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Abstract

The success of BitTorrent has fostered the development

of variants to its basic components. Some of the variants

adopt greedy approaches aiming at exploiting the intrin-

sic altruism of the original version of BitTorrent in order to

maximize the benefit of participating to a torrent.

In this work we study BitTyrant, a recently proposed

strategic client. BitTyrant tries to determine the exact

amount of contribution necessary to maximize its download

rate by dynamically adapting and shaping the upload rate

allocated to its neighbors. We evaluate in detail the various

mechanisms used by BitTyrant to identify their contribution

to the performance of the client.

Our findings indicate that the performance gain is due

to the increased number of connections established by a

BitTyrant client, rather than for its subtle uplink allocation

algorithm; surprisingly, BitTyrant reveals to be altruistic

and particularly efficient in disseminating the content, es-

pecially during the initial phase of the distribution process.

The apparent gain of a single BitTyrant client, however, dis-

appears in the case of a widespread adoption: our results

indicate a severe loss of efficiency that we analyzed in de-

tail. In contrast, a widespread adoption of the latest version

of the mainline BitTorrent client would provide increased

benefit for all peers.

1 Introduction

BitTorrent [1] is a peer-to-peer (p2p) content distribution

application that has been adopted by millions of end-users,

as witnessed by several specialized sources [2, 3, 4]. BitTor-

rent (BT) has not only gained a huge popularity among the

mass, it has also attracted the attention of a large body of re-

searchers that focused on its building blocks and its perfor-

mance analysis through measurement [5, 6, 7], simulation

[8, 9] and analytical [10, 11, 12] studies. These previous

works indicated that the key of its success can be substan-

tially attributed to its scalability and its greater robustness

to free-riding in comparison to previous p2p proposals.

Some recent studies [13, 14, 15] have proposed new

clients, that are compliant to BitTorrent message protocol,

but change its algorithms and adopt greedy strategies with

the purpose to optimize the local performance of the client.

For example, authors in [14] designed a modified client,

called BitThief, that tries to maximize the client download

rate without uploading any content by continuously increas-

ing its neighborhood set. Another prominent example is that

of BitTyrant [15], which tries to maximize its download rate

by shaping its contribution to remote peers; additionally,

BitTyrant borrows the technique to construct large neigh-

borhoods from BitThief. Note that while BitThief client is

intrinsically a free-rider, BitTyrant makes its whole upload

capacity available to spread the content. Similar techniques

are proposed in [13].

Our research interest is twofold. First, we want to eval-

uate to what extent greedy clients have competitive advan-

tages in comparison to standard ones and hence can be ex-

pected to be widely adopted by the peer-to-peer community.

Second, we want to investigate if the widespread adoption

of such techniques would lead to a general performance im-

provement (as it is suggested in [13, 15]). We first focus

on a single client (we chose BitTyrant in this work because

it merges several greedy techniques discussed in the liter-

ature) and characterize its performance gain over legacy

clients. We do so by isolating its key ingredients to un-

derstand what is their contribution to the improved perfor-

mance. We then make the case for an extreme scenario in

which all users would adopt BitTyrant and discuss its impli-

cations on the whole community.

The main contributions of this work can be summarized

as follows:

• We generalize the analytical model presented in [15] to

identify the extent to which BitTorrent can be exploited

by greedy clients. Unlike previous results discussed in



[15], our findings indicate that exploiting the altruism

of BitTorrent is effective only during a short transient

regime when the system is bootstrapping;

• We study the different components of a prominent ex-

ample of a greedy client, BitTyrant [15], and we eval-

uate to what extent each part of the proposed solu-

tion is responsible for the performance achieved; we

also compare the results with the ones obtained by the

mainline BitTorrent client;

• We cast light on the subtle choke algorithm used

by BitTyrant and show its unexpectedly positive im-

pact on system performance, especially during the

most delicate phase of content distribution, the startup

phase;

• Finally, we make the case for a wide adoption of the

BitTyrant client by the mass. We show that the in-

teraction of BitTyrant clients may lead to an undesir-

able state with some peers progressively throttling the

uploading rate to their neighbors and others intermit-

tently choking their contribution, resulting in poor sys-

tem performance.

The remainder of the paper is organized as follows:

Sec. 2 provides some background on BitTorrent and its vari-

ants; in Sec. 3 we analyze to which extent BitTorrent can be

exploited by greedy strategies; Sec. 4 presents a simulation-

based performance evaluation of a single BitTyrant client

and pinpoints the merit of its key components to the in-

creased performance; finally, in Sec. 5 we make the case

of a wide-spread adoption of BitTyrant and analyze the im-

plications on global system performance.

2 Background

In this section we briefly outline the key algorithms used

by BitTorrent [1], BitTyrant [15] and BitThief [14].

BitTorrent. The BitTorrent protocol is designed for bulk

data transfer. The file is divided into pieces, which can be

downloaded in parallel from peers belonging to a specific

torrent. A central entity, called tracker, keeps track of all

peers downloading the content and bootstraps new peers

joining the torrent with a random set (of size 50 peers) of

remote peers to connect to: the neighborhood of a peer is

called the peer set.

A BT peer executes two key algorithms, one that is used

to select pieces of the content to download (termed the piece

selection algorithm) and one that is used to select remote

peers to upload data to (termed the peer selection algo-

rithm, or the choke algorithm). In this work we focus on

the choke algorithm, and gloss over the details of piece se-

lection. With the choke algorithm, a node builds a subset of

its peer set that is termed active set: peers in the active set

are entitled to request pieces of the content. The choke al-

gorithm is executed every 10 seconds: all remote peers are

ranked based on their upload rate and only the first k top

peers are unchoked. Along with regular unchokes, every 30

seconds a peer randomly unchokes ω peers irrespectively

of their rank: this technique is termed optimistic unchoke

and allows a peer to explore its peer set and discover fast

neighbors. With the choke algorithm, peers discover and

maintain an active set (of size k + ω) composed by neigh-

bors that maximize reciprocation, i.e. the amount of data

downloaded given the amount of data uploaded to remote

peers.

In the basic version of BT, k and ω are empirically set

parameters: generally k = 4 and ω = 1. This configuration

is used also by Azureus. The upload bandwidth of a peer

is shared equally (beside TCP effects) among all unchoked

peers; the portion of the bandwidth that each peer is able to

obtain is defined as equal-split.

Recently, a new version the mainline BT protocol has

been released. Despite its rather small diffusion among

users (only 2% of the clients appear to be of type mainline

[15]), we analyze in this work the impact of this new client,

that we termed BTnew. The key difference of BTnew lies

in the choice of the parameters of the choke algorithm. The

number of regular unchokes is determined as a function of

the uplink capacity C of a peer, that is k =
√

0.6C (C is

expressed in KBytes/s). Moreover, ω = 2. With these new

parameters, peers with a high uplink capacity open more

active connections.

BitTyrant. The key modifications introduced by Bit-

Tyrant (hereinafter BTyr) are related to the peer selection

algorithm. As for BTnew, the number of unchoked peers

is a function of a peer’s uplink capacity. However, BTyr

uses a dynamic bandwidth allocation algorithm by which

uplink capacity is assigned on a per-connection basis. Dur-

ing the initial phase of the download process, a BTyr peer

allocates the same bandwidth c = 15 KBytes/s to all con-

nections. This initial value, found empirically, is set such

that the probability of reciprocation from remote peers is

high. The authors in [15] compute c considering a band-

width distribution derived from real measurements: as in

this work we adopt the same distribution, we also use the

same value for c.

Subsequently, the alternative choke algorithm works as

follows: if a remote peer reciprocates for at least 3 unchok-

ing intervals, the bandwidth allocated for this active connec-

tion is reduced by a factor of 0.9. If an unchoked neighbor

stops reciprocating, then the bandwidth allocated to the ac-

tive connection is increased by a factor 1.2. Every choke in-



terval (set to 10 sec.), neighbors are sorted according to the

ratio between the amount of data received and sent (in the

last 20 sec.); the available uplink capacity is then progres-

sively allocated to remote peers in descending order. Hence,

the amount of bandwidth allocated to a remote peer should

converge to the exact value required to guarantee reciproca-

tion.

BitThief. The primary aim of this client was to show the

intrinsic weakness of the optimistic unchoke adopted by BT.

BitThief continues to contact the tracker in order to increase

as much as possible its peer set size. As a consequence, the

probability to be optimistically unchoked increases, and the

client can receive the content without uploading at all.

3 Misuse Opportunities in BitTorrent: an

Analytical Perspective

In this section we take a data agnostic approach and an-

alyze the extent to which the altruistic behavior of both BT

and BTnew might be exploited by self-interested peers. Our

analysis extends and formalize rigorously the key observa-

tions made in [15], which are behind the design of BTyr. We

do not consider here the BitThief scheme since the evalua-

tion of its benefits are straightforward.

3.1 Matching Time

As noted in prior studies [16, 17], the choke algorithm,

which constitutes the basis of the peer selection process, can

be seen as a distributed algorithm for the stable b-matching

problem, that converges to a (weakly) stable state in which

peers are matched based on their upload capacity and no

peer has an incentive to deviate from its matches. The algo-

rithm converges to a stable state through a series of explo-

ration rounds (i.e. optimistic unchokes) in which unstable

matchings are formed: in such intermediate cases, a peer

may end up being matched to remote peers that cannot sus-

tain a fair reciprocation. This implies that some peers might

offer more upload bandwidth than they receive.

The time it takes for the algorithm to converge could be

exploited by a peer striving for maximizing the reciproca-

tion it receives from remote peers. In the following we en-

deavor to quantify the convergence time, termed matching

time hereinafter. The matching time we derive ignores (i)

the peer churn rate, (ii) the content availability and (iii) that

some remote peers could be not willing to reciprocate. The

last issue is going to be taken into account in the following

section.

During a time interval equal to Topt, a peer discovers (us-

ing optimistic unchokes) the equal split of ω new peers and

its equal split is discovered by other ω new peers. Given
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Figure 1. Time required for a new peer to dis-
cover a number of peers of equal or greater

equal-split to fill its active set.

peer i with equal split ui, let Ai be the set of active connec-

tions (neighbors it has unchoked). We denote with b(u) and

B(u) respectively the Probability Density Function (PDF)

and the cumulative distribution function (CDF) of the equal

split. b(u) (B(u)) can be evaluated through an empirical

distribution1.

The expected number of interactions peer i needs to find

an attractive peer is geometrically distributed, with expected

value 1/(1 − B(ui)). The expected number of interactions

needed to discover a number of peers equal to the number

of active connections |Ai| is simply |Ai|/(1−B(ui)). If we

consider that the peer has one interaction every Topt/(2ω)
seconds, then the matching time is:

Topt

2ω

|Ai|
1 − B(ui)

. (1)

The equation shows that the matching time increases when

the number of active connections or the equal split in-

creases.

In Fig. 1 we show the matching time for BT and BTnew

clients with different uploading capacities. Matching times

are as large as 1 and 10 hours respectively for high capacity

BT and BTnew clients. The sawtooth behavior of the BT-

new curve is due to non-monotonic relation between the up-

loading capacity and the equal split. Given two peers with

similar capacities, it can happen that the one with higher

capacity opens one additional connection; in this case, its

equal-split is smaller and the time needed to discover faster

peers is lower.

Long matching times paves the way for clients such as

BTyr that tries to exploit high-capacity peers as long as their

discovery phase has not converged yet.

1In this work we use the same empirical distribution as in [15].



3.2 Probability of Reciprocation and Ex-
pected Download Rate

The extremely long convergence time (especially with

respect to typical download times) toward a stable matching

that we discussed in the previous section has encouraged

the design of subtle techniques [15] to exploit peers until

a global matching is reached. By that time, peers would be

immune to greedy strategies. A greedy peer, however, is not

guaranteed to be reciprocated from remote peers at all times

during the matching time.

We show this by studying the evolution in time of the

probability of reciprocation and its impact on the expected

download rate of a peer. The following analysis constitutes

a significant extension to that sketched in [15]. As noted

above, the download rate peer i can achieve varies over

time. Indeed peer i can select its |Ai| best uploaders from

a progressively larger set, but reciprocation from its peer

set fluctuates: reciprocation from peers with higher capac-

ity decreases (because they discover similar peers), while

reciprocation from lower capacity peers increases (because

they are progressively choked by their best uploaders). Be-

ing that each peer optimistically unchokes ω new peers ev-

ery Topt, we consider a discrete time system where every

Topt/(2ω) seconds each peer discovers the equal split of

a new peer. Let us define ρ(ui, uj , k) the probability that a

node with equal split uj is willing to reciprocate with a node

with equal split ui at the k-th interaction. The probability

that a generic peer is willing to reciprocate to peer j at the

k-th interaction is

∫ ∞

0

ρ(uj , v, k)b(v)dv,

and the expected number of peers not reciprocating peer j
(Rj(k)) is:

Rj(k) = k

(

1 −
∫ ∞

0

ρ(uj, v, k)b(v)dv

)

.

We simplify our analysis assuming that: (i) the num-

ber of peers not reciprocating peer j is always equal to

the integer nearest to Rj (we denote it as R̂j) and (ii) that

these peers are the best uploaders of peer j. Then if we

rank the uploaders of peer j on the basis of their equal

split in decreasing order, peer j at the k-interaction will be

willing to reciprocate peers with rank from R̂j(k) + 1 to

wj = R̂j(k) + |Aj |, assuming that it is willing to open up

to |Aj | connections. Now the probability that peer i is going

to be reciprocated from peer j at the following interaction

is equal to the probability that peer i has an higher equal

split than that of the wj-th uploader of peer j2. We can then

2If wj = R̂j(k) + |Aj | > k, peer j will be always willing to recipro-

cate with a new peer.

use order statistic results to derive the equal split PDF of the

z-th uploader of peer j:

b(z)
uj

(v, k) =
k!

(z − 1)!(k − z)!
B(v)k−z(1 − B(v))z−1b(v).

The reciprocation probability at the k + 1-th iteration can

be evaluated considering that peer i will be reciprocated by

peer j only if it will be better than the wj -th best uploader

of peer j, then:

ρ(ui, uj , k + 1) =

∫ ui

0

b(wj)
uj

(v, k)dv. (2)

The system starts from a state where every peer has an

empty active set and it is willing to reciprocate with ev-

eryone else (ρ(ui, uj , 0) = 1), then Eq. 2 can be used to

evaluate the evolution of reciprocation probabilities.

The expected download rate of peer j can be derived as:

R̂j(k)+|Aj |
∑

h=R̂j(k)+1

∫ ∞

0

vb(h)
uj

(v, k)dv + ω

∫ ∞

0

vb(v)dv, (3)

where the first term corresponds to the aggregated rate from

active connections, while the second one to the aggregated

rate from optimistic unchoking.

(a) After 150 seconds

(b) After 15 minutes

Figure 2. Reciprocation probability for BT.



Fig. 2 shows the reciprocation probability for BT clients

after 150 seconds and after 15 minutes, respectively the time

intervals needed by each peer to discover the equal splits of

10 and 60 peers. Every point (x, y) of the figure indicates

the probability that a peer with capacity x is going to be

reciprocated by a peer with capacity y. After 150 seconds

(Fig. 2-a), peers with lower uplink capacities are very un-

likely to be reciprocated by fast peers; however, the proba-

bility for fast peers to reciprocate remote peers that cannot

sustain their upload rates is very close to one. This obser-

vation no longer holds after 15 minutes, (Fig. 2-b): in this

case a large fraction of peers is willing to reciprocate only

with other peers with similar or higher capacities.

(a) After 150 seconds

(b) After 15 minutes

Figure 3. Reciprocation probability for BT-

new.

Fig. 3 shows the corresponding results for the BTnew

client. BTnew appears to be more generous in that the prob-

ability of an unfair reciprocation (a slow peer being served

by a fast one) is still high after 15 minutes.

Fig. 4 reports the expected download rate of a peer with

a given uplink capacity, after 15 minutes from the beginning

of the download process. Fairness is achieved when the up-

link capacity equals the expected download rate (diagonal

line in the figure). We recall that both regular and opti-

mistic unchokes contribute to the download rate observed

by a peer. In the BT case, Fig. 4 illustrates that low capac-
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Figure 4. Expected download rate for a peer

of a given capacity after 15 minutes.

ity peers are able to get more then their fair rate. This is

mainly due to optimistic unchokes: focusing only on regu-

lar unchokes would reveal that the expected download rate

is parallel to the diagonal up to roughly 200kB/s. On the

contrary, peers with capacity greater than 3000kB/s offer

more upload capacity than they receive: this is exploited by

peers with intermediate upload capacity.

While similar observations can be drawn for the BTnew

case, we notice that the advantage for low capacity peers

is less pronounced: this is due to the larger number of ac-

tive connections (hence lower uplink bandwidth dedicated

to each of them) of a BTnew client.

3.3 Discussion

Our data agnostic analysis indicates that exploiting BT

or BTnew clients appears tempting in a first instance, if one

considers the time required by the peer selection to stabilize.

However, due to the variability in time of the probability of

reciprocation, a greedy strategy would work best during the

initial stages of the download process, where high capacity

peers are still willing to serve low and intermediate capacity

peers.

This conclusion raises the legitimate question of whether

these results carry over when piece availability is consid-

ered. Indeed, piece availability plays a crucial role, es-

pecially during the initial phase of the download process,

when the number of pieces being exchanged by peers is

scarce. This key observation calls for a deeper study of

the performance that can be achieved by a greedy client.

Due to the complexity of the analysis when piece availabil-

ity is taken into account, we revert in the following to a

simulation-based performance analysis.



4 Deconstructing BitTyrant: the Single

Client Case

In the following we carry out a simulation-based analy-

sis of the performance of a prominent example of a strategic

client, BTyr. We decided to focus on BTyr because it merges

several greedy techniques previously discussed in the liter-

ature [14, 13]: (i) greedy peer set size and (ii) greedy uplink

allocation :

(i) implies that peer set size in BTyr is larger than that

of a traditional BT or BTnew client (this approach

is adopted also in BitThief [14]); the consequence is

that the probability of being optimistically unchoked

is higher;

(ii) implies that the uplink capacity of a peer is not equally

split among its active connections, but shaped accord-

ing to a greedy objective; hence, the number of active

connections is not a fixed parameter but varies over

time.

Here we deconstruct the BTyr client to understand the

contributions of its building blocks to the increased perfor-

mance achieved by a single BTyr client in a torrent of BT

or BTnew clients.

4.1 Simulator Description, Methodology
and Settings

Our work is based on a customized version of the pub-

licly available BitTorrent simulator called GPS [18]. GPS

is a discrete time flow level simulator, featuring a simple

fluid model of TCP: the available bandwidth between two

peers is equally shared among active flows on the path join-

ing the peers. Peers have infinite downlink capacity and

a finite uplink capacity, which is distributed according to

the bandwidth distribution of [15]. It implements the BT

client, including the piece selection, the choke algorithm

and the tracker. We complemented the simulator with an

implementation of (i) the new version of the mainline BT

client (BTnew) and (ii) the BTyr client.

The main performance metrics we use are:

Download time of the single client (BT, BTyr or BTnew)

in the different scenarios (all BT and all BTnew);

Number of pieces uploaded by the single client during the

download process;

Empirical Cumulative Distribution Function (ECDF or

CDF) of the download time of all peers.

For the BTyr case, we also characterize the uplink capacities

of the peers unchoked over time. Note that when we focus

on a single client, we compare the performance of one peer

using BTyr, BT or BTnew clients in the same simulation

conditions.

We analyze torrents of 350 peers where one initial seed

distributes a file of 50 MB. We select this file size since the

gain of a strategic client is mainly concentrated at the begin-

ning of the distribution process (as showed in the analysis

in Sect. 3), thus BTyr should benefits more from short tor-

rents than larger ones. Peers randomly start to download

the content within a small interval of time (10 sec.) and

stay as seeds in the system once they finish downloading

the content. For each scenario, we perform 10 simulation

runs, generating different random arrival patterns, where

peers have different bandwidths, randomly selected from

the bandwidth distribution. We estimate the mean down-

load time, along with the confidence interval for a confi-

dence level of 95%.

4.2 Impact of the Peer Set and Active Set
Size

In this Section we build a baseline scenario in which a

single, fully-fledged BTyr client operates in a torrent of BT

or BTnew peers. We then artificially obstruct the greedy

peer set construction of BTyr by limiting the frequency of

requests to the tracker: the peer set size is then equal at most

to 80 for every peer in the torrent.

Fig. 5(a) illustrates the download time of a single BT,

and BTyr client for different classes of uplink capacity in

the baseline case. Similarly, Fig. 5(b) depicts the download

time of a BTnew client versus a BTyr client. We observe

that the performance gain of BTyr over BTnew dramatically

drops as compared to the same setting when BT is used.

This is due to the large number of active connections estab-

lished by fast peers using BTnew. Their uplink capacity is

over-carved, hence remote peers receive smaller download

rates as compared to the original BT algorithm.

Figs. 6(a) and 6(b) show the download time for the same

set of experiments shown above when the greedy peer set

construction is obstructed. The results illustrate a signifi-

cant performance loss of BTyr in a torrent of both BT and

BTnew clients, indicating that the increased peer set size

constitutes one of the main factors influencing download

performance.

We note that, with BTnew clients, BTyr could com-

pletely lose all its benefits. BTyr not only uses a larger peer

set size, but also a larger active set size, i.e. it maintains

many active connections, giving a small fraction of band-

width to each of them. Assuming that this policy provides a

gain (we will show in Sect. 4.3 why it actually does), in an

environment where other peers use the same approach – i.e.

in a torrent with all BTnew clients – the benefits of main-

taining many active connections should be limited. The re-
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Figure 5. Mean download time of a single
client with different bandwidths.

sults shown in Figs. 6(b) confirm this observation. As a

further test, we have considered a single BTnew client that

operates in a torrent of BT clients. Our experiments show

that a single BTnew client achieves similar performance as

BTyr (see Fig. 6(a)).

These results hint at the fact that the dynamic uplink

bandwidth allocation algorithm adopted by BTyr appears to

have little impact on performance. We further note that our

simulation study reveals to be necessary: piece availabil-

ity plays a crucial role that could not be understood using a

simplified theoretic formulation of the problem.

4.3 Impact of Greedy Uplink Capacity Al-
location

In the previous section we unveiled that the performance

gain of BTyr is mainly due to the larger peer set and active

set. While the effect of a larger peer set is well understood,

we discuss here the advantage of a larger active set, along

with the impact of the subtle uplink bandwidth allocation

strategy of BTyr.

The rationale behind the BTyr design is to dynamically

adapt both the uplink capacity dedicated to a remote un-
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Figure 6. Mean download time of a single
client with a constrained peer set.

choked peer and the number of active connections (i.e. un-

choked peers) so as to maximize the probability of recip-

rocation. Our analysis showed that this technique can be

exploited best during the initial stages of the download pro-

cess, which however is characterized by low piece availabil-

ity.

On the one hand, by keeping a larger number of active

connections, BTyr strives for maximizing the chance of be-

ing reciprocated, with the knowledge that reciprocation will

happen on a tit-for-tat basis due to the choke algorithm. On

the other hand, since during the initial phase of the down-

load process the lack of fresh pieces to serve could cause up-

link capacity underutilization, a larger active set size helps

spreading available pieces to a large number of peers that

would otherwise remain unserved. This increases the uti-

lization of the uplink capacity of both the BTyr peer and

its neighbors. Interestingly, the greedy strategy adopted by

BTyr has actually a hidden altruistic nature.

Fig. 7 depicts the ratio between the cumulative number

of uploaded pieces over time by single BTyr client with

respect to the corresponding BT client. Especially during

the early stages of content distribution, BTyr uploads up to
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mulative uploaded pieces by BTyr and BT.
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out a single standard BTyr client with band-

width 5000 KB/s.

25 times (for a high bandwidth peer) the number of pieces

uploaded by BT. During steady state, the total number of

pieces uploaded for BTyr and BT converges.

The unexpected altruism of BTyr has a beneficial effect

on all peers involved in the distribution process. In Fig. 8

we show the cumulative distribution function (CDF) of the

download times of all peers in the system. Results indicate

that, when even only one fast peer (with high bandwidth

equal to 5000 KB/s) adopts BTyr instead of BT, there is a

positive impact on the performance of all the other peers.

We also note that similar observations can be made when

introducing one BTnew client.

The results obtained in this section hint toward an impor-

tant direction of future research, that is the study of dynamic

uplink allocation algorithms, where the number of active

connections is not an empirically set parameter as done in

BT. However, we show next that the apparently attractive

uplink allocation strategy of BTyr cannot readily be used

by all peers in a system.
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5 The Multiple Clients Case

The results presented in the previous section indicate

the potential performance improvement of a greedy client

such as BTyr, and its counter-intuitive positive impact on

a torrent. Authors in [15] make the point that there are

reasons to assume an increasing popularity of BTyr and

present some initial results for the case of a torrent of

all BTyr clients. They argue that a wide-spread adoption

of BTyr may have a negative impact on global system

performance. To cope with this problem, [15] suggest

the following fix: when peers establish a connection and

perform the initial handshake, if they realize that they both

are using BTyr, they should switch to a block based TFT

strategy. There are however no hints toward any incentive

compatibility of this approach: truthful revelation (reveling

that a peer is using BTyr) may not be a dominant strategy3.

In this section we take a different perspective and pro-

gressively isolate the effects of the peculiar uplink alloca-

tion strategy of BTyr to understand exactly why system per-

formance degrade when all peers use it. First, we analyze

system performance when all clients are BTyr and they use

a peer set size at most equal to 80. Note that this approach

also reflects a recent trend of commonly deployed trackers

that implement some sort of access control mechanism to

limit the frequency of the requests from peers greedily try-

ing to extend their peer set size.

Fig. 9 illustrates the CDF of the download times for a tor-

rent of all BT, BTnew and BTyr clients: a glance at the me-

dian and worst case download times indicates that a large-

scale adoption of BTyr can indeed jeopardize the content

distribution process, even with a constrained peer set size.

3If peer i uses BTyr and lies it may be better off when facing an honest

peer, or worse off if facing another liar. It is out of the scope of the paper

to analyze this simple game.



In contrast, the best performance is achieved by a torrent

formed by BTnew clients only.

We now deepen our analysis and neglect the effect of

piece availability in our simulations. We assume that each

peer has always interesting pieces to serve, hence a peer’s

uplink capacity can be always fully utilized. This approach

allows to focus only on the exact values allocated by the

BTyr choke algorithm to remote peers, rather than on the

actual amount of data sent or received.

Next, we show the uplink rate assigned by a peer to each

neighbor, over time: for every peer k in the system we main-

tain a matrix E(k) where the element e
(k)
ij represents the rate

assigned by peer k to peer i at choking interval j. Fig. 10

illustrates E(k) for a peer k with 10000 KB/s uplink capac-

ity. The value of rate is visualized using shades of gray: the

darker regions indicate higher rates. During the initial phase

of the download process, peer k allocates the same uplink

rate to all its neighbors 4.

The uplink capacity allocated by peer k varies over

time, and it’s possible to observe two different trends: (i)

some neighbors of peer k are allocated less and less uplink

bandwidth; (ii) other neighbors are assigned an increasing

amount of bandwidth, which then degenerates into a peri-

odic, on-off, phase.

We now focus on the latter case. The initial increasing

trend can be explained as follows: on the one hand, peer

k has spare uplink capacity, thus it unchokes all its neigh-

bors; on the other hand, its neighbors may have limited ca-

pacity, hence they choke peer k. As a consequence, peer

k (that follows the BTyr choke algorithm) increases the up-

link capacity to remote peers to increase the probability of

reciprocation. This behavior is visible for the first 20-30

rounds. At this point, the rate allocated by peer k to re-

mote peers reaches a very high value. As a consequence,

(i) peer k starts choking some neighbors, since it does not

have enough capacity for all of them; (ii) on the contrary,

peer k’s neighbors start unchoking it. These two phases are

interleaved and concur in creating the periodic behavior.

A close look at Fig. 10 indicates that the periodicity is

equal to three rounds5. This is a consequence of the probing

period used by BTyr (and BT) to estimate the received/sent

rate.

The instability we emphasize here clearly arises due to

an implicit feedback loop that is created when two peers

interact. However, the uplink allocation strategy of BTyr

cannot handle this situation, which may appear in the case

of a wide-spread adoption of this modified client. In the

extreme case of a torrent composed by BTyr clients only,

the whole content distribution process may be disrupted.

4Note that, since the initial rate for each unchoked neighbor is 15 KB/s,

peer k unchokes all its neighbors; moreover, the total amount of assigned

capacity is in any case lower than the available uplink capacity.
5Similar results are obtained for a peer k with different uplink capacity.
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Figure 10. Upload rate in the multiple clients

case: snapshot for a fast BTyr client.

6 Conclusion

Recent days have witnessed the development of new,

greedy peer-to-peer clients aiming at decreasing content

download times by leveraging on subtle techniques to ex-

ploit generous clients. In this work we focused on BitTor-

rent networks and analyzed two commonly deployed greedy

techniques (implemented in BitTyrant), while we glossed

over explicit misbehaviors such as pollution attacks. We

showed that the BT protocol can be misused to gain an ad-

vantage over standard peers by building progressively larger

peer sets; we noted however that it is straightforward to pro-

tect against such a greedy technique.

We then argued that further work on more sophisticated

choke algorithms would constitute an important avenue for

future research. Indeed, we showed the greedy uplink allo-

cation algorithm of BitTyrant has some unexpected positive

implications on the content distribution process, especially

during its bootstrap phase. However, our results indicated

that this greedy algorithm could not be readily deployed in

a setting in which multiple (if not only) greedy client would

coexist.

Along the same lines, our results on the last version of

the legacy BitTorrent client suggested a significant perfor-

mance improvement due to a larger number of active con-

nections for high capacity peers.

As part of our current research agenda, we are study-

ing new uplink allocation algorithms that, if adopted by the

majority of clients in a BitTorrent network, would radically

boost its performance.
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