
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA

COMMUNICATION

THESE

pour obtenir le titre de

DOCTEUR EN SCIENCES
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Abstract

Wireless sensor networks are networks consisting of spatially distributed
autonomous devices called sensors, deployed to cooperatively collect infor-
mation and send it back to a location in which it can be extracted and
analyzed. One of the most challenging topic in these networks is how to
efficiently use the limited energy resource in each sensor node in order to
increase the lifetime of the whole network.

In this thesis, we address the source-channel coding problem applied to
wireless sensor network models where sensor nodes are observing sources
of information and sending back their gathered data through a Gaussian
multiple-access channel to a given receiver or collector node.

In a first part, independent random sources varying slowly in time are
considered. A source-channel code adapted with the application character-
istics is proposed and bounds on the optimal achievable performance are
derived. Several model variants involving noncoherent detection and the
presence of observation noise are also studied.

In a second part, arbitrarily correlated discrete sources of finite alphabets
are considered. After being encoded, they are sent through a Gaussian
multiple-access channel with phase shifts unknown at the transmitters and
completely known at the receiver. For both random ergodic and arbitrary
non-random models for the phase shifts, it is proved that the separation
theorem holds, and consequently, the strategy of combining Slepian-Wolf
coding to capacity achieving channel encoders is optimal. For continuous
sources, it is shown that the source-channel separation is asymptotically
optimal.

Finally, a wireless sensor network monitoring a random physical field is
considered. The performance of a linear encoder scheme is investigated and
bounds on the optimal achievable performance are derived.
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Résumé

Les réseaux de capteurs sans fil sont des réseaux qui se composent de
plusieurs noeuds autonomes appelés capteurs, déployés sur une surface pour
collecter des informations et les transmettre à un endroit où elles peuvent
être extraites et analysées. Un des plus grands défis de ces réseaux est de
savoir utiliser efficacement la ressource d’énergie limitée de chaque capteur
afin d’augmenter la durée de vie du réseau tout entier.

Dans cette thèse, nous abordons le problème de codage source-canal
appliqué à certains modèles de réseaux où des capteurs observent des sources
d’information, et renvoient les données recueillies à travers un canal gaussien
à accès multiple vers un récepteur ou un noeud collecteur.

Dans une première partie, des sources aléatoires indépendantes qui vari-
ent lentement dans le temps sont considérées. Un code source-canal adapté
aux caractéristiques de l’application est proposé et des bornes sur la perfor-
mance optimale sont dérivées. Plusieurs variantes de ce modèle, compor-
tant la détection non cohérente et la présence de bruit d’observation, sont
également étudiées.

Dans une deuxième partie, des sources discrètes à alphabets finis et ar-
bitrairement corrélées sont considérées. Après avoir été codées, elles sont
transmises à travers un canal gaussien à accès multiple soumis à des décalages
de phase inconnus aux émetteurs et complètement connus au récepteur.
Pour les modèles aléatoires et arbitraires des phases, on montre que le
théorème de séparation s’applique, et par conséquent, la stratégie de com-
biner le codage de Slepian-Wolf avec des encodeurs atteignant la capacité du
canal est optimale. Pour des sources continues, on montre que la séparation
source-canal est asymptotiquement optimale.

Finalement, un réseau de capteurs sans fil surveillant un champ physique
aléatoire est considéré. La performance du codage linéaire est étudié et des
bornes sur la performance optimale sont dérivées.
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Chapter 1

Introduction

1.1 General Introduction

A wireless sensor network (WSN) is a wireless network consisting of spatially
distributed autonomous devices called sensors that cooperatively monitor
physical fields or environmental conditions, such as temperature, sound,
vibration, pressure or motion, at different locations [1, 2, 3, 4, 5, 6]. Origi-
nally, the development of such networks was motivated by military applica-
tions such as battlefield surveillance or border security. However, they are
now used in many civilian applications, including environment and habitat
monitoring [7, 8], home automation and traffic control. The application
requirements and the unique features of WSNs make them different from
the traditional ad hoc networks. The characteristics of WSNs and their
differences with ad hod networks can be summarized as follows [9, 10]:

• Sensor nodes in a WSN are in general tiny devices limited in power,
computational capacities and memory. They use short-range transceiver
for the transmission or the reception of messages and are equipped with
small nonrenewable batteries.

• The number of sensor nodes in a WSN depends on the application and
can be several orders of magnitude higher than in an ad hoc network.

• Sensor nodes are generally densely deployed and have the possibility of

1



2 Chapter 1 Introduction

cooperating between themselves before relaying back the information
to the base station.

• Sensor nodes are prone to failure which can have several reasons, such
as environmental factors, hardware failure, depleted battery, etc...

• Sensor network topologies change and evolve very frequently in time
which is mainly due to sensor node failures. Also, new sensor nodes
may be deployed to replace dead nodes or to extend the coverage of
the network.

• Sensor nodes use a broadcast communication paradigm while ad hoc
networks are based on point-to-point communications.

1.2 Applications

The range of applications of wireless sensor networks is increasing very fast
and covering several domains: military, civil, environmental, health, etc...In
this section, we will talk more about WSN applications in each of these
domains [11]:

1.2.1 Military Applications

Asset monitoring : commanders can monitor locations of the troops, weapons
and supplies to enhance the control and the communication.
battlefield monitoring : vibration and magnetic sensors can locate and track
enemy forces in the battlefield.
Urban warfare: Deploying sensors in cleared buildings can prevent their re-
occupation and track the enemy activity inside them.
Protection: prevention and protection from radiations, biological and chem-
ical weapons can be achieved by the deployment of a network of sensor nodes
in the area of interest detecting the level of radiation or the presence of toxic
products.

1.2.2 Civil Applications

surveillance: a sensor network can detect fire in buildings and give infor-
mation about its location. It can also detect intrusions and track human
activity.
Disaster prevention: sensor nodes deployed under water can prevent from
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disaster like oceanic earthquake or impending tsunami.
Disaster recovery : after an earthquake or a terrorist attack, sensor nodes
can detect signs of life inside a damaged building.

1.2.3 Environmental Applications

Environment and habitat monitoring : a WSN deployed in a subglacial envi-
ronment [12, 13] can collect information about ice caps and glaciers. Sensor
networks can also be deployed to measure population of birds and other
species [14]. Also, WSN can provide a flood warning [15] and monitor coastal
erosion [16].
Disaster detection: forest fire can be detected and localized by a densely
deployed WSN.

1.2.4 Medical Applications

Home monitoring : home monitoring for chronic and elderly patients allows
long-term care and can reduce the length of hospital stay.
Patient monitoring : sensor nodes deployed on the body of patients in hos-
pitals ([17]) allow the collection of periodic or continuous data like temper-
ature, blood pressure, etc...

1.3 Motivation and Challenges

Recent advances in wireless communications, low-power circuit design and
electronics have enabled the development of low-cost, low-power, multifunc-
tional sensors to be used in a WSN context. As sensor nodes are equipped
with small batteries, one of the most challenging research subjects is how to
increase the lifetime of a WSN by preserving as much as possible the small
amount of energy in each node. Power consumption in a sensor node can be
divided into three domains: sensing, communicating, and data processing.
Sensing power varies with the nature of applications while energy consump-
tion at the data processing stage is much less than the one consumed for
the communication process. Hence, the major problem of energy consump-
tion is restrained to designing energy-efficient communication protocols. In
large scale sensor networks, routing protocols have their great impact on
the energy consumption of each sensor node. For this sake, different strat-
egy of routing has been proposed in the literature: directed diffusion [18],
LEACH protocol [19], PEGASIS [20], TEEN [21, 22], and many others as
in [23, 24, 25, 26].
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Figure 1.1: Wireless sensor network deployed over an area.
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Figure 1.2: Wireless sensor network model.

In this thesis, we are more concerned with working in the physical layer,
and more precisely with designing energy-efficient coding strategies that en-
sure an efficient use of the limited power resources in each sensor node. We
consider applications where deployed sensor nodes are observing random
sources and sending their observations through a multiple-access channel
(MAC) to a common receiver or collector node (see Fig. 1.1 and Fig. 1.2).
Typical applications for such models can be found in healthcare area where
sensors deployed on a patient send information periodically to a given re-
ceiver. In general, small scale sensor networks like the ones used for indoor
applications are also concerned by this type of model. In hierarchical sensor
networks [27, 28, 29, 30](Fig. 1.3), our model can represent the communi-



1.3 Motivation and Challenges 5

cation inside each cluster between the sensors and the cluster head. It can
also represent the communication between the cluster heads and the fusion
node. Note that a cluster head may have more resources than a sensor node
especially in terms of energy which allows it to have more processing ca-
pacities and longer range communications. For example, in a hospital we
need to collect information from several patients. In this case, a cluster (i.e.
one cluster head and a given number of sensors) can be dedicated to each
patient. The sensors send their data to the cluster head that could be put
on the patient, on his bed or in his room. Then, the cluster heads collect
all the received information and relay it back to a given fusion node.
The coding problem for such kind of applications is also known in the liter-
ature as the sensor reachback problem [31]. Depending on the application,
the observations at the sensor nodes might be independent or correlated;
in the latter case, coding schemes that exploit this correlation in order to
enhance the system performance should be considered. Besides, the receiver
might be interested in decoding all the observed sources or to reconstruct a
random field based on the sensors observations.

Fusion

node

ClusterCluster

head

Sensor

node

Figure 1.3: Hierarchical wireless sensor network model.



6 Chapter 1 Introduction

1.4 Thesis Outline and Contributions

As mentioned above, we focus our study on the communication problem that
may arise in such models, and more precisely on coding strategies leading
to optimal system performance. The thesis report can be divided into three
main parts:

• The first part deals with independent sources observed by a deployed
WSN where the receiver is interested in decoding all the sources with
the best possible fidelity. The work in this part is done in chapter 2.
Here, we consider the case where sensor nodes are tracking informa-
tion sources that are varying very slowly in time; this case represents
a typical application for WSNs where sources like temperature, light,
radiations, etc...are not fast-varying in time. We start the chapter by
addressing the coding problem of one sensor node observing a slowly
time-varying source and sending its information to a given receiver.
The slowly-time varying characteristic of the source implies that the
time interval between two i.i.d. source samples is large enough (it
can be minutes, hours or even days depending on the application),
and therefore, the communication channel can be used a large num-
ber of times to transmit the information from the sender to the re-
ceiver. Therefore, for practical reasons, the energy constraint has to
be considered per source sample and not per channel use. Due to the
large interval of time between two i.i.d. source samples, the sensor
node will not have the possibility to encode long sequences of i.i.d.
source realisations and therefore it is constrained to encode one sin-
gle realisation, to send it through the channel and then to decode it
at the receiver. From channel coding point of view, it is well-known
that Shannon capacity can be achieved when encoding sequences of
increasing blocklength which is not the case of the considered WSN
application; apart from some special cases of source-channel matching
where uncoded delay-free transmission achieve optimal system per-
formance, new codes making use of a single source realisation and
exploiting large channel dimensionality should be constructed. In this
chapter, we propose a simple code based on a quantizer followed by
a modulator and combined with a MAP decoder at the receiver. We
derive achievable bounds on the performance and lower bounds us-
ing the classical information theory; we compare the proposed coding
scheme performance with other existing joint source-channel codes in
the literature. We make several practical generalisations of the consid-
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ered point-to-point communication model, like the one involving short
sequence coding, noncoherent detection at the receiver and noisy ob-
servations at the sensor node. We prove that significant gain can be
obtained with our proposed code when short sequences of i.i.d source
samples are encoded, and show that noncoherent detection results in
very small loss in the system performance. At the end of this chapter,
we generalise the point-to-point model to the one described in Fig.
1.2 where multiple sensors observing independent, slowly time varying
sources, send their information through a noisy MAC to the collector
node. Also for this case, we use the code proposed for the single sensor
case while the multiple access problem is solved by using a suitable
protocol that change the MAC into a set of parallel channels.

• Chapters 3 and 4 constitute the second and the most important part of
this thesis. In these chapters, we consider the same WSN model as the
one depicted in Fig. 1.1; however, we assume that the sources observed
by the sensor nodes are arbitrarily correlated. In chapter 3, the sources
are represented by discrete sources of finite alphabets and the receiver
wishes to reconstruct these sources with an arbitrarily small probabil-
ity of error. Here, we address the coding problem from a theoretical
point of view, which means that we are interested in deriving necessary
and sufficient conditions for lossless transmission of the sources regard-
less of the code complexity and of its incurred delay. This means that
each sensor is supposed to have very powerful computational capaci-
ties and also the possibility of encoding long sequences of i.i.d source
samples. In our model, we consider that the channel noise has a Gaus-
sian distribution and suppose the existence of phase shifts in the MAC
that are unknown at the transmitters while being completely known
at the receiver. Note that the optimal coding strategy of correlated
sources separately encoded and sent through a real MAC (i.e. when
no phase shifts are considered) is not known until now, and the best
achievable performance still remains an open problem in information
theory [32]; in this case, it is well-known that the coding strategy
that consists of compressing the sources in the Slepian-Wolf sense and
then adding capacity achieving channel encoders is sub-optimal. This
strategy known also as the separation theorem or the source-channel
separation was first introduced by Shannon in [33], and was proved to
be optimal in point-to-point communication scenarios. Unfortunately,
this separation does not hold for general models in network informa-
tion theory. However, in our model where phase shifts are considered
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to be unknown at the transmitters and completely known at the re-
ceiver, we prove that the source-channel separation is the best coding
strategy, hence, combining Slepian-Wolf coding to capacity attaining
channel encoders leads to optimal system performance. First, this
result is important from a theoretical point of view since our model
constitutes one of the rare scenarios in network information theory
where the separation theorem holds; it tells us also that if the phases
are not known at the transmitters, we cannot get better performance
than the one achieved by a separation-based coding scheme. Second,
it is important to point out that it is not convenient to acquire the
phase knowledge at the transmitters, since this operation reveals to be
very costly and energy consuming for the sensor nodes; this shows the
practical side of our model and reveals the utility of our separation
result in real-life applications.

The same model scheme is considered in chapter 4; the main differ-
ence remains in considering the sources as continuous random vari-
ables of finite energies. Given power constraints on the channel in-
puts, the receiver wishes to reconstruct estimates of the sources with
the best achievable fidelity. We prove that in the high fidelity regime,
the separation based on lossy source coding combined to channel en-
coders achieving the MAC capacity is asymptotically optimal. This
implies that in practical applications where small distortions are re-
quired when estimating the sources, a separation-based coding scheme
is quasi-optimal. This separation can be viewed as an extension of
the one obtained in chapter 3 to the lossy coding case where some
information loss on the sources is allowed. We note here that we have
used the asymptotic characterization of the rate distortion region of
the lossy multiterminal source coding problem (see [34]) to prove the
quasi-optimality of the separation in the high fidelity regime, its full
characterization remaining one of the most longstanding open problem
in information theory.

• Chapter 5 constitutes the third and last part of this thesis. In this
chapter, we consider a WSN deployed in an area to monitor a random
physical field. We assume here a real Gaussian multiple-access channel
and consider that the random field is generated by a fixed number of
Gaussian random variables. Each observation at the sensor node is
encoded linearly before being transmitted to the receiver which has
to reconstruct an estimate of the random field with the best possible
fidelity. Linear coding is also known under uncoded transmission where
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the observation is just multiplied by a constant in order to satisfy the
considered energy constraint in each sensor; this coding strategy is
known to be optimal in several cases like the ones presented in [35]
and [36]. We derive lower and upper bounds on the performance and
find the asymptotic decreasing behavior of the distortion as a function
of the number of sensors.
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Chapter 2

Source-Channel Coding for
Very-Low Bandwidth
Sources

In this chapter, we address the source-channel coding problem of a sensor
observing a slowly time-varying Gaussian source and communicating its in-
formation to a receiver through a Gaussian channel. Due to the slowly
time-varying characteristic of the source, we consider that the sensor is ca-
pable of using many channel dimensions per source symbol. Under an energy
constraint per source realisation, we derive a theoretical lower bound on the
MSE distortion as well as an analytical upper bound based on a practical cod-
ing scheme involving a linear uniform quantizer followed by an orthogonal
modulation and a MAP receiver. For this coding scheme, we prove the opti-
mality of the linear uniform quantizer in the high energy regime in the sense
that it achieves the best rate of decay of the upper bound among all other
types of quantizer. Other coding schemes coupled with an MMSE estimator
are also proposed and their performances are compared. An extension to the
case where the sensor has the capability of encoding a sequence of K source
components is studied and a general upper bound in that case is obtained.
Assuming the presence of a channel phase in the transmission unknown at
the receiver, we derive upper and lower bounds on the system performance
and plot numerical results comparing the coherent reception case to the non-

11
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coherent one. A variant of the system model involving the presence of an
observation noise at the sensing stage is studied. Finally, we extend the
work to the case of multiple sensor nodes observing independent sources and
sending their observations to a single receiver through a Gaussian multiple
access channel.
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2.1 Introduction

We consider one sensor node tracking a slowly time-varying random se-
quence and sending its observations over a wireless channel to a receiver.
The source is represented by a Gaussian random variable U of zero mean
and variance σ2

u = 1. The sensor is in general a tiny device with strict en-
ergy constraints. The communication channel between the sender and the
receiver is an additive white Gaussian noise channel. An important question
is how to efficiently encode the random source, and what performance can
be achieved. The slowly time-varying characteristic of the source has two
main impacts on the way the coding problem should be addressed: firstly,
the time between two observations is long, and the sensor will not wait for a
sequence of observations to encode it. Therefore, the sensor will encode only
one observation before sending it through the channel. Secondly, for each
source realisation the channel can be used a large number of times, hence,
there is no constraint on the dimensionality of the channel codebook. The
latter condition amounts to saying that very low-rate codes should be used.

Encoder Decoder

ÛU X

Z

Y

Figure 2.1: System model

The model is depicted in Fig. 2.1. The encoder maps one realisation
of the source U ∼ N(0, 1) into X , (X1, . . . , XN ) where N denotes the
dimension of the channel input. X is then sent across the channel corrupted
by a white Gaussian noise sequence Z, and is received as Y. The receiver
is a mapping function which tries to construct an estimate Û of U given
Y. The fidelity criterion that we wish to minimize is the MSE distortion
defined as

D , E[(U − Û)2], (2.1)

under the mean energy constraint

E[||X||2] ≤ E. (2.2)

It is well-known that the linear encoder (i.e. X =
√

EU) achieves the best
performance under the mean energy constraint for the special case N = 1
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[35], [37], [38]. We extended the optimality of the linear encoder as E → 0 to
the case where the source-channel rate is less than one. In the high energy
regime, this optimality no longer holds and the best we can do is to bound
the MSE distortion by deriving a lower and an upper bound and trying to
minimize the gap between these two bounds.
In fact, a lower bound on the distortion over all possible encoders and de-
coders is easily derived using classical information theory. For an upper
bound on the optimal performance, we propose several achievable schemes
based on separated source-channel encoders combined with a MAP receiver
or an MMSE estimator. Note that an MMSE estimator is the one which
minimizes the MSE distortion, but, from a practical point of view, it is too
complex to implement. The separate source-channel encoder is based on a
quantizer followed by a modulator. Here, the Gaussian source is quantized
in b bits which are mapped onto an appropriate modulation before being
transmitted over the channel. The distortion is caused by the quantization
process and the noisy channel. Increasing the number of quantization bits
per source component has the effect of reducing the quantization error and
simultaneously increasing the error induced by the channel; decreasing it
will have the opposite effect. Thus, the number of quantization bits has to
be optimized as a function of the energy. Such optimization can be found in
the literature for example in [39] and [40], where the authors try to bound
the optimal number of quantization bits that minimizes distortion; the main
difference with our model remains in the power constraint they are consid-
ering. The choice of the quantizer and the modulator has a great impact
on the upper bound and is discussed in section 2.2. We show that for high
SNR the chosen quantizer is quasi-optimal among all other symmetric ones,
in the sense that it achieves the best rate of decay of the upper bound.

In this chapter, we make comparisons with two quite related works in
the literature based on joint source-channel coding schemes and presented
in [41, 42]: In [41], the authors developed the theory of non-linear map-
ping (known also under the name of twisted modulation schemes) where a
source sample is directly mapped to an N -dimensional curve. A comparison
between a PPM ( Pulse Position Modulation ) scheme and our digital en-
coder shows that this latter can achieve the same performance attained by
the PPM modulator for a source belonging to [−1; 1]. In [42], the authors
present a joint source-channel type of codes based on dynamical systems;
although these codes exhibit an interesting scaling property of MSE with the
SNR for fixed bandwidth expansion, the comparison shows that our digital
scheme still achieves better performance than these codes. Other kind of
analog codes are developed by Chen and Wornell in [43]; it is shown that
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the MSE distortion decreases as E−(3/2). In [44], assuming weak noise, the
distortion corresponding to 1 : N dimension expansion systems is gener-
alised to K : N dimension expanding mappings. In [45], the authors use
a digital coding scheme that can exploit the channel bandwidth expansion
and try to optimize numerically both the quantizer and the modulator for
a fixed K:N mapping. Note that this optimization is computationally hard,
subject to local minima, does not lead to theoretical bound on the distortion
as a function of energy and does not give the optimal source-channel rate
r , K/N for minimal distortion.
After making comparisons with previous related works, we extend our cod-
ing and decoding schemes to more practical models:

1. Firstly, it is extended to the case where the encoder maps K source
realisations; here we assume that the sensor node can wait until having
K i.i.d realisations of the source. It is shown that significant improve-
ments can be achieved while performing short sequence coding.

2. Secondly, we generalise the performance bounds to the case of non-
coherent reception where the channel induces a phase unknown at
the receiver that is constrained to noncoherently decode the message.
Here, we consider that obtaining this channel knowledge at the re-
ceiver is energy consuming for the sensor node especially when the
phase state is changing in time. Theoretical lower and upper bounds
are derived for the noncoherent case that are practically the same as
for the coherent one. Comparisons based on simulations show a small
performance gap that is decreasing with energy. As we are seeking
more realistic models, we consider the case where the observations are
noisy since no sensor node has perfect sensing capabilities. Also for
this case, lower and upper bounds on the performance are derived.

3. Finally, we study the case of multiple sensors monitoring indepen-
dent sources and sending their informations to a single collector node
through a multiple-access channel (MAC). Here also, we derive a lower
bound on the optimal performance using the classical information the-
ory. To upper bound the optimal performance, we use the same coding
scheme as for the single sensor case, and we assume that the band-
width of the MAC is large enough so that the sensor nodes can send
their informations through parallel channels with unconstrained band-
width. While in this chapter, the multiple sensor case will be limited
to independent sources, in the next chapter, we will address the coding
problem when correlation between the sources is involved.
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2.2 System performance with coherent reception

2.2.1 Lower Bound

Let us take first the more general case where the encoder maps K source
components U , (U1, . . . , UK) into X = (X1, . . . , XN ), and the decoder
maps Y = (Y1, . . . , YN ) into Û , (Û1, . . . , ÛK); the source-channel code
rate is equal to r , K

N . Define the distortion as DK , 1
KE[||U − Û||2] and

the mean energy constraint as

N∑

i=1

E[X2
i ] ≤ KE. (2.3)

Clearly, it suffices to put K = 1 to return to our special model stated above
in the introduction section and depicted in Fig. 2.1. Now, let us find a
lower bound on the distortion DK over all possible encoders and decoders
satisfying (2.3). We have these standard inequalities [46]

I(U; Û) = h(U)− h(U|Û) (2.4)
= h(U)− h(U− Û|Û) (2.5)
≥ h(U)− h(U− Û) (2.6)

≥ K

2
log(2πe)−

K∑

i=1

h(Ui − Ûi) (2.7)

≥ −
K∑

i=1

1
2

log(E[(Ui − Ûi)2]) (2.8)

≥ K

2
log(

1
DK

), (2.9)
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and

I(U; Û) ≤ I(X,Y) (2.10)
= h(Y)− h(Y|X) (2.11)

≤
N∑

i=1

h(Yi)− h(Z) (2.12)

≤
N∑

i=1

1
2

log(E[Y 2
i ])− N

2
log(σ2

z) (2.13)

≤ N

2
log(

∑N
i=1 E[Y 2

i ]
Nσ2

z

) (2.14)

=
N

2
log(

KE + Nσ2
z

Nσ2
z

). (2.15)

From these inequalities, we obtain

DK ≥ 1
(1 + KE

Nσ2
z
)N/K

(2.16)

Therefore,

D = D1 ≥ 1
(1 + E

Nσ2
z
)N

. (2.17)

The RHS of that inequality is a decreasing function of N . Since it is uncon-
strained in our model specifications, we obtain that

D ≥ lim
N→∞

1
(1 + E

Nσ2
z
)N

= e−E/σ2
z , Dlower. (2.18)

The RHS term in (2.18) constitutes a lower bound over D and coincides
with D(C) where D(R) is the rate distortion function of the source U ,
C = limN→∞CN , and CN is the capacity of the N -dimensional channel
defined by

CN , max
p(x):E[||X||2]≤E

I(X,Y). (2.19)

Note that the lower bound could be achieved by encoding infinite-length
source sequences but, when we are constrained to encode one source compo-
nent, it is not the case anymore; in fact, the equality in h(Y) ≤ ∑N

j=1 h(Yj)
is achieved when Yj and thus Xj are independent; but Xj are all functions
of one realisation of U , therefore they must be correlated. Thus, for the case
of one source component coding, the inequality in (2.12) is strict and the
lower bound is not achievable.
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2.2.2 Performance of a Linear Encoder

The linear encoder is the one that simply multiplies the source output by a
scaling factor in order to match the energy requirement of the system before
sending it through the noisy channel. Followed by an MMSE estimator at
the receiver, the achieved distortion is given by [38]

D =
σ2

z

σ2
z + E

. (2.20)

As said previously in the introduction, it is well-known that the linear en-
coder is optimal when the source-channel rate is equal to one. But when
this rate goes to zero, it is no longer the case as it can be seen by comparing
(2.20) to (2.18). Although this bad performance of the linear encoder when
one source component can be mapped onto an infinite dimensional channel,
it still has a very nice behaviour when the amount of the transmitted energy
is small. In fact, by expanding Dlower and the distortion in (2.20) as E → 0,
we can write

Dlower = e−E/σ2
z ≈ 1− E

σ2
z

and D =
1

1 + E/σ2
z

≈ 1− E

σ2
z

. (2.21)

Therefore, the linear encoder is still optimal when E → 0 even if the source-
channel rate is less than one. In the sequel, we will be more interested in
constructing codes that have nice performance in the high energy regime.

2.2.3 Analytical Upper Bound

As shown in the previous section, the resultant distortion corresponding
to the linear coding scheme decreases linearly with the energy E while in
the case of very-low bandwidth sources, the lower bound is exponentially
decreasing in E. In order to minimize this gap, we propose a separate source-
channel coding scheme and derive an analytical upper bound on the minimal
achievable distortion. As presented in Fig. 2.2, the encoder is formed by a
uniform linear quantizer followed by an orthogonal modulator. The choice
of an orthogonal modulation is motivated by the fact that the probability of
correct detection approaches that of the regular simplex constellation when
the size of the modulation becomes large [47, p. 381]. The optimality of the
regular simplex is proved in [48] and [49] for different energy constraints
and assumptions on apriori probabilities, although not those arising in our
model (i.e. average energy constraint and non-uniform priors). However, it
is also shown in [50] that, under an average energy constraint, the regular
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simplex still optimizes the union bound even if its ’strong’ optimality does
not hold.

U X S

Z

Y X̂
MAP

receiver

Linear

quantizer

Orthogonal

Modulation

Figure 2.2: The proposed coding scheme based on a linear quantizer followed
by an orthogonal modulation and a MAP receiver

The choice of a uniform quantizer is motivated first by its simplicity,
secondly by its easy-calculated analytical upper bound on its quantization
distortion, and finally for its quasi-optimality in the high resolution regime
from source coding point of view. It is perhaps interesting to point out that
the use of a Max-Lloyd quantizer will reduce the quantization distortion and
not the MSE distortion that we wish to minimize. The optimal quantizer
design of a source sent over a noisy channel was found by Kurtenbach and
Wintz in [51] and [52]. The corresponding quantization values and levels
are written in terms of the source input distribution and the channel tran-
sition matrix. Besides, it is shown that when the noise power vanishes, the
quantizer coincides with the Max-Lloyd one. After introducing our coding
scheme, we will return to these results and discuss about the complexity of
applying them to our case.

The uniform quantizer that we used is a function f : U → X , {x1, . . . xM}
that assigns a value xi to each u ∈ Ii for i = 1, . . . , M , where xi and Ii are
respectively the quantization values and intervals. The partition of U is as
follows: I1 =]−∞;∆[, IM = [∆;∞[, and for i = 2, . . . , M − 1,

Ii = [−∆ +
∆(i− 2)
2b−1 − 1

;−∆ +
∆(i− 1)
2b−1 − 1

[, (2.22)

where ∆ = 2
√

b log 2, M = 2b and b ≥ 2 is an integer representing the
quantization bits per source component. The quantization levels are chosen
as follows: x1 = −∆, xM = ∆ and for i = 2, . . . , M − 1, xi is the value
in the middle of Ii. This quantizer is easy to build and its corresponding
quantization distortion achieves the exponential rate of decay of 2−2b(1+o(b)),
where o(b) is a function that goes to zero when b → ∞. It is illustrated in
Fig. 2.3. The output X = xi of the quantizer is assigned to a signal
S = si chosen from an orthogonal modulation of size M that is sent through
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the Gaussian channel. We assume that the transmitted signals have equal
energy. Given the received signal, a MAP receiver makes the decision on

x1

−∆ ∆
xM

I1

I2
I3 IM−2 IM−1

IM
x2 x3 xM−2 xM−1 U

p(u)

Figure 2.3: The linear quantizer

the signal that has been sent and decodes X̂ = xj where

j = arg max
i=1,...,M

p(y|xi)pi (2.23)

= arg max
i=1,...,M

ln pi − 1
2σ2

z

||y − si||2 (2.24)

= arg max
i=1,...,M

ln pi +
1
σ2

z

yT si, (2.25)

and pi =
∫
Ii

p(u) du for i = 1, . . . ,M denote the apriori probabilities. Now
let Pij , p(xj |xi) = p(sj |si) denotes the probability of decoding xj given
that xi has been transmitted and Q(t) ,

∫∞
t

1√
2π

e−u2/2 du; the expression
of Pij can be easily found: if i 6= j

Pij = EA


(1−Q(Tij −

√
E/σ2

z))
M∏

k=1
k 6=i,j

(1−Q(Tkj))


 (2.26)

and Pii = EA




M∏

k=1
k 6=i

(1−Q(Tki +
√

E/σ2
z))


 (2.27)

where Tij = A/σz − σz
E log(pi|pj), and A ∼ N(0, σ2

z). Hence, the exact
expression of the distortion is

D =
M∑

i,j=1

Pij

∫

Ii

(u− xj)2p(u) du. (2.28)
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The results of Kurtenbach and Wintz in [51] and [52] state that, for a given
source distribution and fixed channel transition matrix, the quantization
values and transition levels can be optimized; but, on one hand, the calcula-
tion of the transition matrix is too hard for computation, and, on the other
hand, we desire to bound the distortion in order to be able to optimize the
number of quantization bits given a certain amount of energy. It is impor-
tant to point out that an algorithm based on calculating, after optimizing
the quantizer at step 1, the new channel transition matrix that depends on
the apriories at step 2, then repeating these two steps several times, is not
sure to converge because step 2 will minimize the probability of error and
not the MSE distortion.

The following bound on the MSE distortion holds:

D = DQ(1− Pe) + DePe (2.29)
< DQ + DePe (2.30)

where De is the MSE distortion given that an error decision has been made,
Pe is the probability of making an error and DQ represents the quantization

distortion. Using the inequality Q(∆) < e−∆2/2√
2π∆

, we can write

DQ = 2
∫ ∞

∆
(u−∆)2p(u) du +

M−1∑

i=2

∫

Ii

(u− xi)2p(u) du

<
2e−∆2/2

√
2π∆

+
∆2

(2b − 2)2
. (2.31)

Again, using the same upper bound on the function Q(∆) and the fact that
De < 4∆2 when |u| ≤ ∆, we obtain

De < 4∆2 + 2
∫ ∞

∆
(u + ∆)2p(u) du

< 4∆2 +
2(4∆2 + 1)√

2π∆
e−∆2/2. (2.32)

The probability of error can be bounded by

Pe ≤ Mρe
[− E

2σ2
z
( ρ

ρ+1
)]

(2.33)

For the derivation, see Appendix 2.A. Combining all these bounds in (2.30),
(2.31),(2.32) and (2.33), we obtain

D < 2−2b(1+o(b)) + 2
ρb(1+o

′
(b))−Eln(2)

2σ2
z

( ρ
ρ+1

)
(2.34)
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where o
′
(b) is a function that goes to zero when b →∞. This bound is a sum

of two exponential terms: the first represents the quantization distortion and
is independent from the energy while the second represents the distortion due
to the channel error. When we increase the amount of energy E, the second
term decreases and becomes less than the first one; to minimize the upper
bound in that case, the number of quantization bits should be increased so
that the two terms will have the same decreasing behaviour. Thus, when E is
sufficiently large, optimizing the bound in (2.34) with respect to ρ and b gives
D < e−2bopt log(2), with bopt = b E

12σ2
z log(2)

c and ρopt = 1. Thus, the upper

bound approaches the value e−E/(6σ2
z) for large E which represents 7.8dB

loss from the lower bound. Notice that the use of a maximum-likelihood
decoder instead of a MAP gives exactly the same upper bound even if the
performance of the latter is obviously better.

2.2.4 Other Types of Quantizers

The reader may be interested in investigating the use of other types of
quantizers and their influence on the upper bound. In fact, changing the
quantizer will change the bounds on DQ and De. We will prove in this
section that, for high SNR and with any symmetric quantizer, the best rate
of decay of the upper bound will be e−E/(6σ2

z).
On one hand, it is clear that DQ is lowered by 2−2b which represents

the distortion-rate function of the source. A necessary condition for a good
upper bound is that the quantization distortion should be small compared
to σ2

u = 1 when E gets large, i.e. DQ ¿ 1; otherwise, we will obtain a bad
upper bound. On the other hand, it is shown in Appendix 2.B that in the
high energy regime, De & 1 for any symmetric quantizer verifying DQ ¿ 1.
Therefore, the resultant upper bound will not be smaller than

2−2b + 2
ρb−Eln(2)

2σ2
z

( ρ
ρ+1

)
(2.35)

which, when b and ρ get optimized, will decrease like e−E/(6σ2
z). This proves

that the linear uniform quantizer that we have used achieves the best rate
of decay of the upper bound among all other symmetric quantizers.

2.2.5 An MMSE-Based Scheme

Since the MAP receiver is the decoder which minimizes the probability of
error and not the MSE distortion, it is interesting to see the distortion gain
that could be obtained by using an MMSE estimator. To this end, we
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propose a scheme where the range of the Gaussian source is partitioned into
M intervals I1, . . . , IM defined as in section 2.2.3; each of the intervals is
mapped onto a signal chosen from a biorthogonal modulation of size M : for
i = 1, . . . ,M/2, the intervals Ii and IM+1−i are assigned respectively to the
two signals si and sM+1−i which belong to the same axis in the bi-orthogonal
constellation. For i, j = 1, . . . , M , let

Ji ,
∫

Ii

up(u) du, Kij ,
∫ ∞

−∞

p(y|si)p(y|sj)∑M
k=1 pkp(y|sk)

dy. (2.36)

Due to the symmetry in the construction of the encoder, we have that Jj =
−JM+1−j and Ki,j = Ki,M+1−j for all i = 1, . . . , M , j = 1, . . . ,M/2 and
j 6= i,M + 1− i (see Appendix 2.C for the proof).
The receiver is an MMSE estimator which minimizes the mean square error
distortion. The estimate of u is

û(y) = E[U |y] =
1

p(y)

∫ ∞

−∞
up(y|u)p(u) du (2.37)

=

∑M
i=1

∫
Ii

up(y|si)p(u) du∫∞
−∞ p(y|u)p(u) du

=

∑M
i=1 p(y|si)

∫
Ii

up(u) du
∑M

i=1

∫
Ii

p(y|si)p(u) du
(2.38)

=
∑M

i=1 Jip(y|si)∑M
i=1 pip(y|si)

. (2.39)

The MSE distortion can be written as

D = E[(U − Û(Y))2] = 1 + E[Û(Y)2]− 2E[UÛ(Y)] (2.40)

= 1− E[Û2(Y)] = 1−
M∑

i=1

M∑

j=1

JiJjKij (2.41)

= 1 +
M∑

i=1

J2
i Ki,M+1−i −

M∑

i=1

J2
i Ki,i. (2.42)

We have that

Ki,M+1−i =
∫ ∞

−∞

1
(2πσ2

z)M/4 e
−1

2σ2
z

PM/2
k=1 y2

ke−E/2σ2
z

∑M/2
k=1 pk(e

−
√

E

σ2
z

yk + e

√
E

σ2
z

yk)
dy

< e−E/2σ2
z

∫ ∞

−∞

1
(2πσ2

z)M/4 e
−1

2σ2
z

PM/2
k=1 y2

k

∑M/2
k=1 2pk

dy

= e−E/2σ2
z ,
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and Kii = EY|si

[
p(y|si)∑M

k=1 pkp(y|sk)

]

where Y|si is a multivariate Gaussian of mean si and covariance matrix
σ2

zIM/2. Thus,

D < 1 + 2e−E/2σ2
z

M/2∑

i=1

J2
i

−2
M/2∑

i=1

J2
i EY|si


 e

√
E

σ2
z

yi

∑M/2
k=1 pk(e

−
√

E

σ2
z

yk + e

√
E

σ2
z

yk)


 . (2.43)

Now, suppose that we use an orthogonal modulation instead of the biorthog-
onal one; for i = 1, . . . ,M , every interval Ii is mapped into a signal si. Doing
similar calculations as for the biorthogonal case, we obtain

D = 1−
M∑

i=1

J2
i EY|si


e

√
E

σ2
z

yi − e

√
E

σ2
z

yM+1−i

∑M
k=1 pke

√
E

σ2
z

yk


 (2.44)

where Y = (Y1, . . . , YM )|si is a multivariate Gaussian of mean si and co-
variance matrix σ2

zIM . We currently do not have asymptotic expressions
for (2.43) and (2.44) as E → ∞. We will compare the performance of the
MMSE estimator to the MAP one in section (2.3.4).

2.2.6 Comparison with Other Joint Source-Channel Coding
Schemes

We now compare our encoder to other joint source-channel encoders that
try to exploit the channel bandwidth expansion in order to minimize the
resultant distortion.
In [41, pp.623], the authors use a PPM modulator which map a random
input m belonging to [−1; 1] into a signal

sm(t) =
√

Eφ(t−mT0); −1 ≤ m ≤ 1 (2.45)

where E represents the transmitted energy and

φ(t) ,
√

2W
sin 2πWt

2πWt
(2.46)
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is a unit-energy waveform generated by passing an impulse through an ideal
lowpass filter of bandwidth W . The modulated signal is then transmitted
through a noisy channel where the noise is considered to be white Gaus-
sian. While performing a ML decoding at the receiver, it is shown that the
resultant MSE distortion D can be approximated by

D ≈ 12
π2

(
1
β

)2
σ2

z

E
+

2
3

β − 1√
2πE/2σ2

z

e−E/4σ2
z (2.47)

where σ2
z denotes the noise variance and β , 4WT0 denotes the effective

dimensionality of the transmitted signal. By optimizing β as a function
of the transmitted energy, it can be easily shown that in the high energy
regime, the distortion D ≈ e−E/6σ2

z can be achieved. Note that if we use
our encoder to send the random input m in the same channel conditions
while using ML decoder at the receiver, the same achievable distortion can
be attained. Another point is that the performance achieved while using the
joint source-channel encoder is not expected to change for high SNR when
the source to transmit is Gaussian; in the latter case, a certain companding
function which maps the real line onto [−1; 1] can be used in order to adapt
the source to the used coding scheme. Therefore, we deduce that our dig-
ital approach gives practically the same performance as for the analog one
introduced in [41] at least for sources belonging to [−1; 1].
Another type of joint source-channel encoder with which we can make a
comparison is the spherical code based on dynamical systems and intro-
duced in [42]. For fixed bandwidth expansion factor, it is shown in [42]
that the spherical code is quasi-optimal for high SNR by the means that
the rate of decay of its resultant MSE distortion can be arbitrarily close
to the one obtained by the OPTA. In Fig. 2.4, we compare the spherical
code performance to the upper bound corresponding to our separate-based
coding scheme. The curves correspond to a source uniformly distributed in
[0; 1/2] and show the optimality of our scheme compared to the spherical
code. It is also important to say that from a practical point of view, the
decoder of a spherical code is much more complex than the MAP decoder of
an orthogonal modulation. Moreover, we will see in the next sections that,
unlike the joint source-channel coding schemes presented in this paragraph,
the separate-based one can be easily generalised to other variants of our
model, and upper bounds can be easily derived.
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Figure 2.4: Comparison between the spherical code and the upper bound
corresponding to our digital code, applied to a source uniformly distributed
in an interval of length 0.5.

2.2.7 Extension to Sequence Coding

Due to the slowly time-varying characteristic of the source, we have assumed
that just one source component is available to be encoded and then trans-
mitted. We now extend to the case where the sensor can wait until having
a sequence of length K of i.i.d. source realisations at the encoder input.
Under the mean energy constraint in (2.3), we are interested to see how
much the upper bound can be improved by coding a sequence of K source
components. Using the same linear uniform quantizer (see Fig. 2.3), each
source component is quantized in b representing bits. The quantizer is fol-
lowed by an orthogonal modulation of size MK = 2Kb that takes the Kb
bits available at the input and maps them onto an Kb-dimensional signal of
fixed energy equal to KE. Performing MAP decoding, we have that

DK < DQK + DeKPeK (2.48)

where DQK represents the quantization error, DeK the MSE distortion when
an error decision has been made and PeK the probability of making an
error. Clearly, we have DQK = DQ1 = DQ, DeK ≤ De1 = De and PeK ≤
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Mρ
Ke

[−KE

2σ2
z
( ρ

ρ+1
)]
. Doing the same optimization procedure as in section 2.2.3,

we obtain DK < e−2bKopt log(2) for large amount of energy E with ρopt = 1
and

bKopt =
⌊

KE

4(K + 2)σ2
z log(2)

⌋
. (2.49)

Letting K → ∞, the upper bound approaches asymptotically the value
e−E/2σ2

z and the gap with the lower bound is reduced to 3dB.

2.3 System Performance with Noncoherent Recep-
tion

Until now, we have assumed that the receiver has full knowledge of the
channel. This assumption means that the sensor should allocate a part of
his energy to inform the receiver about the channel phase each time it has
an information to transmit. Therefore, the energy allocated for the phase
knowledge is relatively large compared to the one dedicated for the trans-
mission of information which presents a critical question on how efficiently
the limited energy of a sensor battery is used.

In this section, we will study the case where the sensor send no informa-
tion about the channel phase which will be considered as a random variable
denoted by φ with uniform distribution. We will adopt the same notations
as in previous sections with the difference that the random variables rep-
resenting the input, output and the noise of the channel are now complex
values. The model is depicted in Fig. 2.5. The channel noise Z is con-
sidered to be zero mean circularly symmetric Gaussian noise with complex
covariance matrix 2σ2

ZIN .

Encoder
U

e
jΦ

Decoder
ÛX

Z

Y

Figure 2.5: System model with phase shift.
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2.3.1 Lower Bound

As in section 2.2.1, let us take the more general case where the encoder maps
K source components into X and the decoder maps Y into Û. Therefore,
we can write

I(U, Û) ≤ I(X,Y) (2.50)
= h(Y)− h(Y|X) (2.51)
≤ h(Y)− h(Y|X, ejΦ) (2.52)

≤
N∑

i=1

h(Yi)− h(Z) (2.53)

≤
N∑

i=1

log(E[|Yi|2])−N log(2σ2
z) (2.54)

≤ N log(
∑N

i=1 E[|Yi|2]
N

)−N log(2σ2
z) (2.55)

= N log(
KE + 2Nσ2

z

2Nσ2
z

) (2.56)

Making use of the inequality in (2.9), we obtain

DK ≥ 1
(1 + KE

2Nσ2
z
)2N/K

(2.57)

Letting N goes to infinity gives

DK ≥ e−E/σ2
z . (2.58)

2.3.2 Upper Bound

Here we consider the same encoding scheme that we have already used in
section 2.2.3, which is based on the linear uniform quantizer followed by an
orthogonal modulator. As done previously for the coherent reception case,
we will compare between two types of decoders: the MAP/ML decoder and
the MMSE estimator.

MAP/ML decoder

The MAP decoder is the one which minimizes the probability of error and
its corresponding decision rule is given by

m̂ = arg max
m∈{1,...,M}

pmp(y|sm). (2.59)
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p(y|sm) is obtained by averaging with respect to the phase Φ. We have

p(y|sm) =
1
2π

∫ π

−π
p(y|sm, φ) dφ (2.60)

=
1

(2πσ2
z)M

e
− ||y||2+||sm||2

2σ2
z I0(

|yHsm|
σ2

z

) (2.61)

where we used the integral definition of the modified Bessel function I0(z) =
1
2π

∫ π
−π ez cos φ dφ. By considering equal energy signals, the MAP decision rule

can be written as

m̂ = arg max
m∈{1,...,M}

pmI0(
|yHsm|

σ2
z

). (2.62)

With the above equation, it is difficult to derive an analytical upper bound
on the probability of error and consequently on the distortion. Substituting
the MAP by a ML decoder makes the analytical derivations much easier;
the resultant decision rule becomes more simple, and is given by

m̂ = arg max
m∈{1,...,M}

|yHsm|2 (2.63)

while in this case, the probability of error can be bounded by (see [53])

Pe ≤ (M − 1)ρe
− E

2σ2
z
( ρ
1+ρ

)
for any 0 ≤ ρ ≤ 1. (2.64)

Clearly, using the same linear and uniform quantizer as before, the bounds
on DQ and De remain unchanged. Therefore, the analytical upper bound
on the distortion found in 2.2.3 still holds in the case of noncoherent recep-
tion. Moreover, the extension to the case of sequence coding leads to the
same upper bounds as in 2.2.7. Note that in the sequel, we will have some
numerical results comparing the MAP performance to the analytical upper
bound obtained while performing ML decoding.

MMSE Estimator

Now, let us pass to the case where the decoder is an MMSE estimator. The
latter is given by

û(y) =

∑M
i=1 pixiI0(

√
E|yi|
σ2

z
)

∑M
i=1 piI0(

√
E|yi|
σ2

z
)

. (2.65)
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Doing similar derivations as for the coherent detection case (section 2.2.5),
we obtain

D = 1 +
M∑

i=1

J2
i Ki,M+1−i −

M∑

i=1

J2
i Ki,i (2.66)

where the integral in the definition of Kij (Eq. (2.36)) is now over CM . Kij

can be written as a mean with respect to a Gaussian random vector

Kij = eE/2σ2
ZEY


I0(

√
E|yi|
σ2

z
)I0(

√
E|yj |
σ2

z
)

∑M
k=1 pkI0(

√
E|yk|
σ2

z
)


 (2.67)

where Y ∼ Nc
M (0, 2σ2

zIM ). Thus, the distortion is given by

D = 1− e−E/2σ2
Z

M∑

i=1

J2
i EY


I0(

√
E|yi|
σ2

z
)(I0(

√
E|yi|
σ2

z
)− I0(

√
E|yM+1−i|

σ2
z

))
∑M

k=1 pkI0(
√

E|yk|
σ2

z
)


 .

(2.68)
We currently do not have asymptotic expressions of (2.68) as E → ∞; we
will plot in the sequel numerical results representing the system performance
using an MMSE estimator, and make performance comparisons between the
use of an MMSE estimator and that of a MAP decoder.

2.3.3 Noisy Observations

Until now, we have assumed that the observations collected by the sensor
were noiseless. Practically, the sensor has not perfect sensing accuracy and
consequently may induce noise to the observations. Therefore, we consider in
this section a zero mean Gaussian observation noise of variance σ2

w contam-
inating the source before being observed by the sensor. The corresponding
scheme is depicted in Fig. 2.6. The observation noise is denoted by W and
the encoder input by U ′ = U + W .

U

W

Û
Encoder Decoder

X

Z

YU
′

Figure 2.6: The model scheme with noisy observations.
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Lower Bound

Let Û ′ denote the MMSE estimator of U given U ′, i.e.

Û ′ = E[U |U ′] =
1

1 + σ2
w

U ′. (2.69)

By introducing Û ′, the distortion can be written as

D = E[(U − Û)2] (2.70)

= E[(U − Û ′)2] + E[(Û ′ − Û)2] + 2E[(U − Û ′)(Û ′ − Û)] (2.71)

=
σ2

w

1 + σ2
w

+ E[(Û ′ − Û)2] (2.72)

where we have used the fact that E[(U−Û ′)2] = σ2
w

1+σ2
w

and (see the appendix
in [54])

E[(U − Û ′)(Û ′ − Û)] = 0. (2.73)

Therefore,

E[(Û − Û ′)2] = D − σ2
w

1 + σ2
w

. (2.74)

According to the classical information theory, we have

I(X;Y) ≥ I(U ′; Û) (2.75)

= I(Û ′; Û) (2.76)

= h(Û ′)− h(Û ′|Û) (2.77)

= h(Û ′)− h(Û ′ − Û |Û) (2.78)

≥ h(Û ′)− h(Û ′ − Û) (2.79)

≥ 1
2

log
1

(1 + σ2
w)(D − σ2

w
1+σ2

w
)
. (2.80)

Recalling the inequality in (2.56), we obtain

D ≥ e−E/σ2
z

1 + σ2
w

+
σ2

w

1 + σ2
w

as N −→∞. (2.81)
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Upper Bound

Let us now use the same encoding/decoding schemes that we have been
using for the case of noiseless observations. After receiving U ′, the sensor
encodes the normalized energy random variable V = 1√

1+σ2
w

U ′ and sends it

over the channel. At the output, we calculate Û = 1√
1+σ2

w

V̂ , where V̂ is the

estimate of V . The resultant distortion could be written as

D = E[(U − Û ′)2] + E[(Û ′ − Û)2] (2.82)

=
σ2

w

1 + σ2
w

+
1

1 + σ2
w

E[(V − V̂ )2]. (2.83)

As shown in (2.83), any coding scheme that achieves a distortion Dv ,
E[(V − V̂ )2] will achieve a distortion D = σ2

w
1+σ2

w
+ 1

1+σ2
w
Dv with respect to

U.

2.3.4 Numerical Results

In all the numerical results, the distortion is plotted versus the energy, and
the variance of the channel noise is taken equal to one. Fig. 2.7 shows the
inefficiency of the linear encoder compared with the theoretical upper and
lower bounds. Note that the curve representing the upper bound is obtained
like the following: for each value of E, we find bopt, then we calculate the
upper bound over D using the terms in (2.31),(2.32) and (2.105). Also the
model presented in Fig. 2.2 is simulated for different number of quantiza-
tion bits and the simulations are compared to the other curves: it can be
seen how the distortion decreases when the energy grows up until arriving
to a certain constant or ’residual distortion’ that represents the quantization
distortion given a fixed number of quantization bits; therefore, beyond a cer-
tain amount of energy, the number of quantization bits should be increased
in order to decrease the distortion. We can also notice that the linear en-
coder outperforms the coding scheme presented in Fig. 2.2 in the low energy
regime, a fact that reflects the optimality of the uncoded transmission when
E → 0 as shown in section 2.2.2. Fig. 2.8 and Fig. 2.9 show that the
different types of encoders and decoders studied in section 2.2.3 and 2.2.5
have comparable performance; therefore, using a MAP decoder instead of an
MMSE estimator has practically no effects on the MSE distortion especially
when b > 2. The analytical upper bound on the distortion DK (eq.(2.48))
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is plotted in Fig. 2.10 for several values of K. This plot shows the im-
provement that can be made to the upper bound, and consequently to the
performance of the system when we code sequences; it shows that even with
small length sequences, significant gain can be obtained. Plot 2.11 shows
the performance of the MAP-based scheme when noncoherent reception is
performed at the receiver. In Fig. 2.12, it is shown that also in the case
of noncoherent reception, the MAP decoder and the MMSE receiver have
practically the same performance. Fig. 2.13 and 2.14 compare the coherent
reception case to the noncoherent one; they show a very small gap in the
performance which amounts to say that there is no big loss if we receive
noncoherently the transmitted signals.
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Figure 2.7: Performances of the MAP-based scheme compared to the linear
encoder and the theoretical lower bound.
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Figure 2.8: Comparison between the MAP and the MMSE based scheme.
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Figure 2.10: The lower bound compared to the upper bound corresponding
to sequence coding of length K.
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Figure 2.12: Comparison between the MAP and the MMSE-based schemes
for the noncoherent reception case.
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2.4 Multiple sensors

In this section, we consider the case of multiple sensors observing indepen-
dent sources and sending their observations through a Gaussian multiple
access channel to a single receiver. The sources are supposed to be varying
very slowly in time and therefore have a low bandwidth. Each sensor m has
the possibility of mapping its observation Um into an infinite dimensional
channel. This model can be simply viewed as a generalisation of the one de-
picted in Fig. 2.1 to the case of multiple sensors. It is presented in Fig. 2.15.
The receiver decodes each source Um into Ûm. The calculated distortions
are defined as

Dm = E[(Um − Ûm)2] for m = 1, · · · ,M (2.84)

and the transmitted energy assigned to the sensor m is Em, m = 1, . . . , M .

2.4.1 Lower Bound for the Multiple Sensor Case

As in the previous derivations of the lower bounds, we assume that each se-
quence Um = (Um,1, . . . , Um,K) is mapped into a sequence Xm = (Xm,1, . . . ,
Xm,N ) of length N . The shorthand notation AS represents the set of ran-
dom vectors {Ai, i ∈ S} where S is a given set. According to the classical
information theory, a lower bound on Dm can be found like the following:
∀S ⊆ {1, . . . , M}, we can write

I(US ; ÛS) = h(US)− h(US |ÛS) (2.85)

≥ h(US)−
∑

m∈S

h(Um|Ûm) (2.86)

≥ h(US)−
∑

m∈S

h(Um − Ûm) (2.87)

≥ h(US)−
∑

m∈S

K∑

i=1

h(Um,i − Ûm,i) (2.88)

≥ |S|K
2

log(2πe)−
∑

m∈S

K∑

i=1

1
2

log(2πe)E[(Um,i − Ûm,i)2]

= −K

2

∑

m∈S

1
K

K∑

i=1

E[(Um,i − Ûm,i)2] (2.89)

≥ −K

2

∑

m∈S

log Dm =
K

2
log

(
1∏

m∈S Dm

)
(2.90)
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Due to the data processing inequality, we can also write

I(US ; ÛS) ≤ I(XS ;Y) (2.91)
(a)

≤ I(XS ;Y|XSc) (2.92)
≤ h(Y|XSc)− h(Z) (2.93)

≤ h(Y −
∑

m∈Sc

Xm)− h(Z) (2.94)

= h(
∑

m∈S

Xm + Z)− h(Z) (2.95)

≤
N∑

i=1

h(
∑

m∈S

Xm,i + Zi)− h(Z) (2.96)

≤
N∑

i=1

1
2

log 2πe

(
σ2

z +
∑

m∈S

E[X2
m,i]

)
− N

2
log(2πeσ2

z)

≤ N

2
log

(
σ2

z +
∑

m∈S

1
N

N∑

i=1

E[X2
m,i]

)
− N

2
log(σ2

z) (2.97)

=
N

2
log

(
1 +

∑

m∈S

KEm

Nσ2
z

)
(2.98)

where (a) follows from the fact that XS and XSc are independent. Combin-
ing (2.90) and (2.98), we obtain

∏

m∈S

Dm ≥
(

1 +
∑

m∈S

KEm

Nσ2
z

)−N/K

∀S ⊆ {1, · · · ,M}. (2.99)

When the source-channel rate r goes to zero, the set of inequalities in (2.99)
becomes

Dm ≥ e−Em/σ2
z m = 1, · · · ,M (2.100)

which represents a set of lower bounds on Dm.

2.4.2 Upper Bound for the Multiple Sensor Case

The coding scheme that can be used in the case of multiple sensors is the
same one described in section 2.2: therefore, in each sensor, the observation
will be quantized, modulated and then sent through the multiple access
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channel. This latter can be transformed into M non-interfering channels by
using a suitable MAC protocol like TDMA or FDMA. Doing so, the model
can be viewed as M cascaded point-to-point communication schemes where
the receivers can perform MAP decoding or MMSE estimation. Therefore,
all results on the upper bound obtained in the previous sections are still
valid in the case of multiple sensors. Particularly, the distortions that can
be achieved while a MAP decoder is implemented at the receiver can be
upper bounded by (for high SNRs)

Dm . e−Em/(6σ2
z) m = 1, · · · ,M. (2.101)

Notice that when a TDMA protocol is used to avoid the collisions between
the transmitted messages, the synchronization of the sensors might be nec-
essary for some applications and not for others: as an example, if the trans-
mission time is very small compared to the channel bandwidth, each sensor
(assuming the number of sensor is not too large) can choose randomly its
own transmission starting-time without synchronizing with the others, the
probability of collision being too small in this case.

Decoder

g

Z

Y Û1, · · · , ÛM

U1

UM

X1

XMEncoder

fM

Encoder

f1

Figure 2.15: The model scheme of multiple sensors observing independent
sources.

2.5 Conclusion

As a conclusion, we have derived theoretical lower and upper bounds on the
distortion for very-low bandwidth sources. The proposed source-channel
coding schemes outperform the linear coding performance and lead to an
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exponentially decreasing behaviour of the distortion in E. Also, we have
shown that the difference in the performance between a MAP decoder and
an MMSE estimator is negligible. We proved that the gap between the lower
and the upper bound can be significantly reduced by coding relatively short
sequences. We showed that our digital coding scheme based on a linear
uniform quantizer followed by an orthogonal modulator and combined with
an MMSE or MAP decoder gave practically the same performance with
models involving noncoherent detection, noisy observations and multiple
sensors.
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APPENDIX

2.A Probability of Error

By analogy to what has been done in [55], we obtain for the general case of
unequal apriori probabilities that

Pei ≤ p
− ρ

ρ+1

i

∫

Y
p(y|xi)

1
1+ρ


∑

j 6=i

(pjp(y|xj))
1

1+ρ




ρ

dy, (2.102)

ρ being any positive number and Pei representing the probability of error
given that xi bas been sent. Following the same way of derivation as in [53,
p. 65], (2.102) becomes

Pei ≤ p
− ρ

ρ+1

i e
− E

2σ2
z
( ρ
1+ρ

)


∑

j 6=i

p
1

1+ρ

j




ρ

(2.103)

provided that 0 ≤ ρ ≤ 1. Now Let V be a discrete random variable that
takes the value 1/pi with probability pi for i = 1, . . . ,M . Using Jensen
inequality, we have that

E[(V )
ρ

(ρ+1) ] ≤ (E[V ])
ρ

(ρ+1) = M
ρ

(ρ+1) (2.104)

for any 0 ≤ ρ ≤ 1. Thus,

Pe ≤ e
− E

2σ2
z
( ρ
1+ρ

)

(
M∑

i=1

p
1

1+ρ

i

)ρ+1

(2.105)

= e
− E

2σ2
z
( ρ
1+ρ

)

(
M∑

i=1

pi

(
1
pi

) ρ
1+ρ

)ρ+1

(2.106)

≤ Mρe
− E

2σ2
z
( ρ
1+ρ

)
(2.107)

2.B Lower Bound on De

let B denote the event ’An error decision has been made’. Therefore, we can
write,
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De = E[(U − X̂)2|′B′]

= E[(U −X)2] + E[(X − X̂)2|′B′] + 2E[(U −X)(X − X̂)|′B′] (2.108)
(a)

≥ E[(U −X)2] + E[(X − X̂)2|′B′]− 2
√
E[(U −X)2]E[(X − X̂)2|′B′]

(2.109)

= DQ + (
√
E[(X − X̂)2|′B′]− 2

√
DQ)

√
E[(X − X̂)2|′B′] (2.110)

Where (a) follows from applying Cauchy-Schwarz inequality for the last
term in (2.108). A symmetric quantizer has the following properties (see
Eq. (2.26) ): for j = 1, . . . ,M/2

xj = −xM+1−j ; (2.111)
Pi,j = Pi,M+1−j i = 1, . . . ,M and j 6= {i,M + 1− i}.(2.112)

Therefore, E[(X − X̂)2|′B′] can be bounded like the following

E[(X − X̂)2|′B′] = E[X2] + E[X̂2|′B′]− 2E[XX̂|′B′] (2.113)

= E[X2] + E[X̂2|′B′]− 2
M∑

i,j=1
j 6=i

piPijxixj (2.114)

= E[X2] + E[X̂2|′B′] + 2
M∑

i=1

piPi,M+1−ix
2
i (2.115)

> E[X2]. (2.116)

In order to bound E[X2], we can write

DQ = E[(U −X)2] = E[U2] + E[X2]− 2E[UX] (2.117)
= E[U2]− E[X2]− 2E[X(U −X)]. (2.118)

Using Cauchy-Schwarz inequality, (2.118) gives

DQ ≥ E[U2]− E[X2]− 2
√
E[X2]E[(U −X)2]. (2.119)

Resolving this second order inequality (in
√
E[X2]) , we obtain

E[X2] ≥ (
√
E[U2]−√

DQ)2 if
√
E[U2]−√

DQ ≥ 0. (2.120)

Having a high SNR, implies that DQ ¿ 1; combining the inequalities
(2.110), (2.116) and (2.120), we conclude that De & 1 and this completes
the proof.
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2.C Symmetric Encoder Characteristic

Let Ij =]aj ; bj [; due to the symmetry of the encoder, we have that IM+1−j =
]− bj ;−aj [. Therefore, for j = 1, . . . , M/2 we can write

Jj =
∫ bj

aj

up(u) du = − 1√
2π

exp
(
−u2

2

)∣∣∣∣
bj

aj

(2.121)

= − 1√
2π

[
exp

(
−b2

j

2

)
− exp

(
−a2

j

2

)]
(2.122)

and

JM+1−j =
∫ −aj

−bj

up(u) du = − 1√
2π

exp
(
−u2

2

)∣∣∣∣
−aj

−bj

(2.123)

= − 1√
2π

[
exp

(
−a2

j

2

)
− exp

(
−b2

j

2

)]
= −Jj . (2.124)

Now, in order to see the equality between Kij and Ki,M+1−j , we develop
Ki,M+1−j like the following

Ki,M+1−j =
∫ ∞

−∞

p(y|si)p(y|sM+1−j)∑M
k=1 pkp(y|sk)

dy (2.125)

(a)
=

∫ ∞

−∞

1
(2πσ2

z)M/4 exp
(
−1
2σ2

z
||y − si||2

)
exp

(
−1
2σ2

z
||y + sj ||2

)

∑M/2
k=1 pk

[
exp

(
−1
2σ2

z
||y − sk||2

)
+ exp

(
−1
2σ2

z
||y + sk||2

)] dy

(2.126)

=
∫ ∞

−∞

1
(2πσ2

z)M/4 exp
(
−1
2σ2

z
||y − si||2

)
exp

(
−√E

σ2
z

yj

)

∑M/2
k=1 pk

[
exp

(√
E

σ2
z

yk

)
+ exp

(
−√E

σ2
z

yk

)] dy (2.127)

(b)
=

∫ ∞

−∞

1
(2πσ2

z)M/4 exp
(
−1
2σ2

z
||y − si||2

)
exp

(√
E

σ2
z

yj

)

∑M/2
k=1 pk

[
exp

(√
E

σ2
z

yk

)
+ exp

(
−√E

σ2
z

yk

)] dy (2.128)

= Ki,j . (2.129)

where (a) follows from the fact that sM+1−j = −sj for j = 1, . . . , M/2 and
(b) from the change of variable yj −→ −yj .



Chapter 3

Correlated Discrete Sources
Over GMACs with Phase
Shifts

In this chapter, we address the problem of separate encoding of correlated
discrete sources observed by sensor nodes that send their encoded informa-
tion through a Gaussian multiple access channel (GMAC) with phase shifts.
We suppose that the phases are perfectly known at the receiver and unknown
to the transmitters. For discrete sources with finite-cardinality alphabets, we
prove that the separation theorem holds for both random ergodic and arbi-
trary non-random models for the phase shifts, and consequently, the strategy
of combining Slepian-Wolf coding to capacity achieving channel encoders is
optimal for both.

45
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3.1 Introduction

In many sensor network applications, the observations collected by the sen-
sor nodes are spatially correlated, for instance in scenarios where distributed
sensing of a random field is performed (e.g. geological exploration, en-
vironmental sensing, electromagnetic sensing, etc.). With low-cost radio-
equipped sensors, the observations are further encoded and sent through a
noisy channel to a collector node where the information is extracted and pro-
cessed. The main question that arises is how to efficiently encode the data
at each node and how to benefit from the correlation between the observed
sources. Shannon proved in [33] that, in a point-to-point communication
scenario, an optimal way to send a random source through a noisy channel
is to compress the source at a rate slightly greater than its entropy, in bits
per source letter, and then to encode it at a rate slightly less than the ca-
pacity of the channel, in bits per channel use, prior to sending it across the
channel. This coding strategy, known as the source-channel coding theorem
or the separation theorem, is very useful because it permits one to split the
encoder into two separate entities, the first being the source coding block
and the second the channel encoder. Unfortunately, this strategy does not
lead to optimal system performances in general network scenarios. An ex-
ample of the latter is considered in [32], where the authors provide bounds
on the capacity region for the MAC with arbitrarily correlated sources; they
provide sufficient conditions for the correlated sources to be sent over the
channel with an arbitrarily small probability of error. Although the resul-
tant rate region contains the one achieved by separation between the source
and the channel encoders, it is shown in [56] that it is not the capacity
region for reliable transmission. All these results with others in [46] show
the sub-optimality of the separation-based coding strategy and open the
door toward cooperative coding strategies that try to map the correlation
between the sources into correlation between the transmitted signals. One
recent example of this is the scheme described in [57].

The coding problem that we consider here is a variation on the same
theme. We consider M sensor nodes deployed in a certain area where each
of them senses a single spatial dimension of the source and sends a repre-
sentation of its measurement through a GMAC corrupted by phase shifts.
In contrast to the work of El Gamal[58], we assume that no node has side
information with respect to its own channel phase shift, and as a result
cannot align its phase at the receiver in order to benefit from some gen-
eralized form of coherent combining which exploits the source correlation
structure. As a side note, any wireless sensor network problem using a real-
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valued GMAC implicitly assumes this form of synchronization. In removing
the assumption on phase synchronization we focus on the most pertinent
channel model in a pragmatic sense. This is especially true in wireless sen-
sor network applications where we often deal with low-cost components, at
least when it comes to the links between the sensors and the collector node.
Even in relatively high-cost cellular base stations, feedback-based combin-
ing schemes are very difficult (and costly) to achieve even for a centralized
antenna array, let alone for distributed spatial processing across several base
stations. Furthermore, it is conceivable for future low-end sensor networks
that the sensors may not even be equipped with radio receivers in order to
limit power consumption which is often dominated by the receiver electron-
ics. This, of course, would rule out the possibility of any form of closed-loop
synchronisation and necessarily result in phase differences at the receiver.
In our problem formulation, we assume that the source is discrete and of
finite cardinality per dimension and the goal is to reconstruct the vector
source as reliably as possible at the collector node. What remains is to
define a set of necessary and sufficient conditions under which the source
can be sent and reconstructed with an arbitrarily small probability of de-
coding error. We consider two cases for phases variation: ergodic random
phase sequences and deterministic but arbitrarily-varying phase sequences.
By deriving a converse in both cases, we prove that the separation theorem
holds for any number M of sensor nodes. Hence, the set of the achievable
rates is the intersection of two rate-regions, the first being the Slepian-Wolf
rate region [59] and the second, being the capacity region of the GMAC [60].
We discuss several important points concerning the coding theorems stated
in this chapter and prove moreover that the separation still holds even when
inter-sensor communications are considered under a sum-energy constraint.
The latter idea amounts to saying that under a sum-energy constraint, any
kind of information exchange between the sensors is useless. Another closely
related work is that of Barros and Servetto [61, 31]; in their model the up-
link channel is a set parallel non-interfering channels instead of a MAC.
They proved that the separation is also optimal in that case and conclude
that in the absence of interference, there is nothing to lose by compressing
the source dimensions to their most efficient representation (Slepian-Wolf
coding) and separately adding capacity-attaining channel codes.
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3.2 Model

The system model is depicted in Fig. 3.1. We consider M discrete correlated
sources U1, . . . , UM of respectively finite alphabets U1, . . . , UM following the
joint probability distribution p(u1, . . . , uM ). Source vectors U1, . . . ,UM of
dimension K are generated by collecting K i.i.d samples of the spatially
correlated sources U1, . . . , UM respectively. Before being transmitted, these
source vectors are encoded separately by M encoders f1, . . . , fM . The en-
coder fm is a function that maps Um onto a sequence of N channel symbols
Xm , {Xm,n; n = 1, . . . , N}, each of which taken from a finite alphabet Xm.
Thus

fm : UK
m −→ XN

m

um ∈ UK
m −→ xm = fm(um) ∈ XN

m

Let Z = {Zi; i = 1, . . . , N} denote an i.i.d. sequence drawn according to a
Gaussian distribution representing the channel noise where Zi ∼ NC(0, N0) ,
and Φm = {Φm,i; i = 1, . . . , N} denote the set of random phases induced by
the channel and associated to the encoder fm. Let Φ , {Φm; m = 1, . . . , M}
be perfectly known to the decoder. The received signal is Y , {Yi; i =
1, . . . , N} which belongs to the infinite alphabet YN , and Yi can be written
as

Yi =
M∑

m=1

Xm,ie
jΦm,i + Zi. (3.1)

We consider the following power constraint

1
N

N∑

i=1

E
[|Xm,i|2

] ≤ Em (3.2)

for m = 1, . . . , M , where Em represents the mean energy allowed per trans-
mission for sensor m. For the channel phase sequences Φm, we shall consider
the following different cases:

1. Φm are random, perfectly known to the receiver and unknown to
the transmitters, extracted from a jointly stationary and ergodic pro-
cess {Φ1,i, · · · ,ΦM,i}. Furthermore, we assume that Φm,i (the i-th
marginals of the process) are individually uniformly distributed over
[−π, π] and that the i-th marginal distribution of the phase difference
∆Φm,m′,i , Φm,i − Φm′,i is also uniformly distributed over [−π, π].
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2. Φm are arbitrary sequences, denoted by φm since they are non-random.
The transmitters have no knowledge of the phase sequences.

3. Φm are arbitrary and constant sequences, that is, Φm,i = φm for all
i = 1, . . . , N , where φm is an arbitrary value in [−π, π]. In this case,
the phases are constant for the whole duration of transmission but the
transmitters have no knowledge about their values.

In section 3.3, one coding theorem will be dedicated to the first phase se-
quences case, and another one for the last two cases, their corresponding
proof being quite similar. After receiving Y, the decoder generates an es-
timate Ûm on each source Um given the full knowledge on Φ. Thus, we
have

g : YN × [−π; π]NM −→ UK
1 × · · · × UK

M (3.3)
(y,φ) −→ g(y,φ) = (Û1, · · · , ÛM ). (3.4)

Given a code, i.e., a mapping fm : Um 7→ Xm (m = 1, · · · ,M), and
g : (Y,Φ) 7→ (Û1, · · · , ÛM ), we define the error probability as

PK(e) = Pr
(
(U1, · · · ,UM ) 6= (Û1, · · · , ÛM )

)
.

(ejΦ1,1 , · · · , e
jΦ1,N )

(ejΦM,1 , · · · , e
jΦM,N ) Decoder

g

U1

UM

X1

XM
Z

Y Û1, · · · , ÛM

Φ
Encoder

fM

Encoder

f1

Figure 3.1: Correlated sources over GMAC with phase shifts perfectly known
at the receiver
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3.3 Coding Theorems for Correlated Sources Over
GMAC with Phase Shifts

3.3.1 Ergodic Phase Sequences

For the ergodic phase sequences, we have the following coding theorem:

Theorem 1. M discrete correlated sources U1, . . . , UM of finite alphabets
drawn according to p(u1, . . . , uM ) can be transmitted with an arbitrarily small
probability of error over a GMAC with ergodic phases perfectly known at the
receiver and with source-channel rate r , K/N , if and only if

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
, ∀S ⊆ {1, 2, · · · , M}, (3.5)

where the shorthand notation AS represents the set of random variables
{Ai, i ∈ S}.

Proof. The proof of this theorem can be divided in two parts: the direct
part and the converse.

For the direct part, we have to prove that if the conditions in (3.5) are
satisfied, the sources can be transmitted with an arbitrarily small probability
of error. In fact, it is clear that, when the bounds on the joint entropy of
the sources are satisfied, a simple separated approach that makes use of
Slepian-Wolf coding and standard Gaussian superposition coding allows the
transmission and the reconstruction of the sources at the receiver with a
vanishing probability of error.

The converse part of the proof can be found in Appendix 3.A. It is shown
that if the sources are transmitted with an arbitrarily small probability of
error, then they must verify the joint entropy conditions in (3.5). This
theorem shows that in the case of ergodic phases, a separation-based scheme
is optimal. In other words, compressing the sources to their most efficient
representations by performing Slepian-Wolf coding, and separately adding
capacity-achieving channel encoders is an optimal coding scheme. Moreover,
it shows that coding cooperation between the transmitters does not buy
anything.
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3.3.2 Arbitrary Phase Sequences

Assuming that the phase sequences are not random, unknown at the trans-
mitters, but perfectly known at the receiver, we have the following theorem:

Theorem 2. For the arbitrary phase sequences (or arbitrary and constant
phases), M discrete correlated sources U1, . . . , UM of finite alphabets can be
transmitted reliably over a GMAC with a given source-channel rate r if, and
only if their joint entropies satisfy the inequalities in Eq. (3.5).

Proof for arbitrary phase sequences. The direct part of the proof is the same
as for Theorem 1. The converse part can be found in Appendix 3.B.

Proof for arbitrary and constant phase sequences. It is important to point
out that this case cannot be considered as a special case of the arbitrary
phase sequences. Although the necessary and sufficient transmissibility con-
ditions for the case of arbitrary phase sequences are also necessary and
sufficient for the case of arbitrary constant phases, this fact is not immedi-
ately evident. Notice also that constant phases reduce the possibility with
respect to the arbitrary sequences, therefore, the capacity region may be
larger (certainly, not smaller). Hence, we only need to show the converse.
In fact, by repeating the derivations in Appendix 3.B while taking into ac-
count that the phase sequences are arbitrary and constant, we obtain the
following necessary conditions: ∀S ⊆ {1, · · · ,M},

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0
+

1
NN0

inf
φ1,...,φM

{
N∑

i=1

Ti

})
(3.6)

where
N∑

i=1

Ti =
∑

m,m′∈S
m′>m

N∑

i=1

|ρm,m′,i| cos(∆φm,m′ + θm,m′,i)

=
∑

m,m′∈S
m′>m

Re

[
N∑

i=1

|ρm,m′,i|ej(∆φm,m′+θm,m′,i)

]
. (3.7)
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By defining the complex number ρm,m′ as

ρm,m′ ,
N∑

i=1

|ρm,m′,i|ejθm,m′,i , (3.8)

Eq. (3.7) becomes

N∑

i=1

Ti =
∑

m,m′∈S
m′>m

Re
[
|ρm,m′ |ej(∆φm,m′+θm,m′ )

]
. (3.9)

Using Eq. (3.9), it can be shown, as in Appendix 3.B, that

inf
φ1,...,φM

N∑

i=1

Ti ≤ 0. (3.10)

Therefore, we deduce that the following conditions must be verified for reli-
able transmission of the sources

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
∀S ⊆ {1, · · · ,M}. (3.11)

3.4 Discussion

In this section, we discuss several important points that concern the two the-
orems stated above. For the converse of Theorem 2, we mention here two
notes: first, other than providing necessary conditions for reliable commu-
nication, this converse gives in addition some constraints or some properties
about the family of codes that achieves optimality. In fact, for the case
of arbitrary phase sequences, channel symbols at time i corresponding to
an optimal code must be uncorrelated, otherwise the code is suboptimal.
To see it more clearly, let’s take two blocks of channel symbols of length
N corresponding to sensors m and m′. Without loss of generality, we will
assume m = 1 and m′ = 2. From (3.29) and (3.38), we conclude that any
code allowing the reconstruction of the sources with vanishing probability
of error must satisfy

H(U1, U2|USc) ≤ N

K
log

(
1 +

E1 + E2

N0
− 2

NN0

N∑

i=1

|ρ1,2,i|
)

(3.12)
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Knowing that the inequality

H(U1, U2|USc) ≤
N

K
log

(
1 +

E1 + E2

N0

)
(3.13)

can be achieved by a separation-based coding scheme, we deduce that if
ρ1,2,i 6= 0 for at least one i, the optimal system performance cannot be
reached. Therefore, any optimal code, including the one based on the source-
channel separation, must verify ρm,m′,i = 0 ∀m,m′ ∈ {1, . . . , M},m 6=
m′, i = 1, . . . , N . Similarly, for the case of arbitrary and constant phases,
it can be shown that optimal codes should satisfy ρm,m′ = 0 ∀m,m′ ∈
{1, . . . , M},m 6= m′.

The second point on this converse is the one related to the interval of
values the phase shifts can take . Until now, we have considered that phase
shifts can take values in [−π;π]. In fact, Theorem 2 can be extended to
the case where the phase shifts belong to the interval [−π/2;π/2]. There-
fore, restraining the interval of phase values does not break imperatively the
separation optimality. To prove this, it suffices to show that the following
inequality

inf
φ

MS

QMS
(φ

MS
) ≤ 0 (3.14)

still holds. To this end, by choosing

∆φ1,2,i =
{

π/2− θ1,2,i if θ1,2,i ∈ [0;π]
−π/2− θ1,2,i if θ1,2,i ∈ [−π; 0[

(3.15)

it becomes obvious that the infimum over the phase sequences in (3.38) is
less or equal to zero. Then, by making similar modifications to the phases in
(3.40), it can be easily shown that (3.14) still holds. Notice that, although
the separation remains optimal when the phases belong to [−π/2;π/2], there
exist other possibilities of phase intervals for which this optimality still holds
(as an example, when the phases take just two different values α and α+π).

Another important point concerns the fact that in many wireless sensor
networks, the sensors may not be at the same distance from the collector
node. In that case, we should consider an attenuation factor

√
αm associated

to each encoder that reflects the quality of the channel between each sender
and the receiver. If we assume that these attenuation factors are known at
the receiver point, Theorems 1 and 2 can be easily generalised to include
this type of model.

The last point we would like to discuss is the utility of information ex-
change between the sensor nodes under a sum-energy constraint. The ques-
tion here is to see if we can gain something if the sensors have the possibility
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of communicating with each others. The sum-energy constraint is described
by the following inequality

1
N

N∑

i=1

M∑

m=1

E[|Xm,i|2] ≤
M∑

m=1

Em (3.16)

In fact, under (3.16), any kind of communication or information exchange
between the sensors is useless and a separation-based coding scheme is op-
timal. To see it more clearly, assume that the sensors can communicate in
a free manner with each others; therefore, each sensor knows perfectly the
realisations of all the sources. The converse for this resultant model con-
tains obviously all the achievable performances resulting from any kind of
collaboration between the nodes. In that case, one can simply verify that
the necessary condition

H(U1, · · · , UM ) ≤ N

K
log

(
1 +

M∑

m=1

Em

N0

)
(3.17)

must hold, and this for any kind of phase sequences considered in this chap-
ter. Knowing that the above inequality can be achieved by a separation-
based coding scheme without involving any type of collaboration between
the sensor nodes, shows that there is no gain in exchanging information
using inter-sensor connections.

3.5 Conclusion

In this chapter, we extended the separation theorem to the case of sepa-
rately encoded correlated discrete sources sent over a GMAC with phase
shifts perfectly known at the receiver and unknown to the transmitters.
Hence, for different assumptions on the phase shifts, we proved that a set
of two-stage encoders performing distributed source coding in the Slepian-
Wolf sense and capacity-achieving channel coding leads to optimal system
performance. The presented model constitutes one of the rare scenarios in
network information theory where the separation theorem holds. While pre-
vious works in the literature concerned in sending correlated sources over
MAC channels were more focused on cooperative coding strategies and on
trying unsuccessfully to find necessary and sufficient conditions for optimal-
ity, we showed, by introducing a small and practical variation to the model
(which is that of phase shifts unknown at the transmitters and Gaussian
channel noise), that the optimal performance can be simply reached with a
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separate source-channel coding scheme. In the next chapter, we will try to
extend the separation optimality to continuous information sources where
the goal will be to reconstruct them at the receiver within a certain allowable
distortions.
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APPENDIX

3.A Proof of the Converse of Theorem 1

Given a code with a fixed source-channel rate r, Fano’s inequality yields

1
K

H(U1, · · · ,UM |Y,Φ) ≤ λK , (3.18)

where, for a family of codes of increasing block length and achieving van-
ishing error probability, we have λK → 0 as K → ∞. Now, we can write
∀S ⊆ {1, 2, · · · ,M},

H(US |USc) =
1
K

H(US |USc)

=
1
K

H(US |USc ,Φ)

=
1
K

H(US |USc ,XSc ,Φ)

=
1
K

I(US ;Y|USc ,XSc ,Φ) +
1
K

H(US |USc ,XSc ,Y,Φ)

(a)

≤ 1
K

I(US ;Y|USc ,XSc ,Φ) + λK

≤ 1
K

N∑

i=1

H(Yi|USc ,XSc ,Φ)− 1
K

H(Y|US ,USc ,XSc ,Φ) + λK

=
1
K

N∑

i=1

H(Yi −
∑

m∈Sc

ejΦm,iXm,i|USc ,XSc ,Φ)− 1
K

H(Z) + λK

(b)

≤ 1
K

N∑

i=1

E[log Var(Ai(Φ1,i, · · · , ΦM,i))]− N

K
log N0 + λK

(3.19)

where (a) follows from

H(US |USc ,XSc ,Y,Φ) ≤ H(US ,USc |XSc ,Y,Φ) (3.20)
≤ H(US ,USc |Y,Φ)
≤ λK ,

Ai(φ1,i, · · · , φM,i) , (Yi −
∑

m∈Sc ejΦm,iXm,i|φ1,i, . . . , φM,i), and the expec-
tation in (b) is with respect to p(φ1,i, · · · , φM,i). Without loss of generality,
we can restrict the code to have mean zero on all components. Therefore,
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Var (Ai(φ1,i, · · · , φM,i)) = Var

(∑

m∈S

ejφm,iXm,i + Zi

)

= N0 + E

[∑

m∈S

∑

m′∈S

Xm,iX
∗
m′,ie

j(φm,i−φm′,i)

]

= N0 + E

[∑

m∈S

Xm,iX
∗
m,i

]
+

2
∑

m,m′∈S
m′>m

Re
{
E

[
Xm,iX

∗
m′,ie

j∆φm,m′,i
]}

(3.21)

E
[
Xm,iX

∗
m′,i

]
is a complex number depending on m,m′ and i; we shall call

this number ρm,m′,i = |ρm,m′,i|ejθm,m′,i . Letting the average energy of the
i-th symbol be denoted by Em,i , we can rewrite (3.21) as

Var (Ai(φ1,i, · · · , φM,i)) = N0 +
∑

m∈S

Em,i + Ti (3.22)

where
Ti = 2

∑

m,m′∈S
m′>m

|ρm,m′,i| cos(∆φm,m′,i + θm,m′,i) (3.23)

Using Jensen’s inequality, we can write

E [log Var (Ai(Φ1,i, · · · ,ΦM,i))] ≤ log

(
N0 +

∑

m∈S

Em,i + E [Ti]

)

= log

(
N0 +

∑

m∈S

Em,i

)
(3.24)

where the last step follows from the fact that ∆Φm,m′,i is uniformly dis-
tributed on [−π; π]. Using again Jensen’s inequality, we can proceed with
(3.19) and write

H(US |USc) ≤ 1
K

N∑

i=1

log

(
N0 +

∑

m∈S

Em,i

)
− N

K
log N0 + λK

≤ N

K
log

(
N0 +

∑

m∈S

Em

)
− N

K
log N0 + λK (3.25)
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Letting K →∞, we find the necessary conditions

H(US |USc) ≤ N

K
log

(
1 +

∑

m∈S

Em

N0

)
, ∀S ⊆ {1, 2, · · · ,M}. (3.26)

3.B Proof of the Converse of Theorem 2

Given a code with a fixed source-channel rate r and a fixed φ, Fano’s in-
equality yields

1
K

Hφ(U1, · · · ,UM |Y) ≤ λK(φ) (3.27)

where λK(φ) is a function depending on K and φ. We require that a family
of codes of increasing block length achieves vanishing error probability for all
possible φ since they are unknown at the transmitters, i.e., that λK(φ) → 0
as K →∞. Now, we can write,

H(US |USc) =
1
K

H(US |USc) =
1
K

H(US |USc ,XSc)

=
1
K

(
Iφ(US ;Y|USc ,XSc) +

1
K

Hφ(US |USc ,XSc ,Y)
)

≤ 1
K

Iφ(US ;Y|USc ,XSc) + λK(φ)

≤ 1
K

(
N∑

i=1

Hφ(Yi|USc ,XSc)−Hφ(Y|X1, · · · ,XM )

)
+ λK(φ)

≤ 1
K

N∑

i=1

log Var (Ai(φ1,i, · · · , φM,i))− N

K
log N0 + λK(φ)

(3.28)

Since these inequalities must hold for every φ, we obtain the tightest con-
ditions by taking the infimum of the RSH term in (3.28) with respect to φ.
Therefore, letting K goes to ∞, we can write
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H(US |USc) ≤ inf
φ

{
1
K

N∑

i=1

log

(
1 +

∑

m∈S

Em,i

N0
+

Ti

N0

)}

≤ N

K
inf
φ

{
log

(
1 +

∑

m∈S

Em

N0
+

1
NN0

N∑

i=1

Ti

)}

=
N

K
log

(
1 +

∑

m∈S

Em

N0
+

1
NN0

inf
φ

{
N∑

i=1

Ti

})
(3.29)

where we have used again Jensen’s inequality and the monotonicity of the
logarithm in order to take the infimum inside the log. Now, we will prove
that the infimum term in (3.29) cannot be positive, i.e.,

inf
φ

{
N∑

i=1

Ti

}
≤ 0. (3.30)

Notice that if the chosen code satisfies ρm,m′,i = 0 ∀m,m′, i, then the equality
is achieved in (3.30) for all phase sequences; this point will be discussed in
more details in section 3.4. Returning back to the proof of (3.30), let’s take
S = {1, . . . , l} with 2 ≤ l ≤ M ; note that specifying the subset S is just to
simplify notations and the following proof holds ∀S ⊆ {1, . . . ,M}. Define
the matrix

φ
l
, [φm,i] m = 1, · · · , l i = 1, · · · , N (3.31)

and

Ql(φl
) ,

N∑

i=1

Ti (3.32)

=
N∑

i=1

l−1∑

m=1

l∑

m′>m

Re
[
|ρm,m′,i|ej(∆φm,m′,i+θm,m′,i)

]
. (3.33)

Consequently, proving (3.30) reduces to prove that infφ
l
Ql(φl

) ≤ 0. To this
end, we can first derive a relation between Ql−1(φl−1

) and Ql(φl
) like the
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following

Ql(φl
)− Ql−1 (φ

l−1
) (3.34)

=
N∑

i=1

l−1∑

m=1

Re
[
|ρm,l,i|ej(φm,i−φl,i+θm,l,i)

]

=
N∑

i=1

Re

[
e−jφl,i

l−1∑

m=1

|ρm,l,i|ej(φm,i+θm,l,i)

]

=
N∑

i=1

Re
[
e−jφl,i |ρl,i|ejθl,i

]
(3.35)

where

ρl,i = |ρl,i|ejθl,i ,
l−1∑

m=1

|ρm,l,i|ej(φm,i+θm,l,i). (3.36)

Note that for a given code and a fixed φ
l−1

, the complex number ρl,i is
fixed and is independent from φl. Now, it becomes easy to prove that
infφ

l
Ql(φl

) ≤ 0. In fact, for l = 2 we have

Q2(φ1,φ2) =
N∑

i=1

Re
[
|ρ1,2,i|ej(∆φ1,2,i+θ1,2,i)

]
. (3.37)

By taking ∆φ1,2,i = π − θ1,2,i, we obtain that

inf
φ

2

Q2(φ1,φ2) = −
N∑

i=1

|ρ1,2,i| ≤ 0. (3.38)

Suppose now that
inf
φ

l−1

Ql−1(φl−1
) ≤ 0

and that this infimum is attained for a certain value φ
l−1

= φ∗
l−1

; using the
recurrence relation in (3.35), we can write

inf
φ

l

Ql(φl
) ≤ Ql(φ∗l−1

,φ∗l )

= Ql−1(φ∗l−1
)−

N∑

i=1

|ρl,i|

≤ 0. (3.39)
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where the entries of φ∗l = (φ∗l,1, . . . , φ
∗
l,N ) are chosen like the following

φ∗l,i = θl,i − π for i = 1, . . . , N. (3.40)

Using this result in (3.29) completes the proof of Theorem 2 for arbitrary
phase sequences.



62Chapter 3 Correlated Discrete Sources Over GMACs with Phase Shifts



Chapter 4

Correlated Continuous
Sources Over GMACs with
Phase Shifts

In this chapter, we address the problem of separate encoding of correlated
continuous sources observed by sensor nodes that send their encoded infor-
mation through a Gaussian multiple access channel (GMAC) with phase
shifts. Actually, this chapter is an extension of the previous one in the sense
that it extends the results of separation optimality to continuous sources. In
fact, we prove that a coding scheme based on the source-channel separation
is practically optimal in the high fidelity regime where small distortions at
the receiver are required; this separation quasi-optimality holds for random
ergodic and arbitrary non-random models of the phase shifts.

63
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4.1 Introduction

In the previous chapter, we have been dealing with discrete sources where
the goal was to reconstruct them at the receiver with an arbitrarily small
probability of error. This means that no data loss was allowed in order to
recover the information of all the sources at the receiver. In that case, we
have proved that the separation theorem holds and consequently, performing
separate source-channel coding leads to optimal system performance. In this
chapter, we are trying to generalise the separation concept when dealing
with continuous sources. Here, we wish to reconstruct the sources at the
receiver in order to achieve certain fidelity levels. The encoders being subject
to transmission cost constraints, the coding problem is to determine all
fidelity levels that could be attained under any coding strategy despite its
complexity or incurred delay. Proving the separation for this coding problem
needs at least a characterization of the rate-distortion region known also
under the multiterminal source coding problem. This latter is one of the
most long-standing open problem in information theory. Its resultant rate-
distortion region can be viewed as an extension of the Slepian-Wolf region
for lossy coding case. Despite the fact that this problem has been subject to
extensive work in the literature [62], [63], [64], [65], [66] and [67], no general
solution in terms of single letter information quantities is known until now.

Recently, a multi-letter characterization of the rate-distortion region has
been found in [68]; the authors proved that the Berger-Tung’s inner re-
gion [63, 65] extended to multiple-letter representation is exactly the rate-
distortion region. Despite the fact that this multi-letter description of the
rate-distortion region was crucial to extend the separation result obtained in
[61, 31] to the lossy coding case, it is no more helpful, or at least not trivial
to use it on our model. For the case of two correlated Gaussian sources,
the rate-distortion region has been partially found in [64] and then fully
characterized in [69] where the authors proved that the Berger-Tung’s inner
region is exactly the rate-distortion region. In the high resolution regime,
the rate-distortion region has been asymptotically found in [34] for any num-
ber of encoders and arbitrarily correlated continuous source distributions,
while considering MSE distortion measures at the receiver.

In this chapter, we first study the case of two correlated Gaussian sources
separately encoded and sent over a GMAC with phase shifts. While using an
MSE distortion measure, we derive an outer region on the set of all achiev-
able distortion pairs (D1, D2) given fixed power constraints at the encoders.
This region can be also viewed as an outer region on the power constraints
(E1, E2) that should be taken in order to achieve a fixed distortion pairs
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(D1, D2). We prove that in the high fidelity regime, the outer region on the
cost constraints achievable set matches asymptotically ( D1 → 0, D2 → 0)
with the inner region obtained by a separation-based coding scheme; hence,
in applications where small distortions are needed, the strategy of source-
channel separation is practically optimal. Finally, we prove that for low
distortions, the separation asymptotically holds for an arbitrary number of
encoders and any kind of continuous source distributions while performing
MSE distortion measures at the receiver. Note that throughout the chapter,
the results hold for both random ergodic and arbitrary non-random phase
shifts.

4.2 Model

We consider the same model as the one in chapter 3 (see Fig. 4.3), with the
main differences summarized as follows :

• The sources U1, . . . , UM are continuous random variables and arbitrar-
ily correlated .

• The goal is no more to decode the sources with an arbitrarily small
probability of error, but to reconstruct them in order to achieve some
fidelity levels. The fidelity criterion considered here is the squared-
error distortion measure defined like the following

d(ui, ûi) = (ui − ûi)2 i = 1, · · · ,M. (4.1)

For sequence distortions, we will use the following notational conven-
tion

d(ui, ûi) , 1
K

K∑

j=1

d(ui,j , ûi,j) i = 1, · · · ,M. (4.2)

Using a given code, we can easily determine the average incurred dis-
tortions

∆i , E[d(ui, ûi)] i = 1, · · · ,M. (4.3)

Note that, as in the previous chapter, we consider the following power
constraint

1
N

N∑

i=1

E
[|Xm,i|2

] ≤ Em for m = 1, · · · ,M (4.4)

where Em represents the mean energy allowed per transmission for sen-
sor m. The coding problem is addressed like the following: given an an
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energy vector (E1, . . . , EM ), what are the distortion vectors (D1, . . . , DM )
that can be attained. Or, fixing a distortion vector (D1, . . . , DM ), i.e. ∆1 ≤
D1, . . . ,∆M ≤ DM , what are the achievable energy vectors (E1, . . . , EM ).
In another words, we are searching for the set of energy vectors (E1, . . . , EM )
such that there exist a code that permits the reconstruction of the sources
at the receiver with average incurred distortions ∆1 ≤ D1, . . . , ∆M ≤ DM .
Throughout this chapter, we will use the following notation: Xie

jΦi ,
(Xi,1e

jΦi,1 , . . . , Xi,NejΦi,N ). We will consider that the phases are random
ergodic, but all results can be trivially generalised to the case of arbitrary
non-random phases.

4.3 Two Correlated Gaussian Sources

In this section, the number of encoders M is limited to 2, and the sources
U1 and U2 are correlated Gaussian random variables with mean zero and
covariance matrix

K =
[
1 ρ
ρ 1

]
. (4.5)

The model scheme is depicted in Fig. 4.1. In what follows, we will de-
rive an inner and outer region on the achievable distortion couple (D1, D2)
and prove that for small distortions, a separation-based coding scheme is
asymptotically optimal.

(ejΦ1,1 , · · · , e
jΦ1,N )

Decoder

g

U1 X1

Z

Y

Φ

Encoder

f1

U2 Encoder

f2

X2

(ejΦ2,1 , · · · , e
jΦ2,N ) Û1, Û2

Figure 4.1: Bivariate Gaussian sources over GMAC with phase shifts per-
fectly known at the receiver
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4.3.1 Inner Region

An inner region to all the achievable distortion pairs (D1, D2) can be ob-
tained by simply looking to the distortion couples that can be reached by
a separate source-channel coding scheme. In fact, the rate-distortion region
R(D1, D2) of the quadratic Gaussian two-encoder source coding problem
depicted in Fig. 4.2 is given by [64, 69]:

R(D1, D2) = R(D1) ∩ R(D2) ∩ Rsum(D1, D2) (4.6)

where the rate regions R(D1),R(D2) and Rsum(D1, D2) are given like the
following

R(D1) =
{

(R1, R2) : R1 ≥ 1
2

log+

[
1

D1
(1− ρ2 + ρ22−2R2)

]}
, (4.7)

R(D2) =
{

(R1, R2) : R2 ≥ 1
2

log+

[
1

D2
(1− ρ2 + ρ22−2R1)

]}
, (4.8)

and

Rsum(D1, D2) =
{

(R1, R2) : R1 + R2 ≥ 1
2

log+

[
(1− ρ2)β(D1, D2)

2D1D2

]}
,

(4.9)
with

β(D1, D2) = 1 +

√
1 +

4ρ2D1D2

(1− ρ2)2
. (4.10)

The capacity region C(E1, E2) of the considered GMAC channel is given by:

C(E1, E2) =
{

(R1, R2); R1 ≤ log
(

1 +
E1

N0

)
, (4.11)

R2 ≤ log
(

1 +
E2

N0

)
, (4.12)

R1 + R2 ≤ log
(

1 +
E1 + E2

N0

)}
. (4.13)

For any set S and scalar c, we define the multiplication cS , {cS; S ∈ S}.
Therefore, as a direct result of the separation theorem, the set of pairs
(D1, D2) such that rR(D1, D2) ∩ C(E1, E2) 6= ∅ constitutes an inner bound
on the achievable distortion region.



68Chapter 4 Correlated Continuous Sources Over GMACs with Phase Shifts

Decoder

g

Encoder

f1

R1U1

Û1, Û2

Encoder

f2

R2
U2

Figure 4.2: Two correlated Gaussian sources separately encoded at rates R1

and R2.

4.3.2 Lower Bounds on the Distortion

In this section, we will derive lower bounds on D1 and D2 that will serve as
an outer region on the set of all achievable distortion pairs.

Bound on D1 and D2

Provided that the considered sources U1 and U2 are correlated and Gaussian,
they can be related to each other by the following equality

U1 = ρU2 + V, (4.14)

where V is a Gaussian random variable independent from U2, of zero mean
and variance 1 − ρ2. Now let us split the Gaussian channel noise Z into
two independent Gaussian random vectors Z1 and Z2 of zero means and
covariance matrices α2N0IN and (1 − α2)N0IN respectively, α being any
real number belonging to ]0; 1[. For simplicity, let V2 , (X2e

jΦ2 + Z2,Φ).
Therefore, we can write

I(U1;Y|V2) =h(U1|V2)− h(U1|Y,V2) (4.15)

=h(V + ρU2|V2)− h(U1 − Û1|Y,V2) (4.16)
(a)

≥K

2
log

(
2

2
K

h(V) + 2
2
K

h(ρU2|V2)
)
− h(U1 − Û1). (4.17)

where V = (V1, . . . , VK) and (a) follows from the entropy power inequality
which can been used due to the fact that V is independent from U2 and
V2. Besides, we have that

h(V) =
K

2
log 2πe(1− ρ2), (4.18)
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h(ρU2|V2) =K log |ρ|+ h(U2|V2) (4.19)

=K log |ρ|+ h(U2)− I(U2;X2e
jΦ2 + Z2|Φ) (4.20)

≥K log |ρ|+ K

2
log 2πe−N log

[
1 +

E2

(1− α2)N0

]
, (4.21)

and

h(U1 − Û1) ≤
K∑

i=1

h(U1,i − Û1,i) (4.22)

≤
K∑

i=1

1
2

log
(
2πeE[(U1,i − Û1,i)2]

)
(4.23)

≤ K

2
log

(
2πe

1
K

K∑

i=1

E[(U1,i − Û1,i)2]

)
(4.24)

≤ K

2
log (2πeD1) . (4.25)

Combining Eqs. (4.17), (4.18), (4.21) and (4.25), we obtain

I(U1;Y|V2) ≥K

2
log

[
2πe(1− ρ2) + 2πeρ2

[
1 +

E2

(1− α2)N0

]−2N
K

]
−

K

2
log (2πeD1) (4.26)

≥K

2
log


(1− ρ2) + ρ2(1 + E2

(1−α2)N0
)−

2N
K

D1


 . (4.27)

An upper bound on I(U1;Y|V2) can be found like the following

I(U1;Y|V2) = h(Y|V2)− h(Y|U1,V2) (4.28)
= h(X1e

jΦ1 + Z1|V2)− h(Z1) (4.29)
≤ h(X1e

jΦ1 + Z1|Φ)− h(Z1) (4.30)

≤ N log
(

1 +
E1

α2N0

)
. (4.31)

From Eqs. (4.27) and (4.31) we get

D1 ≥
(1− ρ2) + ρ2(1 + E2

(1−α2)N0
)−

2N
K

(
1 + E1

α2N0

)2N/K
. (4.32)
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This inequality holds for all 0 < α < 1, therefore

D1 ≥ max
0<α<1

(1− ρ2) + ρ2(1 + E2
(1−α2)N0

)−
2N
K

(
1 + E1

α2N0

)2N/K
. (4.33)

By analogy, we obtain

D2 ≥ max
0<α<1

(1− ρ2) + ρ2(1 + E1
(1−α2)N0

)−
2N
K

(
1 + E2

α2N0

)2N/K
. (4.34)

Bound on the Product D1D2

Let us find now a new bound on the product of D1 and D2. On one hand,
we have

I(X1,X2;Y|Φ) = h(Y|Φ)− h(Y|X1,X2,Φ) (4.35)
= h(Y|Φ)− h(Z) (4.36)

≤ N log
(

1 +
E1 + E2

N0

)
(4.37)

On the other hand, we have

I(X1,X2;Y|Φ) = I(X1,X2;Y,Φ) (4.38)
≥ I(U1,U2; Û1, Û2) (4.39)
= h(U1,U2)− h(U1,U2|Û1, Û2) (4.40)
= h(U1,U2)− h(U1 − Û1,U2 − Û2|Û1, Û2)(4.41)
≥ h(U1,U2)− h(U1 − Û1,U2 − Û2) (4.42)
≥ h(U1,U2)− h(U1 − Û1)− h(U2 − Û2) (4.43)

≥ K

2
log(2πe)2(1− ρ2)− K

2
log(2πe)2D1D2 (4.44)

=
K

2
log

(
1− ρ2

D1D2

)
(4.45)

Combining Eqs. (4.37) and (4.45), we obtain

D1D2 ≥ 1− ρ2

(
1 + E1+E2

N0

)2N/K
(4.46)
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4.4 Outer Region and High Fidelity Regime

Let us define three regions of distortion couples like the following: R1 the
region such that Eqs.(4.33) and (4.34) are satisfied, and R2 defined by Eq.
(4.46). Therefore, the intersection between these two regions constitutes
an outer region on the achievable distortions. Throughout this section, we
will consider ourselves working in a high fidelity regime where our interest
is to achieve small distortions D1 and D2. This regime is interesting from
practical point of view where in most applications we seek to reconstruct
all the sources with high fidelity. We will prove that in this regime, the
separation theorem asymptotically holds. First, let us define a loose but
simple outer region like the following: let α → 1 in Eq. (4.32); this gives

D1 ≥ (1− ρ2)
(
1 + E1

N0

)2N/K
. (4.47)

By analogy, we obtain

D2 ≥ (1− ρ2)
(
1 + E2

N0

)2N/K
. (4.48)

For fixed (E1, E2), Eqs. (4.47),(4.48) and (4.46) define an outer region on
the achievable distortion couple (D1, D2). Equivalently, for fixed (D1, D2),
the same inequalities define an outer region on the achievable energy couple
(E1, E2) that will be denoted by Rout. For small distortion couples and
hence high rates, the rate region of the sources can be approximated by

R(D1, D2) '
{

(R1, R2) : R1 ≥ 1
2

log+

[
1− ρ2

D1

]
,

R2 ≥ 1
2

log+

[
1− ρ2

D2

]
,

R1 + R2 ≥ 1
2

log+

[
(1− ρ2)
D1D2

] }
(4.49)

It is straightforward to see that by combining the inequalities in (4.49)
with those of the GMAC capacity region while taking into account the
source-channel rate gives the same distortion-cost inequalities that define
the outer region Rout. This implies that for small distortion couples, the
set of achievable energy couples (E1, E2) can be asymptotically reached by
using a separation-based coding scheme.
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4.5 Generalisation

Let us now generalise the concept of separation optimality for any number of
encoders and any kind of continuous source distributions. The model scheme
is depicted in Fig. 4.3. For the converse, we can write ∀S ⊆ {1, . . . ,M},

I(Y;US |USc ,Φ) = h(US |USc ,Φ)− h(US |USc ,Y,Φ) (4.50)

≥
K∑

j=1

h(US,j |USc,j)−
∑

i∈S

h(Ui|USc ,Y,Φ) (4.51)

≥ Kh(US |USc)−
∑

i∈S

h(Ui|Y,Φ) (4.52)

= Kh(US |USc)−
∑

i∈S

K∑

j=1

h(Ui − Ûi|Y,Φ) (4.53)

≥ Kh(US |USc)−
∑

i∈S

h(Ui − Ûi) (4.54)

≥ Kh(US |USc)−
∑

i∈S

K∑

j=1

h(Ui,j − Ûi,j) (4.55)

≥ Kh(US |USc)− 1
2

∑

i∈S

K∑

j=1

log 2πeE[(Ui,j − Ûi,j)2]

≥ Kh(US |USc)− K

2

∑

i∈S

log 2πeDi (4.56)

≥ Kh(US |USc)− K

2
log(2πe)|S|

∏

i∈S

Di. (4.57)

Besides, we have

I(Y;US |USc ,Φ) = h(Y|USc ,Φ)− h(Y|US ,USc ,Φ) (4.58)
= h(Y|USc ,XSc ,Φ)− h(Z) (4.59)
≤ h(Y|XSc ,Φ)− h(Z) (4.60)

≤ h

(∑

i∈S

Xie
jΦi + Z|Φ

)
− h(Z) (4.61)

≤ N log
(

1 +
∑

i∈S Ei

N0

)
(4.62)
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Combining Eqs. (4.57) and (4.62) gives us the following necessary condi-
tions: ∀S ⊆ {1, . . . , M}

Kh(US |USc)− K

2
log(2πe)|S|

∏

i∈S

Di ≤ N log
(

1 +
∑

i∈S Ei

N0

)
. (4.63)

Note that in the high fidelity regime, the rate-distortion region of the sources
R(D1, . . . , DM ) can be approximated by (see [34]):

R(D1, . . . , DM ) '
{

(R1, . . . , RM );
∑

i∈S

Ri ≥ h(US |USc)− 1
2

log(2πe)|S|
∏

i∈S

Di

∀S ⊆ {1, . . . , M}
}

(4.64)

The capacity region C(E1, . . . , EM ) of a GMAC is defined like the following

C(E1, . . . , EM ) =

{
(R1, . . . , RM );

∑

i∈S

Ri ≤ log
(

1 +
∑

i∈S Ei

N0

)

∀S ⊆ {1, . . . , M}
}

(4.65)

Combining the inequalities defining the rate-distortion region with that of
the capacity region while taking into account the source-channel rate K/N ,
leads to the conclusion of the quasi-optimality of the separation in the high
fidelity regime.

4.6 Conclusion

In this chapter, we derived an outer region on the achievable distortions
for two correlated Gaussian sources sent through a GMAC channel with
phase shifts. In that case, we showed that the source-channel separation is
quasi-optimal in the high fidelity regime; hence, for practical applications
where the goal is to achieve small distortions, a separation-based coding is
asymptotically optimal. At the end, we generalise the asymptotic optimality
of the separation for any number of encoders and any continuous source
distributions.
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Figure 4.3: Model scheme of M arbitrarily correlated sources sent through
a GMAC with phase shifts perfectly known at the receiver



Chapter 5

Distributed Sensing of
Random Fields

We consider a wireless sensor network deployed in an area to measure the
realization of a finite multi-dimensional, time-varying physical random field.
Each sensor observes one noisy realization of the field, maps it linearly into
a signal with a signature and sends it across a white Gaussian multiple ac-
cess channel, under a constraint on the total energy given to all the sensors
per field realization. The receiver or the ’collector node’ receives all the sig-
nals and tries to construct an estimate of the field within a certain mean
distortion based on the MSE fidelity criterion. We derive, under the total
energy constraint, a lower-bound on the distortion, an achievable one, and
another lower-bound under a TDMA transmission scheme. In the case of
the non-existence of the observation noise, we find the asymptotic decreasing
behavior of the achievable distortion as a function of the number of sensors.
Moreover, we derive a lower-bound on the distortion over all possible en-
coding techniques, assuming a free collaboration and information exchange
between the sensors. We compare these bounds for a particular example with
another bound on the achievable distortion [70].

75
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5.1 Introduction

Wireless sensor networks are typically used to monitor some spatial charac-
teristics of a field in the area over which the network is deployed. Examples
of fields include temperature, electromagnetic radiation, natural or induced
vibration, or auditory levels. In such networks, sensors make measurements
of the field, process them locally, potentially with the help of neighboring
nodes, and then collectively transmit the measurements over a wireless chan-
nel to one or more collector nodes. The collector nodes process the received
data in order to extract and analyze the spatial characteristics of the field.

While a sensor network is application-dependent, we restrict our work to
an application where the sensors have to track a time-varying random field
and send back their measurements to one collector node through a white
Gaussian multiple-access channel. As in the previous chapters, we address
the problem of coding the sensed information at each sensor node before
transmitting it through the channel. However, in this application, we con-
sider a random field that has relatively fast variations in time, therefore the
coding strategy adopted in chapter 2 for slowly time-varying sources does
not apply anymore. Furthermore, the goal now is to reconstruct an esti-
mate of the random field at the receiver instead of reconstructing the sensor
measurements as it has been always done in the previous chapters. Notice
also that phase shifts are not considered in the channel model, therefore the
results obtained in chapter 3 and 4 do not hold anymore and optimal coding
strategies are not known yet.

For achievable schemes, we assume a linear encoder in each sensor that
maps the sensed value into the amplitude of a signature waveform which is
transmitted across the channel. As is common in the literature, we consider
that the sensing process is imperfect, so that the sensed values are subject
to additive Gaussian observation noise. The choice of linear encoder is
motivated firstly by its simplicity, and secondly by its optimality in the
point-to-point communication model where a Gaussian source is sent over
an AWGN channel [38], [35]. The latter is true only in the case where
the number of channel uses per source symbol is one. Moreover, recent
results in [36] show the optimality of linear encoders for a simple sensor
network model where a single Gaussian source is observed by multiple noisy
Gaussian sensors, and these observations have to be transmitted via the
standard Gaussian multiple-access channel. This is again for the case where
a single source letter is available per channel use.

In this chapter, we consider sensor networks with a constraint on the
total radiated signal energy and we seek to minimize the distortion between
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the random field and its reconstructed estimate at the collector node. A sim-
ilar model has been studied by Gastpar and Vetterli in [70],[71], [72], and,
under certain field configurations, the achievable distortion we find here can
be compared to the scheme in [70] and clearly outperforms it. Other than
demonstrating an achievable scheme, we derive a lower-bound on the dis-
tortion over all possible total energy distributions and all signatures, and
another more general lower-bound which is not limited to linear encoders.
This latter bound assumes that the sensors can communicate with each
other freely in order to exchange information. Under a TDMA transmission
scheme, a lower-bound on the distortion is derived, which we find to be in-
dependent of the number of sensors. This result shows the sub-optimality of
TDMA in the ideal case where the sensor observations are not corrupted by
noise, since the other schemes exhibit decreasing distortion with the number
of sensors.

Concerning the notations used in this chapter, a bold letter (eg: a)
denotes a vector, while bold and underlined letter (eg: a) denotes a matrix.
The ith singular value and the ith eigenvalue of a matrix a are denoted
respectively by σi(a) and µi(a). E[.] denotes the mean value over all random
variables inside the brackets.

5.2 Model

The sensor network model is depicted in Fig.5.1. We consider a field F (x)
occupying a certain area A and depending on the spatial-coordinate vector
x. We assume that the field F (x) can be represented in a finite-dimensional
orthonormal basis of space functions φi(x) for i = 1, . . . , N ′, by considering
that the energy of the field lying outside the basis is too small and could be
neglected. Then

F (x) =
N ′∑

i=1

√
λiUiφi(x) (5.1)

where each λi is a constant representing the energy of the field in the ith

dimension and U = (U1, . . . , UN ′)t is a Gaussian random vector with mean
zero and identity covariance matrix.
In the area A, M sensors are randomly deployed, having x1, . . . ,xM as space
coordinates. The sensor k senses the value R(xk), a noisy version of the field
at position xk:

R(xk) = F (xk) + Wk (5.2)
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where Wk for k = 1, . . . , M are i.i.d Gaussian observation noise with zero-
mean and variance σ2

W ; this value is mapped onto the signal

Sk

(
R(xk), t

)
=

N∑

i=1

Skiγi(t) for t ∈ [0, T ]

where the set {γ1(t), γ2(t), . . . , γN (t)} forms an orthonormal basis for the
signal space and Ski is the projection of the signal on γi(t). The vector Sk

representing the signal components is taken equal to

Sk =




Sk1

Sk2
...

SkN


 =

√
Ek

E[R2(xk)]
R(xk)ψk (5.3)

where Ek is the mean energy attributed to the sensor k and ψk a normalized
vector representing a signature. A mean total energy ET being dedicated
to all the sensors in order that each one transmit one signal, the energy
constraint could be written as

M∑

k=1

Ek ≤ ET . (5.4)

Detection

Estimation

Y(t)
Channel

Z(t)
S1(R(x1),t)

S2(R(x2),t)

Sk(R(xk),t)

SM(R(xM),t)

S1

S2

SM

Sk

W1

WM

Wk

W2

R(x2)

R(xk)

R(xM)

+

+

+

+

Field

F(x)

F(x1)

  F(xk)

  F(x2)

  F(xM)

R(x1)

F(x)

Figure 5.1: The scheme of the considered wireless sensor network model

After the processing stage, the sensors send simultaneously their signals
to the collector node through a Gaussian multiple access channel. The
output Y (t) of the channel can be written like

Y (t) =
M∑

k=1

√
αkSk

(
R(xk), t

)
+ Z(t)
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with αk representing an attenuation factor proportional to the distance be-
tween the sensor k and the collector node, and Z(t) the white Gaussian noise
with zero mean and σ2

Z as power spectral density. The baseband expression
of Y (t) implies an adjustement at the sensor transmitters of the phases in-
duced by the channel.
At the detection, we calculate F̂ (x), the estimate of F (x) for all x ∈ A.
Here, we assume that α1, . . . , αM and x1, . . . ,xM are perfectly known to
the collector node. The distortion measure is the mean squared error, and
the total mean distortion that we want to minimize is equal to

D =
∫

x∈A
E

[(
F (x)− F̂ (x)

)2
]
dx (5.5)

5.3 Performance Limits Of Linear Coding

In this section, we’ll focus on the linear mapping scheme that we have pre-
sented in our model, in order to test its performance in terms of minimal
achievable distortion. In other words, with a such linear coding done by
the sensors in the processing stage and under the sum-energy constraint,
we aim to find the total energy distribution E1, . . . , EM over the sensors
and the appropriate choice of the signatures ψ1, . . . ,ψM that will mini-
mize the total mean distortion. We put all these variables in a matrix
A , (

√
E1ψ1, . . . ,

√
EMψM ) and let A = UAΣAVt

A be the singular value
decomposition of A. Then, the total energy constraint could be written as

p∑

i=1

σ2
i (A) ≤ ET (5.6)

where p = min(M, N). Consequently, our goal will be to find the minimal
achievable distortion corresponding to a certain matrix A satisfying (5.6).
Unfortunately, this problem is quite hard to resolve, therefore, we limit our-
selves to a lower-bound and the resulting distortion of a particular encoding
scheme which yields an upper-bound on any optimal scheme.

5.3.1 Achievable Distortion

Developing (5.5), the distortion could be written as

D =
N ′∑

i=1

λiE
[
(Ui − Ûi)2

]
(5.7)
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where Û is the estimate of U. In order to minimize the distortion, the
best estimator to be chosen is the minimum mean squared error (MMSE)
estimator. This latter is equal to

Û = E[UYt]
(
E[YYt]

)−1 Y, (5.8)

Y being the projection of Y (t) on the signal space basis. let

γ =




α1
E[R2(x1)]

0 0

0
. . . 0

0 0 αM
E[R2(xM )]


 , (5.9)

B =




√
λ1α1

E[R2(x1)]
φ1(x1) . . .

√
λN′α1

E[R2(x1)]
φN ′(x1)

...
...√

λ1αM
E[R2(xM )]

φ1(xM ) . . .
√

λN′αM

E[R2(xM )]
φN ′(xM )


 ;

therefore, (5.7) gives us

D =
N ′∑

i=1

λi

[
1− Γt

ih
t
(
σ2

ZIN + ACAt
)−1 hΓi

]
, (5.10)

where Γi = (0, . . . , 0, 1, 0, . . . , 0)t is the vector that has the ith component
equal to 1 and all other components equal to zero, h = AB and C =
σ2

Wγ + BBt. Being symmetric, the eigenvalue decomposition of the matrix
C could be written as C = UCµC

Ut
C where

µ
C

= diag (µ1(C), . . . , µM (C)) (5.11)

with µ1(C) ≥ . . . ≥ µM (C), and UC the matrix of the corresponding eigen-
vectors.

Hence, by choosing VA = UC , and then, using Lagrange multipliers [73]
in order to optimize the resultant distortion with respect to the singular
values of A subject to (5.6), we obtain

Dach =
N ′∑

i=1

λi −
N ′∑

i=1

p∑

j=1

λil
2
ijγ

+
j

µj(C)[σ2
Z + γ+

j ]
(5.12)

where li = (li,1, . . . , li,M ) = Γt
iB

tUC ,
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γ+
j = max

{
0,

√
σ2

Z

∑N ′
k=1 λkl

2
kj

δ
− σ2

Z

}
(5.13)

and δ is such that

p∑

j=1

γ+
j

µj(C)
= ET (5.14)

5.3.2 Lower-Bound

We will derive here a lower-bound over all achievable distortions while the
sensors are performing the linear mapping described in the previous section.
Let q be the rank of B, UBΣBVt

B its ordered (σ1(B) ≥ . . . ≥ σq(B))
singular value decomposition and r = min(p, q). Let also hth = VµVt be
the ordered eigenvalue decomposition (µ1(hth) ≥ . . . ≥ µN ′(hth)) of hth,
vij the entries of V and λmin the minimum of {λ1, . . . , λ

′
N}. Any achievable

distortion will be lowered by canceling the effect of the observation noise or
equivalently by taking σW = 0. Therefore, we have the following inequalities

D ≥
N ′∑

i=1

N ′∑

j=1

λi

σ2
Zv2

ij

σ2
Z + µj(hth)

(5.15)

≥ λmin

N ′∑

j=1

σ2
Z

σ2
Z + µj(hth)

(5.16)

= λmin

r∑

j=1

σ2
Z

σ2
Z + µj(hth)

+ λmin(N ′ − r) (5.17)

The eigenvalues of hth are constrained by (see [74] p.171)

r∏

i=1

µi(hth) ≤
(

r∏

i=1

σ2
i (A)

)(
r∏

i=1

σ2
i (B)

)
(5.18)

Maximizing the right hand side of (5.18) subject to the sum energy con-
straint, gives that for every matrix A satisfying (5.6),

r∏

i=1

µi(hth) ≤
(

ET

r

)r
(

r∏

i=1

σ2
i (B)

)
(5.19)
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Then, minimizing (5.17) over (5.19) gives the following result (the proof is
put in Appendix 5.A)

Dlower = λmin
r2σ2

Z

rσ2
Z + ET

r

√∏r
i=1 σ2

i (B)
+ λmin(N ′ − r) (5.20)

for
ET

r
r

√√√√
r∏

i=1

σ2
i (B) ≥ (2r − 1)σ2

Z . (5.21)

5.4 General Lower-Bound

Until now, we have dealt with linear encoders that just forward their ob-
served values across the channel. Such encoders are known to have some
advantages in terms of low complexity and delay. It is natural to consider the
distortion achievable with more general encoders. In this section, we derive
a more general lower-bound on the distortion over all possible encoders, all
total energy distributions and all signatures; note that, as said previously,
the separation theorem does not hold because of having to code correlated
observations over a multiple access channel. Thus, doing multi-terminal
source coding, then, using capacity-achieving channel encoders does not lead
to an optimal distortion and consequently to a lower-bound. Therefore, we
will assume that the sensors can communicate freely with each other, an
assumption that will render our model equivalent to a point-to-point com-
munication model on which the separation theorem holds and an achievable
lower-bound is well-known. A similar lower-bound has been found in [70]
(see also [75], [54]) and can be applied for the special case of our random
field where λ1 = . . . = λN ′ ; we generalise this result for general λ1, . . . , λN ′

in order to obtain the lower-bound that we seek. Since the observations are
noisy versions of the field, the lower-bound is equal to Dremote(C), where

Dremote(R) = min
p(û/r):I(bU;R)≤R

N ′∑

i=1

λiE[(Ui − Ûi)2] (5.22)

is the remote distortion rate function of the source vector U, R = (R(x1), . . .
, R(xM )) and C is the capacity of the N uses of the multiple input one output
channel. Let

Φ =




√
λ1φ1(x1) . . .

√
λN ′φN ′(x1)

...
...√

λ1φ1(xM ) . . .
√

λN ′φN ′(xM )


 (5.23)
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and
Φ′ = Φdiag(

√
λ1, . . . ,

√
λN ′). (5.24)

We find that

Dremote(C) =
N ′∑

i=1

[
λi − σ2

i + min{σ2
i , δ}

]
(5.25)

with
1
2

N ′∑

i=1

(
log

σ2
i

δ

)+

= C (5.26)

where σ2
1, . . . , σ

2
N ′ are the eigenvalues of the matrix Φ′t (

ΦΦt + σ2
W IM

)−1 Φ′

and

C =
N

2
log

(
1 +

ET
∑M

i=1 αi

Nσ2
Z

)
(5.27)

5.5 Ideal Model

Consider an ideal sensor network model in which the node’s sensing ability
is perfect, in the sense that the observations collected by the sensors are
no longer corrupted by observation noise. Assume that the signal space
dimension is larger or equal to the field dimension and that αi < ∞ for
i = 1, . . . , M . In that case, by choosing VA = UB and σ1(A) = . . . =

σN ′(A) =
√

ET
N ′ ,

D =
N ′∑

i=1

N ′∑

j=1

λi

σ2
Zv2

Bij

σ2
Z + ET

N ′ σ2
j (B)

(5.28)

is achievable where vBij are the entries of VB.

5.5.1 Scaling Law

Let b(xi) be the ith line vector in B corresponding to a sensor at posi-
tion xi. Here, we assume that φi(xj) < ∞ for i = 1, . . . , N ′ and j =
1, . . . , M . Suppose that there exists N ′ areas A1, . . . ,AN ′ ⊂ A such that
∀x1 ∈ A1, . . . ,∀xN ′ ∈ AN ′ , the vectors b(x1), . . . ,b(xN′) are linearly inde-
pendent. Suppose also, that the position of every sensor, which is random,
follows a certain probability density function p(x) defined on A and is inde-
pendent from the positions of the other sensors. Thus, the probability that



84 Chapter 5 Distributed Sensing of Random Fields

a sensor belongs to an area Ai is

ci ,
∫

Ai

p(x)dx (5.29)

Denote by ni the number of sensors in Ai after throwing M sensors and let
n = min{n1, . . . , nN ′}. Therefore, with the line vectors of B, it can be at
least constructed n full ranked N’-dimensional square matrices denoted by
B1, . . . ,Bn. Then, for i = 1, . . . , N ′, we have the following result (see [76]
p.176)

n

M
dmin ≤ σ2

i (B)
M

≤ dmax (5.30)

where
dmin = min

i=1,...,n

[
min
sts=1

||Bis||2
]

(5.31)

and

dmax = max
i=1,...,M

[
max
sts=1

(b(xi)s)
2 ]

(5.32)

Due to the field and channel assumptions, dmin and dmax are strictly positive
and bounded constants. Note that limM→∞ n

M = c where c = min{c1, . . . , cN ′}.
Hence, the achievable distortion in (5.28) scales asymptotically as 1

M . This
scaling behavior is under investigation in the case where the sensors have
no information about the channel.

5.5.2 Comparison With a TDMA Scheme

In a TDMA transmission scheme, the number of sensors is equal to the signal
space dimension and the matrix ψ , (ψ1, . . . ,ψM ) is unitary. Therefore,

r∑

i=1

σ2
i (h) =

M∑

i=1

αiEi ≤ ET αmax (5.33)

with αmax = max
i=1,...,M

αi. Then, an easily lower-bound on the achievable

distortion could be found. In fact, minimizing (5.17) under (5.33) leads to

DTDMA ≥ λminσ
2
Zr2

σ2
Zr + αmaxET

+ λmin(N ′ − r). (5.34)

Compared to the achievable distortion in (5.28) which scales asymptotically
like 1/M , the left-hand side term in (5.34) does not depend on the number
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of sensors. This leads to the conclusion of the sub-optimality of such a
transmission scheme especially when the number of sensors becomes large.
Note that this lower-bound is also true when observation noise exists.

5.6 Numerical Results

A simple sensor network model is considered to illustrate and compare some
of the bounds derived in the above sections; The area A is partitioned in
ten smaller areas A1, . . . ,A10. These are put in a vector A , (A1, . . . ,A10).
The space functions are taken equal to

φi(x) =

{
1√
Ai

if x ∈ Ai

0 if x /∈ Ai

for i = 1, . . . , 10.
In the figures 5.2(a) and 5.2(b), our achievable distortion outperforms the
Gastpar-Vetterli result especially for relatively small total energy. The dis-
tortion is due to the channel noise and to the observation noise, thus when
the total energy increases, the influence of the channel noise on the distor-
tion decreases. Therefore, it will be essentially caused by the observation
noise, the influence of which being independent from the total energy. That’s
the reason why, the slope of the curves in 5.2(a) and 5.2(b) (except Dlower

because it only depends on the channel noise) tends to zero when the total
energy becomes relatively large. Comparing the curves corresponding to
Dach and Dlower, we see that the gap between them starts very small and
then becomes larger which is due, as mentioned above, to the fact that the
lower-bound does not take into account the observation noise. Note that
the large difference between the two lower-bound curves for relatively small
total energy reveals nothing on the efficiency of linear encoders, because of
the free information exchange assumption taken in the calculation of the
general lower bound (Dremote(C)) that render it non-achievable in general.
In any case, Dremote(C) still have the utility of giving us a lower-bound on
the distortion over all possible encoders even if it is not achievable. At the
end, comparing 5.2(a) to 5.2(b) reveals the decreasing behavior for all the
distortion curves when the number of sensors increases.

5.7 Conclusion

In this chapter, we investigated the coding problem of a wireless sensor net-
work tracking a random time-varying random field. Particularly, We anal-
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ysed the performance of a linear coding scheme performed at each sensor
node and derived upper and lower bounds on the optimal achievable perfor-
mance. Under a sum energy constraint, we found the asymptotic decreasing
behavior of the distortion as a function of the number of sensors.
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APPENDIX

5.A Proof of Dlower

In fact, the minimization problem that we have is equivalent to minimize a
function f of a vector

f(y) =
r∑

i=1

a2

a2 + yi
(5.35)

over

Ω , {y ∈ Rr : y1 ≥ 0, . . . , yr ≥ 0,
r∏

i=1

yi ≤ b} (5.36)

where a and b are constants. For convexity considerations, it is assumed that
b ≥ [

(2r − 1)a2
]r. In that case, denoting by y∗ the vector that minimizes

f(y) over Ω, and taking y1 ,
(
(2r − 1)a2, . . . , (2r − 1)a2

) ∈ Ω, we obtain
f(y∗) ≤ f(y1) = 1

2 . Thus y∗ should belongs to Ω′ where

Ω′ , {y ∈ Rr : y1 ≥ a2, . . . , yr ≥ a2,
r∏

i=1

yi = b}. (5.37)

Letting y = (et1 , . . . , etr) where t , (t1, . . . , tr) ∈ Rr, leads to the equiv-
alence between the minimization of f(y) over Ω (or over Ω′) and that of
another function g defined as

g(t) =
r∑

i=1

a2

a2 + eti
(5.38)

over

Ωt , {t ∈ Rr : t1 ≥ ln(a2), . . . , yr ≥ ln(a2),
r∑

i=1

ti = ln(b)}

which is a convex optimization problem. Thus, using Lagrange multipliers,
we obtain

g(t∗) =
ra2

a2 + r
√

b
(5.39)

where t∗ is the vector in Ωt that minimizes g(t).
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Figure 5.2: Comparison between Dlower, Dach, Dremote(C) and Gastpar-
Vetterli distortion: A = [9, 15, 18, 12, 6, 7, 3, 13, 7, 10], N = N ′ = 10,
λ1 = . . . = λ10 = 10, αi = 1 for i = 1, . . . , M , σZ = 1.5, σW = 0.01



Chapter 6

Conclusions and Future
Work Directions

In this thesis, we addressed the coding problem in wireless sensor net-
work models where sensor nodes send simultaneously their observed data
through a noisy MAC to a certain receiver. As coding strategies in WSNs
are application-dependent, we limited our study to three types of applica-
tions for which we proposed different encoding techniques adapted with the
characteristics of each one and derived bounds on the optimal performance
that could be achieved.

In the first application, we considered independent sources, varying very
slowly in time and observed by a network of spatially separated sensor nodes;
we assumed there that sensor nodes are obliged to encode one source sample
and send it directly through the channel since encoding an i.i.d. sequence of
source samples will induce an undesirable delay in reconstructing the source
estimates at the receiver. Due to the slowly time-varying characteristics
of the sources and hence to the long interval of time existing between two
i.i.d source samples, it is assumed that each sensor node can map its ob-
served source sample into an infinite-dimensional channel with fixed energy
constraint. We derived upper and lower bounds on the optimal achievable
performance using standard inequalities in information theory and proposed
a simple digital code that exhibits an exponential decreasing behavior with
the fixed quantity of energy dedicated to each source sample. In addition, we
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worked on different model variants, such as the one involving noisy observa-
tions at the sensor nodes or assuming noncoherent detection at the decoder.
For all these variants, we obtained theoretical bounds on the performance
and showed through simulations the efficiency of our proposed code.

In the second application, we supposed that the sources observed by the
sensor nodes are correlated. We assumed here a Gaussian multiple access
channel with phase shifts unknown at the transmitters but perfectly known
at the receiver. Unlike the first application, sensor nodes had the possibility
of encoding very long blocks regardless of the delay that might be induced
in reproducing them at the receiver. We proved that the separation theo-
rem holds for lossless transmission of arbitrarily correlated discrete sources
of finite alphabets; in other words, the coding strategy based on separat-
ing the source coding from the channel coding is optimal. This separation
holds for ergodic random and arbitrary non-random phase shifts. Hence,
unlike the case where the phases are known at the transmitters, the separa-
tion performance is optimal even if the transmitted sources are correlated.
For lossy coding of arbitrarily correlated continuous sources, the separation
result obtained for the discrete source case is extended by proving its asymp-
totic optimality in the high fidelity regime; this optimality holds when the
fidelity criterion is the MSE distortion.

In the last application, we considered a physical random field generated
by a fixed number of Gaussian random variables and monitored by a wireless
sensor network deployed over an area. We assumed here a real Gaussian mul-
tiple access channel with no phase shifts. We investigated the performance
of linear coding performed at each sensor node while an MMSE estimator
is used at the decoder to reconstruct an estimate of this field. We derived
bounds on the performance and found the asymptotic decreasing behavior
of the distortion with the number of sensor nodes.

Future Work Directions

Although we have derived coding schemes and coding strategies for wireless
sensor network applications, the results obtained can still be improved and
generalized:
In the first part of the thesis, the lower bound on the distortion was de-
rived using Shannon mutual information. This lower bound is known to be
achieved when encoding sequences of infinite blocklength which is not the
case when dealing with low bandwidth sources. New results obtained in
[77], show that the lower bound can be improved by using Rényi informa-
tion measure. Even if this improvement can just be exploited numerically,
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it would be very interesting to see how much we can approach the derived
upper bound that decays like e−E/6.
In the second part of the thesis, a number of issues remain to be investi-
gated; it is interesting to treat the case of very low bandwidth correlated
sources and to propose a practical coding scheme adapted with these kind
of sources. More deep work have to be done to see whether or not the exact
separation optimality in the continuous source case can be obtained instead
of the asymptotic optimality already derived. Another important issue is to
see if the separation optimality can be extended to other kind of commu-
nication scenarios including those where the information is relayed through
multiple sensors to the receiver.
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