacity
of such a cognitive scenario using a virtual noise threshold as a proxy for the
primary user performs always better than classical communication systems
(where the primary user selfishly maximizes its capacity). Moreover, we
showed that the sum system capacity is maximized for a particular value
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of the virtual noise threshold. Simulation results validate our theoretical
claims and offer insights into how to design the virtual noise in real CRN
environments.
As a future work, it is of major interest to generalize the problem to multi-
user systems in order to characterize the sum capacity gain of such cognitive
networks. The related work can also be extended to the two-way channel
context.
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Chapter 5

Joint Distributed Resource
Allocation

In current cognitive radio protocol proposals, secondary user devices listen
to the wireless channel and determines, either in time or frequency, which
part of the spectrum is unused. It then adapts its signal to fill this void
in the spectrum domain. Thus, a SU device transmits over a certain time
or frequency band only when no other user does, like in [14]. In the same
context, it was shown in chapter 3 how we can improve the overall system
spectral efficiency compared to classical approaches by considering a spec-
trum pooling scenario. Results in chapter 4 showed however that cognitive
protocols can be extended to allow the SU to transmit simultaneously with
the PU in the same frequency band. This is exactly the setup in this work,
where the cognitive radio behavior is generalized to allow secondary users
to transmit simultaneously with the primary system as long as the level of
interference to primary users remains within an acceptable range by means
of outage probability. Specifically, it is proposed in this chapter to com-
bine cognitive radio with multi-user diversity technology to achieve strategic
spectrum sharing and self-organizing communications. Our analysis treats
both uplink and downlink scenarios. We first present a distributed power
allocation algorithm that attempts to maximize the throughput of the CRN.
The algorithm is simple to implement, since a secondary user can decide to
either transmit data or stay silent over the channel coherence time depend-

75



76 Chapter 5 Joint Distributed Resource Allocation

ing on a specified threshold, without affecting the primary users’ QoS. We
then address the problem of user selection strategy in the context of CRN.
Both centralized and distributed solutions are presented. Simulation results
carried out based on a realistic network setting show promising results.
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5.1 Introduction

Motivated by the desire for efficient spectral utilization, we present a novel
algorithm based on binary power allocation for sum rate maximization in
cognitive radio networks. At the core lies the idea of combining multi-user
diversity gains with spectral sharing techniques and consequently maximiz-
ing the secondary user sum rate while maintaining a guaranteed quality
of service to the primary system. In most of the approaches that can be

Figure 5.1: The Cognitive Radio Network with one primary user (PU) and
M = 4 secondary users attempting to communicate with their respective
pairs in an ad-hoc manner during an primary system transmission, subject
to mutual interference.

found in the literature, the need may exist for centralized knowledge of all
channel and interference state conditions for all nodes in the network. To
circumvent this problem, the design of so-called distributed resource allo-
cation techniques is crucial. Distributed optimization refers to the ability
for each user to manage its local resources (e.g. rate and power control,
user scheduling) based only on locally observable channel conditions such
as the channel gain between the access point and a chosen user, and pos-
sibly locally measured noise and interference. A key example of multi-user
resource allocation is that of power control, which serves as means for both
battery savings at the mobile, and interference management. In this work,
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we will focus on binary power control since it has the advantage of leading
towards simpler or even distributed power control algorithms [42]. In [43],
it was also shown that the optimal power control, with respect to the sum
rate, is always binary for a two-cell network as well as in the low signal-
to-interference ratio (SINR) regime for an N−cell (link) network. In the
general case when the number of cells (links) > 2, it was also demonstrated
by extensive computer simulations that a restriction to binary power levels
yields only a negligible capacity loss [44].
A particularly noteworthy question in the context of cognitive radio, when
we seek to optimize the sum system capacity, is to guarantee a QoS to PUs.
There are a large number of proposals for all communication layers treating
the increase of restrictions to spectrum utilization [24], but the QoS issue
still has not been clearly defined. In addition, it is unclear how secondary
system opportunism, is compatible with the support of QoS for both cogni-
tive radio systems and primary systems. The FCC proposed the concept of
”interference temperature” as a way to have unlicensed transmitters share
licensed bands without causing harmful interference. Rather than merely
regulate transmitter power at fixed levels, as in the past, the scheme would
have governed transmitter power on a variable basis calculated to limit the
energy at victim receivers, where interference actually occurs. As a practical
matter, however, the FCC abandoned the interference temperature concept
recently [45] due to the fact that it is not a workable concept and would re-
sult in increased interference in the frequency bands where they were to be
used. While offering attractive promises, cognitive radios face various chal-
lenges, starting from defining the fundamental performance limits of this
radio technology, in order to achieve the capability of using the spectrum
in an opportunistic manner. Specifically, cognitive radio is required to de-
termine the spectrum band allocation that meets the QoS requirements of
different users. This decision can be made by assessing the channel capacity,
known as the most important factor for spectrum characterization. In this
contribution, we will propose a different way to efficiently protect primary
systems from SU interference, based on outage probability. The notion of
information outage probability defined as the probability that the instanta-
neous mutual information of the channel is below the transmitted code rate
was introduced in [20]. Accordingly, the outage probability can be written
as:

Pout(R) = P {I(x;y) ≤ R} (5.1)

Where I(x;y) is the mutual information of the channel between the trans-
mitted vector x and the received vector y and R is the target data rate in
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(bits/s/Hz). Reliable communication can therefore be achieved when the
mutual information of the channel is strong enough to support the target
rate R. Thus, the cognitive transmitter can adapt its transmit power p
within the range of [0;Pmax] to fulfill the two basic goals listed as follows:

• Self-goal : Trying to transmit as much information for himself as pos-
sible,

• Moral-goal : Maintaining the primary users outage probability unaf-
fected.

The motivation behind doing so is that, in any case, the PU will not neces-
sarily need all that rate. In fact, the primary user will experience the SUs
interference, and as long as all his target rate (depending on his QoS) to
be achieved, he does not care about what he leaves more. In what follows,
we adopt this setting and consider a CRN in which primary and secondary
users attempt to communicate, subject to mutual interference. We propose
a distributed cognitive radio coordination that maximizes the CRN sum
rate while minimizing the interference to the primary user. Our goal is to
realize PU-SU spectrum sharing by optimally allocating SU transmit pow-
ers in order to maximize the total SU throughput under interference and
noise impairments, and short term (minimum and peak) power constraints,
while preserving the QoS of the primary system. In such approaches, users
individually make a decision on their transmit power so as to optimize their
contribution to the system throughput. At the core of the distributed con-
cept lies the idea of making the interference more predictable by making
the network larger or denser, and consequently the resource allocation prob-
lem of a given user is made more dependent on the local channel conditions
of that user, thus facilitating distributed optimization. At first sight, joint
resource allocation does not lend itself easily to distributed optimization
because of the strong coupling between the locally allocated resources and
the interference created elsewhere in the CRN. Hence the maximization of a
SU capacity taken individually will not in general result in the best overall
network capacity, although we suggest later cases for which the outcomes
for the centralized and distributed capacity optimization will differ little.
Following the above trend, we will explore a distributed joint resource allo-
cation framework and then analyze what would be the loss when considering
a distributed strategy in terms of the number of active users and the average
rate with respect to a centralized strategy where the system rely on some
form of centralized control to obtain gains at various layers of the communi-
cation stack. Our study treats both downlink and uplink communications.
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In both cases, we will derive a distributed power allocation algorithm and
address the QoS issues for the primary system from an outage point of view.

The next Section describes the cognitive radio network. In Section 5.3,
the proposed distributed power control algorithm is investigated in both
the high and low SINR regimes, respectively. Section 5.4 includes the pri-
mary users’ QoS issues. Simulation results are provided in Section 5.5, and
Section 5.6 concludes the chapter.

5.2 The Cognitive Radio Context

5.2.1 The System Model

We consider a wireless CRN with a collection of users randomly distributed
over the geographical area considered. Users can be both transmitters and
receivers. By virtue of a scheduling protocol, one PU and M pairs of sec-
ondary users are simultaneously selected from these users to communicate
at a given time instant, while others remain silent. The channel gains are
assumed i.i.d. random variables. Throughout this chapter, we will use the
following notation:

• the index of SUs j lies between 1 and M ,

• hpu,n denotes the channel gain from the PU indexed by pu to a desired
SU n,

• hpu,pu denotes the channel gain between the base station (BS) and the
PU,

• hj,n denotes the channel gain from SU j to a desired SU n,

• the data destined from the primary system is transmitted with power
ppu.

• the data destined from SU j is transmitted with power pj .

In the coverage area of the primary system, there is an interference boundary
within which no SUs can communicate in an ad-hoc manner. Thus, as can
be seen in Figure 5.1, for the impairment experienced by the primary system
to be as small as possible, a SU must be able to detect very reliably whether
it is far enough away from a primary base station, i.e., in the area of possible
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cognitive radio operation. The expression of the PU instantaneous capacity
is

Cpu = log2

(
1 +

ppu | hpu,pu |2
M∑

j=1

pj | hj,pu |2 +σ2

)
(5.2)

where σ2 is the ambient noise variance. On the other hand, by making SUs
access the primary system spectrum, the jth SU experiences interference
from the PU and all neighboring co-channel SU links that transmit on the
same band. Accordingly, the jth SU instantaneous capacity is given by:

Cj = log2 (1 + SINRj) ; for j = 1, ...,M (5.3)

where

SINRj =
pj | hj,j |2

M∑

k=1
k 6=j

pk | hk,j |2 +ppu | hpu,j |2 +σ2

(5.4)

SUs need to recognize their communication environment and adapt the pa-
rameters of their communication scheme in order to maximize the cognitive
capacity, expressed as

Csum =
1
M̃

M̃∑

j=1

Cj , (5.5)

while minimizing the interference to the primary users, in a distributed fash-
ion. The sum here is made over the M̃ SUs allowed to transmit. Moreover,
we assume that the coherence time is sufficiently large so that the channel
stays constant over each scheduling period length. We also assume that SUs
know the channel state information of their own links, but have no infor-
mation on the channel conditions of other SUs. No interference cancelation
capability is considered. Power control is used for SUs both in an effort to
preserve power and to limit interference and fading effects.

5.2.2 The Cognitive Radio protocol

Under this scheme, we allow SUs to transmit simultaneously with the PU as
long as the interference from the SUs to the PU that transmits on the same
band remains within an acceptable range. Specifically, we impose that SUs
may transmit simultaneously with the PU as long as the PU in question
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does not have his QoS affected in terms of outage probability. We consider
that PUs operate at a desired rate (depending on their respective QoS de-
mands). Based on PU channel statistics, we determine the outage failure,
in other words the probability that the PU of interest is actually under that
rate. From a practical point of view, the outage probability as well as the
requested rate can be broadcasted before the start of the communication by
the primary system base station, and is used as a preamble for the PU to get
informed which data rate is requested. This preamble can also be overheard
by SUs who can then learn about these outage values.

One basic assumption throughout this chapter is that a SU can vary its
transmit power, under short term (minimum and peak) power constraints,
in order to maximize the cognitive capacity, while maintaining a QoS guar-
antee to the primary user. The idea of the binary on/off power control is
simple, as well as yielding quasi-optimal results in a number of cases [44].
As such, it constitutes a promising tool for making spectrum sharing a real-
ity. Besides complexity reduction, an important additional benefit of binary
power control is to allow distributed optimization.

5.3 Binary power control algorithm

Secondary users offer the opportunity to improve the system throughput
by detecting the PU activity and adapting their transmissions accordingly
while avoiding the interference to the PU by satisfying the QoS constraint
on outage. The motivation behind the proposed technique is that, by oppor-
tunistically adapting their transmit power with the guide of the proposed
strategy, SUs can maximize the achievable sum rate under the constraint
of maintaining the outage probability of the PU not degraded. Our goal
within this work is thus to determine, under the assumption that the PU
is oblivious to the presence of the cognitive users, what would be the cog-
nitive system capacity (which can also be viewed as the total increase in
system capacity (or spectral efficiency) due to the SUs’ activity) and, at the
same time, the maximum number of cognitive communication links allowed
in such a system. We present a distributed algorithm for power allocation
in the sense that it requires a SU to decide distributively to either transmit
data or stay silent over the channel coherence time depending on a specified
SNR threshold. The optimization problem can therefore be expressed as
follows:

Find {p1∗, ..., pM∗} = arg max
p1,...,pM

Csum (5.6)
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∑
j∈Ψ

log2

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j

pk | hk,j |2

)
<

∑
j∈Ψ
j 6=m

log2

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j 6=m

pk | hk,j |2

)
(5.8a)

log2

(
1 +SINRm

)
+

∑
j∈Ψ
j 6=m

log2

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j

pk | hk,j |2

)
<

∑
j∈Ψ
j 6=m

log2

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j 6=m

pk | hk,j |2

)
(5.8b)

⇒
(
1 + SINRm

) ∏
j∈Ψ
j 6=m

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j

pk | hk,j |2

)
<

∏
j∈Ψ
j 6=m

(
1 +

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j 6=m

pk | hk,j |2

)
(5.8c)

subject to: 



pj ∈ {0, Pmax}, for j = 1, ..., M

Pout = Prob {Cpu ≤ Rpu | Rpu, q} ≤ q
(5.7)

where Rpu is the PU transmitted data rate. The key idea within the pro-
posed iterative algorithm is, as in [42], to subsequently limit pj to {0, Pmax},
i.e., to switch ”off” transmission in SUs’ links which do not contribute
enough capacity to outweigh the interference degradation caused by them
to the rest of the network. We propose an adaptation of the distributed
algorithm which allows a subset of controlled size M̃ of the total number
of SUs M to transmit simultaneously on the same sub-band. It turns out
necessary to limit the number of SUs interfering with the primary user so as
to guarantee the QoS for the primary system. A SU should be deactivated
if this action results in an increase in the cognitive capacity of SUs or if its
transmission violates the PU outage constraint. Let Ψ be the set of indices
of all presently active SUs.Denoting the SU which is to be potentially turned
off by m, the network capacity with and without SU turned off is given by
the LHS and the RHS of (5.8a) respectively, and after simple manipulations
(5.8c).

5.3.1 At high SINR regime

The CRN described in the previous subsection can be modeled by interfer-
ence channels, due to the fact that SUs employ the same spectral resource
in each link, giving rise to an interference-limited system. At high SINR
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regime, in all ”on” SU, and assuming an interference-limited system, we can
simplify the condition (5.8c) as

SINRm =
pm | hm,m |2

ppu | hpu,m |2 +
∑

k∈Ψ
k 6=m

pk | hk,m |2
<

∏

j∈Ψ
j 6=m

(
ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j

pk | hk,j |2
)

∏

j∈Ψ
j 6=m

(
ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j 6=m

pk | hk,j |2
)

(5.9)
⇓

pm | hm,m |2
ppu | hpu,m |2 +

∑

k∈Ψ
k 6=m

pk | hk,m |2
<

∏

j∈Ψ
j 6=m

∑

k∈Ψ∪{pu}
k 6=j

pk | hk,j |2

∏

j∈Ψ
j 6=m

∑

k∈Ψ∪{pu}
k 6=j 6=m

pk | hk,j |2
(5.10)

Suppose that devices operate in a dense network, i.e. a large number of
SUs is distributed over a restricted geometrical area. Dense networks lend
themselves to simplified modeling of the total interference experienced by
any user, thanks to the large number of interference sources being averaged
at the receiver [46]. Based on the observation that interference to any user
in a large dense network is only weakly dependent on the user’s position,
we can approximate the interference term by an average interference gain,
denoted by G2 which is independent of the user location multiplied, by the
total transmit power of active interferers:

M∑

j=1

pj | hn,j |2' G2
M∑

j=1

pj = G2MPmax , for all n (5.11)

The constant G2 depends only on the average amplitude of the channel gain
and the pathloss. Though only an approximation, this model is supported
by simulations. Accordingly, condition (5.10) becomes

pm | hm,m |2∑

k∈Ψ∪{pu}
k 6=m

pk | hk,m |2
<

∏

j∈Ψ
j 6=m

G2
∑

k∈Ψ∪{pu}
k 6=j

pk

∏

j∈Ψ
j 6=m

G2
∑

k∈Ψ∪{pu}
k 6=j 6=m

pk

(5.12)
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Let us denote by M̃ = card{Ψ} and suppose1 that K =
p

pu

Pmax
. As all ”on”

SUs transmit with Pmax, the mth SU will be active only if

| hm,m |2∑

k∈Ψ∪{pu}
k 6=m

| hk,m |2
>

(
M̃ + K − 1
M̃ + K − 2

)M̃−1

(5.13)

As the number of SUs increases, we get (as in [42])

lim
M̃→∞

(
M̃ + K − 1
M̃ + K − 2

)M̃−1

=

(
M̃ + K − 1
M̃ + K − 2

)M̃+K−2

.

(
M̃ + K − 1
M̃ + K − 2

)1−K

= e = 2.718281...

Thus, for a large network size, a SU will be active if its experimental
signal-to-interference ratio is more than e, namely

SIRm =
pm | hm,m |2

| hi,m |2 +
∑

k∈Ψ
k 6=m

pk | hk,m |2
> e (5.14)

5.3.2 At low SINR regime

The restriction to binary power levels yields in general only a negligible
capacity loss. In addition, as stated before, it was shown in [44] that in
the low-SINR regime, i.e., where the approximation ln(1 + x) ' x holds
with good accuracy, binary power control is in fact always optimal. In the
low SINR regime and starting from (5.8a), we get (5.15a). After simple
manipulations and following (5.15c), the mth SU will now be active if

SINRm <

∑

j∈Ψ
j 6=m

pj | hj,j |2

PmaxG2(M̃ + K − 2) + σ2

' PmaxG2(M̃ − 1)
PmaxG2(M̃ + K − 2) + σ2

(5.16)

1Notice that for the case of uplink K = 1 since the PU is transmitting with ppu = Pmax.
However, in the downlink scenario, K > 1 since the power transmitted by the BS is
generally greater than Pmax.
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pm | hm,m |2
σ2 + ppu | hpu,m |2 +

∑

k∈Ψ
k 6=m

pk | hk,m |2
<

∑
j∈Ψ
j 6=m

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j 6=m

pk | hk,j |2
−

∑
j∈Ψ
j 6=m

pj | hj,j |2
σ2 + ppu | hpu,j |2 +

∑

k∈Ψ
k 6=j

pk | hk,j |2
(5.15a)

pm | hm,m |2
σ2 + ppu | hpu,m |2 +

∑

k∈Ψ
k 6=m

pk | hk,m |2
<

∑
j∈Ψ
j 6=m




pj | hj,j |2
σ2 +

∑

k∈Ψ∪{pu}
k 6=j 6=m

pk | hk,j |2
− pj | hj,j |2

σ2 +
∑

k∈Ψ∪{pu}
k 6=j

pk | hk,j |2




(5.15b)

pm | hm,m |2
σ2 + ppu | hpu,m |2 +

∑

k∈Ψ
k 6=m

pk | hk,m |2
<

∑
j∈Ψ
j 6=m

pj | hj,j |2
σ2 +

∑

k∈Ψ∪{pu}
k 6=j 6=m

pk | hk,j |2
(5.15c)

where we use the same dense average network assumptions as in (5.11).
Suppose, as in the high SINR regime, that we are in an interference-limited
context. This would suggest that σ2 ¿ PmaxG(M̃ + K − 2) in the RHS of
(5.16). As the number of SUs increases, we get

lim
M̃→∞

(
M̃ − 1

M̃ + K − 2

)
= 1 (5.17)

Thus, as previously done, a SU will be active if its experimental SIR is more
than 1:

SIRm = pm | hm,m |2
| hi,m |2 +

∑

k∈k,m

pk | hk,m |2
> 1 (5.18)

We thus confirm, as intuition would expect, that SUs under better SINR
conditions would transmit only above a higher threshold than in the low-
SINR regime.

5.4 Primary system QoS issues

In the current study, we adopt a QoS guarantee to the PU by means of an
outage constraint. This knowledge can be obtained from two manners: In a
centralized mode where the proposed system would require information from
a third party (i.e. central database maintained by regulator or another au-
thorized entity) to schedule SUs coming. In a realistic network, centralized
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system coordination is hard to implement, especially in fast fading environ-
ments and in particular if there is no fixed infrastructure for SUs, i.e., no
back-haul network over which overhead can be transmitted between users.
In fact, centralized channel state information for a dense network involves
immense signaling overhead and will not allow the extraction of diversity
gains in fast-fading channel components. Then, it may be desirable to de-
sign a scheme that can mitigate the interference with low signaling overhead.
To alleviate this problem, we propose a distributed method where SUs can
get rid of PU knowledge. In a distributed framework, the information about
the outage failure can be carried out by a band manager that mediates be-
tween the primary and secondary users [24], or can be directly fed back from
the PU to the secondary transmitters through collaboration and exchange
of the CSI between the primary and secondary users as proposed in [25].
To proceed further with the analysis and for the sake of emphasis, we in-
troduce the PU average channel gain estimate Gpu based on the following
decomposition:

hpu,pu , Gpu ∗ h′pu,pu

where h′pu,pu is the random component of channel gain and represents the
normalized channel impulse response tap. This gives us the following PU
outage probability expression:

Pout = Prob

{
log2

(
1 +

ppuG2
pu | h′pu,pu |2

M̃∑

j=1

pj | hj,pu |2 +σ2

)
≤ Rpu

}
≤ q

' Prob

{
ppuG2

pu | h′pu,pu |2

G2
su

M̃∑

j=1

pj + σ2

≤ 2Rpu − 1

}
≤ q

' Prob

{
| h′pu,pu |2≤

(
2Rpu − 1

)
(

M̃G2
suPmax + σ2

G2
puppu

)}
≤ q

(5.19)

From now on we assume for simplicity of analysis that the channel gains are
i.i.d rayleigh distributed. However, the results can be immediately trans-
lated into results for any other channel model by replacing by the appropriate
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probability distribution function. Continuing from (5.19), we have:

Pout '
∫ (

2Rpu − 1
)
(

M̃G2
suPmax + σ2

G2
puppu

)

0
exp(−t)dt ≤ q (5.20)

Finally, we get the following outage constraint:

Pout ' 1− exp

[
− (

2Rpu − 1
)
(

M̃G2
suPmax + σ2

G2
puppu

)]
≤ q (5.21)

and the maximum number M̃ of active ”on” SUs that transmit with Pmax

is given by

0 ≤ M̃ ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− σ2

G2
suPmax

(5.22)

By writing SNR =
G2

suPmax

σ2
, equation (5.22) can be expressed as:

0 ≤ M̃ ≤ − log(1− q)
(2Rpu − 1)

.
G2

puppu

G2
suPmax

− 1
SNR

= M̃theorie (5.23)

The LHS in (5.23) prevents from obtaining a negative number of users when
the SNR decreases significantly. The formula in (5.23) points out that the
number of SUs allowed to transmit increases as their SNR increases. The
algorithm can be implemented using a centralized controller who observes
global network and makes decisions, or through a distributed algorithm
where each SU performs a distributed voting process. Recent results in [47]
show that the heuristic based algorithms perform similarly to the global
optimum (in a cellular-based context), and the centralized and distributed
algorithms perform almost similarly.

The pseudo-code for the proposed approach is given in Algorithm 1 where
M̃theorie is the number of SUs allowed to transmit ruled by (5.23). An
iterative approach is adopted to obtain an algorithm for power allocation.
The algorithm is first initialized with a full power allocation vector. Each
SU simultaneously measures his SIR and depending on wether the SU is on
high or low SINR, respectively, he remains active or inactive during the next
iteration based on (5.18), respectively (5.14). Similarly, at every iteration,
inequality (5.18) and (5.14) are evaluated for the SU in question based on
the power allocation resulting from the previous iteration, and the power
allocation vector is updated. Within each iteration, each PU verifies the
outage probability constraint based on the resulting power allocation. The
algorithm is run until the secondary sum capacity stabilizes or for a given
number of iterations.
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Algorithm 2 Cognitive Radio Power Allocation(SINR, rate, target outage
probability)

1: p
(1)
j = Pmax ∀j and M̃ (1) = M

2: for it = 1 : ITmax do
3: while M̃ (it) < M̃theorie do
4: for j = 1 : M do
5: ¤ at high SINR regime
6: if SINR(it)

j > e then

7: p
(it+1)
j ← Pmax

8: else
9: p

(it+1)
j ← 0

10: end if
11: ¤ at low SINR regime
12: if SINR(it)

j > 1 then

13: p
(it+1)
j ← Pmax

14: else
15: p

(it+1)
j ← 0

16: end if
17: end for
18: if P

(it+1)
out ≥ q then

19: M̃ (it+1) ← M̃ (it) − 1
20: end if
21: end while
22: end for
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Fairness Issues

As we focus on capacity maximization schemes, it is expected that fairness
issues will arise with regard to some SUs that might experience long periods
of silence due to prolonged detrimental fading conditions or a poor user
spatial distribution. However, we draw the reader’s attention to the fact
that the solutions akin to the cellular scheduling scenario, giving various
levels of fairness-capacity trade-off, can be used also in this context, e.g.
use of proportional-fair type measures [48]. Hence, we may alternatively
use a capacity measure for each SU that is normalized by the throughput
of total SUs in the network. We can adopt a fairness strategy based on
next rule where SUs with large transmit time are dropped after a given
time. Moreover, when multiple orthogonal units are employed, a SU that
is inactive for one code, frequency, or time slot may be active on another.
Investigations of the fairness-capacity trade-off are however, are out of the
scope of this work.

5.5 Numerical Results

To go further with the analysis, we resort to realistic network simulations.
Specifically, we consider a cognitive radio network as described in Figure 5.1
with one PU and M secondary users attempting to communicate during a
transmission, subject to mutual interference. A hexagonal cellular system
functioning at 1.8 GHz with a primary cell of radius R = 1000 meters
and a primary protection area of radius Rp = 600 meters is considered.
Secondary transmitters may communicate with their respective receivers of
distances d < Rp from the BS. Channel gains are based on the COST-231
path loss model [49] including log-normal shadowing with standard deviation
of 10 dB, plus fast-fading assumed to be i.i.d. circularly symmetric with
distribution CN(0, 1). The peak power constraint is given by Pmax = 1
Watt while the power ratio K is taken equal to 10 for the downlink and
equal to 1 for the uplink. This is justified in the light of the fact that the
power control transmitted by the BS is generally taken almost ten times the
primary user transmitted power in multiple possible standards. Figure 5.2
and 5.3 capture the number of active SUs in the downlink and the uplink
respectively for different rates and outage probability. As expected, it is
shown that increasing the target data rate, less SUs are allowed to transmit.
As an example, in the downlink, 9 SUs are allowed to transmit at a rate
equal to 0.1 bits/s/Hz and a target outage probability q = 1% while only
7 SUs are active at a rate equal to 0.5 bits/s/Hz and for the same outage
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Downlink system for q = 1% and R = 0.1 bits/s/Hz
Downlink system for q = 1% and R = 0.3 bits/s/Hz
Downlink system for q = 1% and R = 0.5 bits/s/Hz

Figure 5.2: Number of active secondary users vs. number of SUs for different
rates and outage probability in the downlink.
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Figure 5.3: Number of active secondary users vs. number of SUs for different
rates and outage probability in the uplink.
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probability. On the other hand, in the uplink, at a rate R = 0.1 bits/s/Hz
and an outage probability q = 1%, we get 3 and 5 active SUs for 10 and 20
potential SUs, respectively. Although not shown here, we also remark that,
asymptotically, i.e., as the number of SUs goes large, the number of active
SUs keeps constant due to the influence of interference impairments on the
PU’s QoS. This tends to confirm the intuition from formula (5.23) where
the number of active SUs is always upper-bounded by M̃theorie.
Figure 5.4 and 5.5 depict the sum secondary user capacity per user in the
downlink and the uplink respectively. As expected, it is found that the
capacity of the uplink system outperforms that of downlink system. On
the other side, increasing the number of SUs yields significantly increase in
capacity because the increase in degree of freedom more than compensates
for the decrease in SINR due to interference. However, reaching a certain
number of SUs, the sum SU capacity per user decreases as the number
of SUs increases. Notice here that, as the primary cell radius R and the
primary protection area radius Rp decrease, the sum secondary user capacity
per user becomes more sensitive to the interference impairments leading
to a significant decrease in the sum secondary rate. The current curve
claims that in CRN, when one attempts to maximize the number of active
SUs, the cognitive capacity degrades asymptotically. Typically, there is a
fundamental trade-off between cognitive capacity maximization and number
of active SUs maximization.

5.6 Conclusion

In this chapter, we explored the idea of combining multi-user diversity gains
with spectral sharing techniques to maximize the secondary user sum rate
while maintaining a QoS to a primary user. Both uplink and downlink
scenarios are treated. Our contribution within this chapter is two-fold. In
the first part of the chapter, we derived a distributed algorithm for power
allocation under a cognitive capacity maximization criterion and minimum
and peak power constraints. We found out that a secondary user can self-
adapt its spectrum assignment to approximate a new optimal assignment in
order to maximize the system spectral efficiency. We also investigated the
QoS issues from an outage point of view. Both theoretical and simulation
results based on a realistic network setting are shown to exhibit interesting
features in terms of CRN deployment while maintaining QoS for the primary
system by means of outage probability. In particular, we showed that in such
CRN, one should make a trade-off between cognitive capacity maximization
and number of active SUs maximization.
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Figure 5.4: Sum secondary user capacity per user vs. number of SUs for
different rates and outage probability in the downlink.
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Figure 5.5: Sum secondary user capacity per user vs. number of SUs for
different rates and outage probability in the uplink.
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Chapter 6

Conclusions and Future
Work Directions

In this thesis, we have studied resource allocation techniques in spectrum
pooling cognitive radio networks. We have also attempted to define schemes
for accessing to the radio spectrum and posing several constraints in the
management and in the sharing strategies for such a precious resource.
Within this setting, We have considered different system models in which
cognitive users compete for a chance to transmit simultaneously or orthogo-
nally with the primary system. On the basis of these models, We have also
defined the specific resource allocation problem and offer insights into how
to design such scenario in a cognitive radio network environments.

We have initially investigated the problem of orthogonal communication
scenarios between the primary system and cognitive users whereby a device
transmits over a certain time or frequency band only when no other user
does. Typically, we have considered a generic spectrum pooling scenario
where users communicate in an orthogonal manner enabling public access
to the new spectral ranges without sacrificing the transmission quality of the
actual license owners. For the first time, our analysis quantified the achiev-
able gain of using spectrum pooling with respect to classical radio devices in
terms of the spectral efficiency as well as the maximum number of possible
pairwise communications within such a scenario.

97
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Next, we have extended the cognitive protocol to allow cognitive users to
transmit simultaneously with the primary user in the same frequency band
as long as the level of interference with the primary user remains within an
acceptable range. We have first introduced the notion of the virtual noise
threshold which represents a proxy for the primary user to allow cognitive
user to profit from the primary user resources in an opportunistic manner,
and at the same time, to maintain a guarantee of service to the primary
user when cognitive communication is considered. The proposed strategy
was proved to be the optimal one that achieves the maximum rate for both
users under the constraint that the secondary user guarantees a quality of
service for the primary user. We have explicitly derived the capacity of the
primary as well as the secondary user. Asymptotic analysis shows that (i)
the sum system capacity of such a cognitive scenario using a virtual noise
threshold as a proxy for the primary user performs always better than clas-
sical communication system where the primary user selfishly maximizes its
capacity, and (ii) the sum system capacity is maximized for a particular
value of the virtual noise threshold, while maintaining a quality of service
for the primary user.
Then, we have investigated the problem of joint power allocation and user
selection in a CRN consisting of multiple secondary transmitters and re-
ceivers communicating simultaneously in the presence of the primary sys-
tem. Both uplink and downlink scenarios are treated. We have derived a
distributed algorithm for power allocation under a cognitive capacity maxi-
mization criterion and minimum and peak power constraints. We found out
that a secondary user can self-adapt its spectrum assignment to approxi-
mate a new optimal assignment in order to maximize the system spectral
efficiency. We have also investigated the QoS issues from an outage point
of view. As a result, we have showed that in such CRN, one should make a
trade-off between cognitive capacity maximization and number of active SUs
maximization. Next, we have explored the user selection strategies where
centralized and distributed strategies were presented. Both theoretical and
simulation results based on a realistic network setting provide substantial
throughput gains, thereby illustrating interesting features in terms of CRN
deployment while maintaining QoS for the primary system by means of out-
age probability.
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Future Work Directions

Although we have tried to solve some of the problems linked to cognitive
radio radio network resource allocation, a number of issues arise as a con-
sequence. The most notable of these, is the notion of cooperation in mesh
cognitive radio architecture. Cooperative communication has been known
recently as a way to overcome the limitation of wireless systems. In some
recent works, the cognitive radios are allowed to cooperate for sensing the
spectrum, so that the hidden terminal issues are addressed [14] [15]. Ex-
tending these algorithms to mesh networks or developing new algorithms
based on this framework would be the next step.
Specifically, for future future work, it would be of great concern to study
the spectrum sharing methods where multiple systems coexist and interfere
with each other in such systems. Cooperation can be employed for both
centralized and decentralized networks separately with different degree of
information exchange. Obviously, one of the greatest challenges is to build
a radio capable of intelligently finding and handling the available frequency
band without any compromise on the primary system quality of service.
Moreover, an important issue in the design of mesh networks is to pro-
pose a general theory upon information theory where the constraints of de-
lay/protocol overhead are taken into account in the notion of capacity which
also remain to be investigated. Specifically, we still need to provide cross-
layer designs for more general classes of communications schemes (typically
for slow to highly mobile networks with a smooth transition between the
two). Accordingly, it is of major interest to look at the problem of spectral
efficiency maximization in a cross-layer point of view. The problem would
then be to find the appropriate parameters and the corresponding metrics
which would best fit the system model considered (number of secondary
users, spectral efficiency, bit-error, primary system quality of service, over-
head...). Following the above trend, it is interesting to explore distributed
joint resource allocation framework to reduce the feedback information be-
tween users and then analyze performances of such schemes with respect
to a centralized strategy where the system rely on some form of centralized
control to obtain gains at various layers of the communication stack.
Extensions of the problem for multi-primary users with limited CSI are
also problems of timely relevance that require further research. Moreover,
fairness issues between cognitive users, which have not been taken into ac-
count in our work, need to be incorporated in order to provide substantial
throughput while satisfying certain QoS constraints between cognitive users.
In order to conclude, we might say that the theoretical limits of cognitive ra-
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dio systems are relatively understood nowadays. However, the gap between
the current practical schemes and the theoretical limits is still significant,
making the design of cognitive radio networks an open and exiting issue.
Notably, proposals such as ultra-wide band (UWB) and interference tem-
perature have called into question the validity of the FCCs hierarchy and
required reexamination of the source of authority for the FCCs unlicensed
spectrum access rules.
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Appendix

APPENDIX 7.1
Optimal Power allocation

Appendix 7.1 The optimization problem being convex, the optimal solu-
tion is computed by applying the Lagrangian. By considering the inequality
constraint in (5.15c) as an equality we obtain:
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pi
2, λ, µi
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1
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(7.1)
By differentiating the Lagrangian with respect to pi∗

2 and setting the deriva-
tive equal to zero, we get:
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1
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1 |2 +pi∗
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N
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2 |2= 0 (7.2)

Solving for pi∗
2 in equation (7.2) leads to the solution1:

pi∗
2 =

1
λ + Nµi | hi

2 |2
− pi

1 | hi
1 |2 +σ2
| hi

2 |2
; ∀ i (7.3)

1For the sake of simplicity, we will omit the term in 1
ln(2)

for the rest of our calculations.
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The constraints in (4.11) lead to the following Karush-Kuhn-Tucker (KKT)
conditions as in [40]:
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= 0 ∀ i

µ∗i ≥ 0
(7.4)

From equation (7.3), we obtain:
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Following equation (7.5), if λ∗ ≤ | hi
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we obtain µ∗i > 0 leading

by considering KKT condition in (7.4) to the following solution:
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Let us now consider the case where λ∗ >
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This means that we have µ∗i = 0 leading to the following solution:
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This concludes the first part of the proof.

The Second part of the theorem comes from a direct derivation by writing
the secondary user power allocation as:
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(7.8)

By taking the sum over the N sub-bands and by considering the average
power constraint in (5.15a), we get the desired result. ¥
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APPENDIX 7.2
PROOF OF THEOREM 4.2

Appendix 7.2 By replacing by the optimal power constraint p∗2, we get the
piecewise continuous functions on the three regions with respect to λ:
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For the sake of simplicity, let us define the following variables:
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Equation (7.9) becomes then:
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T1 = 1 + α; if λ ≤ β
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γ

λ
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(7.10)

Let us now analyze the variation of the above function with respect to the
three regions as function of λ. By computing the quantity (T1−T2), we find
that:

T1 − T2 =
γ

β
− γ

λ
(7.11)
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• In the first region, we have

if λ ≤ β ⇒ T1 ≤ T2

and it is clear that T1 ≥ 1





⇒ max {min [T1, T2(λ)] , 1} = T1

(7.12)

• In the second region, we have

if λ ≥ β ⇒ T2 ≤ T1

if λ ≤ γ ⇒ T2 ≥ 1





⇒ λ {min [T1, T2(λ)] , 1} = T2 (7.13)

• In the third region, we have

if λ ≥ β ⇒ T2 ≤ T1

if λ ≥ γ ⇒ T2 ≤ 1





⇒ max {min [T1, T2(λ)] , 1} = 1

(7.14)

By comparing (7.10) with the results corresponding to each region defined
above, we establish the desired result. ¥

APPENDIX 7.3
PROOF OF THEOREM 4.3

Appendix 7.3 Given a virtual noise level, we will study asymptotical per-
formances of such a system in terms of the sum capacity when N is assumed
to be infinite. Let us first compute the expression of the sum capacity by mak-
ing N →∞ when cognitive communications are possible. The expression in
(4.9) becomes

Csum,∞ = C1,∞ + C2,∞ (7.15)
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Let us first study achievable performances of each user. By making N →∞,
the primary user capacity in (4.1) becomes

C1,∞ =
∫ ∞

0
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where γ0 is the Lagrange’s multiplier satisfying the average power constraint,
namely:
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Capacity of the primary user in (4.1) becomes:
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Similarly, we compute the capacity of the secondary user
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∫ ∞
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Let us now compute the sum capacity of a system where the primary user
decides to maximize its rate selfishly. In other words, it will water-fill over
the ambient noise level σ2 and no resources will be left for potential cognitive
users.

C
′
sum,∞ =

∫ ∞

0
log2

(
1 +

p1(t).t
σ2

)
.f(t)dt

=
∫ ∞

γ′0σ2

log2

(
t

γ′0.σ2

)
.f(t)dt.

(7.18)

where γ′0 is the Lagrange’s multiplier satisfying the average power constraint
on σ2. Now, in order to compute the difference between the sum capacity in
the two configurations, let us compare the following difference
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where:

Θ =
∫ ∞
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Therefore, we have just to show that Θ is positive. Numerical root finding
is needed to determine different values of γ0 and γ′0. Our numerical results
show that, as long as condition (4.18) is satisfied, we have γ0.σ
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with probability one. We then obtain
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Thus, under our assumptions, Θ is always positive and the sum capacity
of cognitive system that considers virtual noise threshold performs always
better than for traditional systems. ¥
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