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a b s t r a c t

Motivated by the desire for efficient spectral utilization, we present a novel algorithm
based on binary power allocation for sum rate maximization in Cognitive Radio Networks
(CRN). At the core lies the idea of combiningmulti-user diversity gainswith spectral sharing
techniques and consequently maximizing the secondary user sum rate while maintaining
a guaranteed quality of service (QoS) to the primary system. We consider a cognitive
radio network consisting of multiple secondary transmitters and receivers communicating
simultaneously in the presence of the primary system. Our analysis treats both uplink
and downlink scenarios. We first present a distributed power allocation algorithm that
attempts to maximize the throughput of the CRN. The algorithm is simple to implement,
since a secondary user can decide to either transmit data or stay silent over the channel
coherence time depending on a specified threshold, without affecting the primary users’
QoS. We then address the problem of user selection strategy in the context of CRN. Both
centralized and distributed solutions are presented. Simulation results carried out based
on a realistic network setting show promising results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The discrepancy between current-day spectrum alloca-
tion and spectrum use suggests that radio spectrum short-
age could be overcome by allowing more flexible usage of
spectrum. Flexibility would mean that radios could find
and adapt to any immediate local spectrum availability.
A new class of radios that are able to reliably sense the
spectral environment over a wide bandwidth, detect the
presence/absence of legacy users (primary users), and use
the spectrum only if the communication does not inter-
fere with primary users, is defined by the term cognitive
radio [1]. Cognitive radio (CR) technology has attracted
worldwide interest, and is believed to be a promising
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candidate for future wireless communications in hetero-
geneous wideband environments.
Cognitive radio offers the opportunity to improve

spectrum efficiency by detecting the primary user (PU)
activity and adapting transmissions accordingly [1]. In
current cognitive radio protocol proposals, the secondary
user (SU) device listens to the wireless channel and
determines, either in time or frequency, which part of
the spectrum is unused. It then adapts its signal to fill
this void in the spectrum domain. Thus, a SU device
transmits over a certain time or frequency band only
when no other user does, like in [2]. In the same
context, it was shown in [3] how we can improve the
overall system spectral efficiency compared to classical
approaches by considering a spectrum pooling scenario.
The contribution of some recent studies [4,5] has however
also extended cognitive protocols to allow the SU to
transmit simultaneouslywith the PU in the same frequency
band. This is exactly the setup in this work, where the
cognitive radio behavior is generalized to allow secondary
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users to transmit simultaneouslywith PU as long as the level
of interference to primary users remains within an acceptable
range. Specifically, it is proposed in this paper to combine
cognitive radio with multi-user diversity technology to
achieve strategic spectrum sharing and self-organizing
communications.
In most of the approaches above, the need may exist

for centralized knowledge of all channel and interference
state conditions for all nodes in the network. To circumvent
this problem, the design of so-called distributed resource
allocation techniques is crucial. Distributed optimization
refers to the ability of each user to manage its local
resources (e.g. rate and power control, user scheduling)
based only on locally observable channel conditions such
as the channel gain between the access point and a chosen
user, and possibly locallymeasured noise and interference.
A key example of multi-user resource allocation is that of
power control, which serves as a means for both battery
savings at the mobile, and interference management. In
this work, we will focus on binary power control, since
it has the advantage of leading towards simpler or even
distributed power control algorithms [6]. In [7], it was
also shown that the optimal power control with respect to
maximal sum rate is always binary for a two-cell network,
as well as in the low signal-to-interference ratio (SINR)
regime for an N-cell (link) network [8]. In the general
case when the number of cells (links) > 2, it was also
demonstrated by extensive computer simulations that a
restriction to binary power levels yields only a negligible
capacity loss [8].
A particularly noteworthy question in the context of

cognitive radio, when we seek to optimize the secondary
system capacity, is to guarantee a QoS to PUs. There
are a large number of proposals for all communication
layers treating the increase of restrictions to spectrum
utilization [9], but the QoS issue still has not been clearly
defined. In addition, it is unclear how secondary system
opportunism, is compatible with the support of QoS for
both cognitive radio systems and primary systems. The
FCC proposed the concept of ‘‘interference temperature’’ as a
way to have unlicensed transmitters share licensed bands
without causing harmful interference. Rather than merely
regulate transmitter power at fixed levels, as in the past,
the scheme would have governed transmitter power on
a variable basis calculated to limit the energy at victim
receivers, where interference actually occurs. As a practical
matter, however, the FCC abandoned the interference
temperature concept recently [10] due to the fact that
it is not a workable concept. While offering attractive
promises, cognitive radios face various challenges, starting
from defining the fundamental performance limits of this
radio technology, in order to achieve the capability of using
the spectrum in an opportunistic manner. Specifically,
cognitive radio is required to determine the spectrumband
allocation that meets the QoS requirements of different
users. This decision can be made by assessing the channel
capacity, known as themost important factor for spectrum
characterization.
In this contribution, we will propose a different way to

efficiently protect primary systems from SU interference,
based on outage probability. The notion of information

outage probability, defined as the probability that the
instantaneous mutual information of the channel is
below the transmitted code rate, was introduced in [11].
Accordingly, the outage probability can be written as:

Pout(R) = P {I(x; y) ≤ R} , (1)

where I(x; y) is the mutual information of the channel
between the transmitted vector x and the received vector
y, and R is the target data rate in (bits/s/Hz). Reliable
communication can therefore be achieved when the
mutual information of the channel is strong enough to
support the target rate R. Thus, a cognitive transmitter can
adapt its transmit power pwithin the range of [0; Pmax] to
fulfill the following two basic goals:

• Self-goal: Trying to transmit as much information for
itself as possible,
• Moral-goal: Maintaining the primary users’ outage
probability unaffected.

The motivation behind doing so is that, in any case,
the PU will not necessarily need all those multi-rate
systems. In fact, the primary user will experience the
SU’s interference, and as long as all its target rates
(depending on its QoS) are achieved, it does not care
about what it leaves more. In what follows, we adopt
this setting and consider a CRN in which primary and
secondary users both attempt to communicate, subject to
mutual interference. We propose a distributed cognitive
radio coordination that maximizes the CRN secondary
rate while keeping the interference to the primary user
acceptable. Our goal is to realize PU–SU spectrum sharing
by optimally allocating SU transmit powers, in order to
maximize the total SU throughput under interference
and noise impairments, and short term (minimum and
peak) power constraints, while preserving the QoS of the
primary system. In particular, it is of interest to determine,
in a distributed manner, the optimal noise/interference
threshold above which SUs can decide to transmit without
affecting the primary users’ QoS. In such approaches, users
individually make a decision on their transmit power so as
to optimize their contribution to the system throughput.
At the core of the distributed concept lies the idea that
the interference is more predictable when the network is
dense, and consequently the resource allocation problem
of a given user is made more dependent on the average
behavior, thus facilitating distributed optimization. At
first sight, joint resource allocation does not lend itself
easily to distributed optimization because of the strong
coupling between the locally allocated resources and the
interference created elsewhere in the CRN. Hence the
maximization of a SU capacity taken individually will not
in general result in the best overall network capacity,
although we suggest later cases for which the outcomes
for the centralized and distributed capacity optimization
will differ little. Following the above trend, wewill explore
a distributed joint resource allocation framework and
then analyze what would be the loss when considering a
distributed strategy. Our study treats both downlink and
uplink communications. In both cases, we will derive a
distributed power allocation algorithm and address the
QoS issues for the primary system from an outage point
of view [12,13].
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Fig. 1. The cognitive radio network with one primary user (PU) andM = 4 secondary users attempting to communicate with their respective pairs in an
ad hoc manner during an primary system transmission, subject to mutual interference.

The rest of the paper is organized as follows. The next
section describes the cognitive radio network. In Section 3,
the proposed distributed power control algorithm is
investigated in both the high and low SINR regimes,
respectively. Section 4 includes the primary users’ QoS
issues. In Section 5, the centralized and the distributed user
selection strategies are presented. Simulation results are
provided in Section 6 and Section 7 concludes the paper.

2. The cognitive radio context

2.1. The system model

We consider a wireless CRN with a collection of
users randomly distributed over the geographical area
considered. Users can be both transmitters and receivers.
By virtue of a scheduling protocol, one PU and M pairs of
secondary users are simultaneously selected from these
users to communicate at a given time instant, while others
remain silent. The channel gains are assumed to be i.i.d.
random variables. Throughout the paper, we will use the
following notation:
• the index of SUs j lies between 1 andM ,
• hpu,n denotes the channel gain from the PU indexed by
pu to a desired SU n,
• hpu,pu denotes the channel gain between the base
station (BS) and the PU,
• hj,n denotes the channel gain from SU j to a desired SU
n,
• the data destined from the primary system is transmit-
ted with power ppu.
• the data destined from SU j is transmitted with power
pj.

In the coverage area of the primary system, there
is an interference boundary within which no SUs can
communicate in an ad hoc manner. Thus, as can be seen
in Fig. 1, for the impairment experienced by the primary
system to be as small as possible, a SU must be able to
detect very reliably whether it is far enough away from a
primary base station, i.e., in the area of possible cognitive
radio operation. The expression of the PU instantaneous
capacity is

Cpu = log2

1+ ppu |hpu,pu|
2

M∑
j=1
pj|hj,pu|2 + σ 2

 (2)

where σ 2 is the ambient noise variance. On the other
hand, by making SUs access the primary system spectrum,
the jth SU experiences interference from the PU and all
neighboring co-channel SU links that transmit on the same
band. Accordingly, the jth SU instantaneous capacity is
given by:

Cj = log2
(
1+ SINRj

)
; for j = 1, . . . ,M (3)

where

SINRj =
pj|hj,j|2

M∑
k=1
k6=j

pj|hk,j|2 + ppu |hpu,j|2 + σ 2
. (4)

SUs need to recognize their communication environment
and adapt the parameters of their communication scheme
in order to maximize the cognitive capacity, expressed as

Csum =
1

M̃

M̃∑
j=1

Cj , (5)

while minimizing the interference to the primary users,
in a distributed fashion. The sum here is made over the M̃
SUs allowed to transmit. Moreover, we assume that the
coherence time is sufficiently large so that the channel
stays constant over each scheduling period length. We
also assume that SUs know the channel state information
(CSI) of their own links, but have no information on
the channel conditions of other SUs. No interference
cancelation capability is considered. Power control is used
for SUs both in an effort to preserve power and to limit
interference and fading effects.

2.2. The cognitive radio protocol

Under this scheme,we allowSUs to transmit simultane-
ously with the PU as long as the interference from the SUs
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to the PU that transmits on the same band remains within
an acceptable range. Specifically, we impose the condition
that SUs may transmit simultaneously with the PU as long
as the PU in question does not have its QoS affected in
terms of outage probability. We consider that PUs operate
at a desired rate (depending on their respective QoS de-
mands). Based on PU channel statistics, we determine the
outage failure, in otherwords the probability that the PU of
interest is actually under that rate. Froma practical point of
view, the outage probability as well as the requested rate
can be broadcasted before the start of the communication
by the primary systembase station, and is used as a pream-
ble for the PU to get informedwhich data rate is requested.
This preamble can also be overheard by SUs who can then
learn about these outage values.
One basic assumption throughout this paper is that a SU

can vary its transmit power, under short term (minimum
and peak) power constraints, in order to maximize the
cognitive capacity, while maintaining a QoS guarantee to
the primary user. The idea of the binary on/off power
control is simple, as well as yielding quasi-optimal results
in a number of cases [8]. As such, it constitutes a
promising tool for making spectrum sharing a reality.
Besides complexity reduction, an important additional
benefit of binary power control is to allow distributed
optimization.

3. Binary power control algorithm

Secondary users offer the opportunity to improve
the system throughput by detecting the PU activity and
adapting their transmissions accordingly while avoiding
the interference to the PU by satisfying the QoS constraint
on outage. The motivation behind the proposed technique
is that, by opportunistically adapting their transmit
power with the guide of the proposed strategy, SUs can
maximize the achievable sum rate under the constraint of
maintaining the outage probability of the PU not degraded.
Our goal within this work is thus to determine, under the
assumption that the PU is oblivious to the presence of
the cognitive users, which would be the cognitive system
capacity (which can also be viewed as the total increase
in system capacity (or spectral efficiency) due to the SUs’
activity) and, at the same time, the maximum number of
cognitive communication links allowed in such a system.
We present a distributed algorithm for power allocation
in the sense that it requires a SU to decide distributively
to either transmit data or stay silent over the channel
coherence time depending on a specified SNR threshold.
The optimization problem can therefore be expressed as
follows:

Find {p1∗, . . . , pM∗} = arg max
p1,...,pM

Csum (6)

subject to:{
pj ∈ {0, Pmax}, for j = 1, . . . ,M
Pout = Prob

{
Cpu ≤ Rpu | Rpu, q

}
≤ q (7)

where Rpu is the PU transmitted data rate. The key idea
within the proposed iterative algorithm is, as in [6,14],
to subsequently limit pj to {0, Pmax}, i.e., to switch ‘‘off’’

transmission in SUs’ links which do not contribute enough
capacity to outweigh the interference degradation caused
by them to the rest of the network. We propose an
adaptation of the distributed algorithm which allows a
subset of controlled size M̃ of the total number of SUs M
to transmit simultaneously on the same sub-band. It turns
out necessary to limit the number of SUs interfering with
the primary user so as to guarantee the QoS for the primary
system. A SU should be deactivated if this action results
in an increase in the cognitive capacity of SUs or if its
transmission violates the PU outage constraint. Let Ψ be
the set of indices of all presently active SUs. Denoting the
SU which is to be potentially turned off bym, the network
capacity with and without SU turned off is given by the
LHS and the RHS of (8a) respectively, and after simple
manipulations (8c).

3.1. At high SINR regime

The CRN described in the previous subsection can be
modeled by interference channels, due to the fact that SUs
employ the same spectral resource in each link, giving rise
to an interference-limited system. At high SINR regime, in
all ‘‘on’’ SU, and assuming an interference-limited system,
we can simplify condition (8c) (Box I) as:

SINRm =
pm|hm,m|2

ppu |hpu,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2

<

∏
j∈Ψ
j6=m

ppu |hpu,j|2 + ∑
k∈Ψ
k6=j

pk|hk,j|2


∏
j∈Ψ
j6=m

ppu |hpu,j|2 + ∑
k∈Ψ
k6=j6=m

pk|hk,j|2

 (9)

⇓

pm|hm,m|2

ppu |hpu,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2
<

∏
j∈Ψ
j6=m

∑
k∈Ψ∪{pu}
k6=j

pk|hk,j|2

∏
j∈Ψ
j6=m

∑
k∈Ψ∪{pu}
k6=j6=m

pk|hk,j|2
. (10)

Suppose that devices operate in a dense network,
i.e. a large number of SUs is distributed over a restricted
geometrical area. Dense networks lend themselves to
simplified modeling of the total interference experienced
by any user, thanks to the large number of interference
sources being averaged at the receiver [15]. Based on the
observation that interference to any user in a large dense
network is only weakly dependent on the user’s position,
we can approximate the interference term by an average
interference gain, denoted by G2 which is independent of
the user locationmultiplied, by the total transmit power of
active interferers:

M∑
j=1

pj|hn,j|2 ' G2
M∑
j=1

pj = G2MPmax, for all n. (11)
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∑
j∈Ψ

log2

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j

pk|hk,j|2

 <
∑
j∈Ψ
j6=m

log2

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j6=m

pk|hk,j|2

 (8a)

log2 (1+SINRm)+
∑
j∈Ψ
j6=m

log2

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j

pk|hk,j|2



<
∑
j∈Ψ
j6=m

log2

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j6=m

pk|hk,j|2

 (8b)

⇒ (1+ SINRm)
∏
j∈Ψ
j6=m

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j

pk|hk,j|2

 <
∏
j∈Ψ
j6=m

1+ pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j6=m

pk|hk,j|2

 (8c)

Box I.

The constant G2 depends only on the average amplitude
of the channel gain and the pathloss. Though only an
approximation, this model is supported by simulations.
Accordingly, condition (10) becomes

pm|hm,m|2∑
k∈Ψ∪{pu}
k6=m

pk|hk,m|2

<

∏
j∈Ψ
j6=m

G2
∑

k∈Ψ∪{pu}
k6=j

pk

∏
j∈Ψ
j6=m

G2
∑

k∈Ψ∪{pu}
k6=j6=m

pk
. (12)

Let us denote M̃ = card{Ψ } and suppose1that K =
ppu
Pmax
. As

all ‘‘on’’ SUs transmit with Pmax, the mth SU will be active
only if

|hm,m|2∑
k∈Ψ∪{pu}
k6=m

|hk,m|2
>

(
M̃ + K − 1

M̃ + K − 2

)M̃−1
. (13)

As the number of SUs increases, we get (as in [6])

lim
M̃→∞

(
M̃ + K − 1

M̃ + K − 2

)M̃−1
=

(
M̃ + K − 1

M̃ + K − 2

)M̃+K−2

×

(
M̃ + K − 1

M̃ + K − 2

)1−K
= e = 2.718281 . . . .

Thus, for a large network size, a SU will be active if its
experimental signal-to-interference ratio is more than e,

1 Notice that for the case of uplink K = 1 since the PU is transmitting
with ppu = Pmax . However, in the downlink scenario, K > 1 since the
power transmitted by the BS is generally greater than Pmax .

namely

SIRm =
pm|hm,m|2

|hi,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2
> e. (14)

3.2. At low SINR regime

The restriction to binary power levels yields in general
only a negligible capacity loss. In addition, as stated before,
it was shown in [8] that in the low SINR regime, i.e., where
the approximation ln(1+x) ' x holdswith good accuracy,
binary power control is in fact always optimal. In the low
SINR regime and starting from (8a), we get (15a). After
simple manipulations and following (15c) (see Box II), the
mth SU will now be active if

SINRm <

∑
j∈Ψ
j6=m

pj|hj,j|2

PmaxG2(M̃ + K − 2)+ σ 2

'
PmaxG2(M̃ − 1)

PmaxG2(M̃ + K − 2)+ σ 2
(16)

where we use the same dense average network assump-
tions as in (11). Suppose, as in the high SINR regime, that
we are in an interference-limited context. This would sug-
gest that σ 2 � PmaxG(M̃ + K − 2) in the RHS of (16). As
the number of SUs increases, we get

lim
M̃→∞

(
M̃ − 1

M̃ + K − 2

)
= 1. (17)

Thus, as previously done, a SU will be active if its
experimental SIR is more than 1:

SIRm =
pm|hm,m|2

|hi,m|2 +
∑
k∈k,m

pk|hk,m|2
> 1. (18)
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pm|hm,m|2

σ 2 + ppu |hpu,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2
<
∑
j∈Ψ
j6=m

pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j6=m

pk|hk,j|2

−

∑
j∈Ψ
j6=m

pj|hj,j|2

σ 2 + ppu |hpu,j|2 +
∑
k∈Ψ
k6=j

pk|hk,j|2
(15a)

pm|hm,m|2

σ 2 + ppu |hpu,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2
<
∑
j∈Ψ
j6=m

 pj|hj,j|2

σ 2 +
∑

k∈Ψ∪{pu}
k6=j6=m

pk|hk,j|2
−

pj|hj,j|2

σ 2 +
∑

k∈Ψ∪{pu}
k6=j

pk|hk,j|2

 (15b)

pm|hm,m|2

σ 2 + ppu |hpu,m|2 +
∑
k∈Ψ
k6=m

pk|hk,m|2
<
∑
j∈Ψ
j6=m

pj|hj,j|2

σ 2 +
∑

k∈Ψ∪{pu}
k6=j6=m

pk|hk,j|2
(15c)

Box II.

We thus confirm, as intuitionwould expect, that SUs under
better SINR conditions would transmit only above a higher
threshold than in the low-SINR regime.

4. Primary system QoS issues

In the current study, we adopt a QoS guarantee to the
PU by means of an outage constraint. This knowledge can
be obtained by two manners: In a centralized mode where
the proposed system would require information from a
third party (i.e. central database maintained by regulator
or another authorized entity) to schedule incoming SUs.
In a realistic network, centralized system coordination is
hard to implement, especially in fast-fading environments
and in particular if there is no fixed infrastructure for SUs,
i.e., no back-haul network over which overhead can be
transmitted between users. In fact, centralized channel
state information for a dense network involves immense
signaling overhead and will not allow the extraction of
diversity gains in fast-fading channel components. To
alleviate this problem, we propose a distributed method
where SUs can get rid of PU knowledge. In a distributed
framework, the information about the outage failure can
be carried out by a band manager that mediates between
the primary and secondary users [16], or can be directly
fed back from the PU to the secondary transmitters
through collaboration and exchange of the CSI between the
primary and secondary users as proposed in [5]. To proceed
further with the analysis and for the sake of emphasis, we
introduce the PU average channel gain estimate Gpu based
on the following decomposition:
hpu,pu , Gpu ∗ h′pu,pu
where h′pu,pu is the random component of channel gain
and represents the normalized channel impulse response
tap. This gives us the following PU outage probability
expression:

Pout = Prob

log2
1+ ppuG

2
pu|h
′
pu,pu|

2

M̃∑
j=1
pj|hj,pu|2 + σ 2

 ≤ Rpu
 ≤ q

' Prob


ppuG

2
pu|h
′
pu,pu|

2

G2su
M̃∑
j=1
pj + σ 2

≤ 2Rpu − 1

 ≤ q

' Prob

{
|h′pu,pu|

2
≤
(
2Rpu − 1

) ( M̃G2suPmax + σ 2
G2puppu

)}
≤ q.

(19)

From now on we assume for simplicity of analysis that
the channel gains are i.i.d Rayleigh distributed. However,
the results can be immediately translated into results for
any other channel model by replacing by the appropriate
probability distribution function. Continuing from (19), we
have:

Pout '
∫ (

2Rpu−1
)(
M̃G2suPmax+σ

2

G2puppu

)
0

exp(−t)dt ≤ q. (20)

Finally, we get the following outage constraint:

Pout ' 1− exp

[
−
(
2Rpu − 1

) ( M̃G2suPmax + σ 2
G2puppu

)]
≤ q

(21)

and the maximum number M̃ of active ‘‘on’’ SUs that
transmit with Pmax is given by

0 ≤ M̃ ≤
− log(1− q)(
2Rpu − 1

) . G2puppu
G2suPmax

−
σ 2

G2suPmax
. (22)

By writing SNR = G2suPmax
σ 2
, Eq. (22) can be expressed as:

0 ≤ M̃ ≤
− log(1− q)(
2Rpu − 1

) . G2puppu
G2suPmax

−
1
SNR
= M̃theorie. (23)

The LHS in (23) prevents fromobtaining a negative number
of users when the SNR decreases significantly. The formula
in (23) points out that the number of SUs allowed to
transmit increases as their SNR increases.
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Fig. 2. Number of active secondary users vs. number of SUs for different rates and outage probability in the downlink.

Fig. 3. Number of active secondary users vs. number of SUs for different rates and outage probability in the uplink.

5. User selection strategies

So far, we have studied a distributed approach for
power allocation. With the same goal of maximizing the
sum of user rates, let us now give some leads towards
optimizing the resource bymeans of user selection. Inwhat
follows, we will present an algorithm where joint power
allocation and channel-aware user selection are used, in
view of maximizing the sum of user rates. The algorithm

can be implemented using a centralized controller who
observes the global network and makes decisions, or
through a distributed algorithm where each SU performs
a distributed voting process.
An iterative approach is adopted throughout the

algorithm. Both centralized and distributed strategies are
implemented. The centralized algorithm is referred to
the one where PU’s QoS constraint is guaranteed based
on (19) while in the distributed algorithm, the PU’s QoS
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is insured by means of (23). The pseudo-code for the
proposed approach is given in Algorithm 1 where M̃theorie
is the number of SUs allowed to transmit ruled by (23). The
algorithm is first initialized with a full power allocation
vector. Each SU simultaneously measures its SIR, and
depending on whether the SU is on high or low average
SINR, respectively, it remains active or inactive during the
next time slot based on (14), respectively (18). Similarly,
at every iteration, inequalities (14) and (18) are evaluated
for the SU in question based on the power allocation
resulting from the previous iteration, and the power
allocation vector is updated. Within each iteration, each
PU verifies the outage probability constraint based on the
resulting power allocation. The goal here is to compare the
centralized approach to the distributed scheme in terms
of users ‘‘on’’ and the average rate. The algorithm is run
until the secondary sum capacity stabilizes or for a given
number of iterations. The last SU entering the system
is removed from the transmission. For future work, the
selection strategies can be improved in order to select the
user who affects the sum capacity more. In traditional

Algorithm 1 Distributed Cognitive Radio Power Allocation
(SINR, rate, target outage probability)

1: p(1)j = Pmax ∀j and M̃
(1)
= M

2: for it = 1 : ITmax do
3: while M̃(it) < M̃theorie do
4: for j = 1 : M do
5: B at high SINR regime
6: if SINR(it)j > e then
7: p(it+1)j ← Pmax
8: else p(it+1)j ← 0
9: end if
10: B at low SINR regime
11: if SINR(it)j > 1 then
12: p(it+1)j ← Pmax
13: else p(it+1)j ← 0
14: end if
15: end for
16: B outage constraint: centralized case
17: if P (it+1)out ≥ q then
18: M̃(it+1)

← M̃(it)
− 1

19: end if
20: B outage constraint: distributed case
21: if M̃(it)

≤ M̃(it)
theorie then

22: M̃(it+1)
← M̃(it)

− 1
23: end if
24: end while
25: end for

systems, a centralized entity, for instance the BS, decides
which user is allowed to transmit at each time slot. If the BS
cannot schedule a user who contributes enough capacity
to the system to outweigh the interference produced, it
will remain silent on that specific time slot. However, in
current cognitive radio protocols (e.g. the 802.22 Wireless
Regional Area Network (WRAN) [18]), SUs are supposed
to be willing to collaboratively relay their proper SIR in

order to protect the primary user’s instantaneous rate.
Therefore, it is essential for the cognitive user to obtain the
message from the other SU in real time (via a broadcast
channel), and to be strictly synchronized with the rest of
SU. Obviously, SUs are supposed to be identified thanks to
a specified beacon in the transmission. Specifically, wewill
consider a system where devices are scheduled no longer
by the BS but by a specified SU. Under the user selection
distributed protocol, cognitive users listen to the cognitive
signaling channel broadcasted by the Cluster Head user
and, depending on the constraints considered previously,
determine, either in time or frequency, the SU allowed to
transmit with Pmax.

6. Numerical Results

To go further with the analysis, we resort to realistic
network simulations. Specifically, we consider a cognitive
radio network as described in Fig. 1 with one PU and
M secondary users attempting to communicate during a
transmission, subject to mutual interference. A hexagonal
cellular system functioning at 1.8 GHz with a primary cell
of radius R = 1000 m and a primary protection area of
radius Rp = 600 m is considered. Secondary transmitters
may communicate with their respective receivers of
distances d < Rp from the BS. Channel gains are based
on the COST-231 path loss model [17] including log-
normal shadowing with standard deviation of 10 dB, plus
fast-fading assumed to be i.i.d. circularly symmetric with
distribution CN (0, 1). The peak power constraint is given
by Pmax = 1 W while the power ratio K is taken equal
to 10 for the downlink and equal to 1 for the uplink.
This is justified in light of the fact that the power control
transmitted by the BS is generally taken almost ten times
the primary user transmitted power in multiple possible
standards.
Figs. 2 and 3 show the behavior of the distributed

strategywith respect to the centralized one for both uplink
and downlink, respectively. It is shown that the distributed
algorithm guarantees a good ‘‘protection’’ for the PU as
compared to the centralized one. Generally, we found out
that the distributed scheme presents almost 3 additional
active SUs than the centralized scheme. Moreover, we also
remark that the number of active users in the downlink
in Fig. 2 always outperforms the uplink configuration in
Fig. 3. This can be explained by the fact that, as far as the
downlink system is considered, the power received from
BS is K times the power in the uplink. This results in better
PU’s QoS guarantee. In fact, at a rate R = 0.3 bits/s/Hz,
12 SUs are allowed to transmit in the downlink and 6
SUs in the uplink. We also remark that, asymptotically,
i.e., as the number of SUs becomes large, the number
of active SUs remains constant due to the influence of
interference impairments on the PU’s QoS. This tends to
confirm the intuition from formula (23) where the number
of active SUs is always upper-bounded by M̃theorie. In order
to validate our theoretical derivation in Section 4, we
compare the outage probability derived in (19) (referred to
as centralized outage probability) to the distributed outage
probability in (21) using M̃theorie. As an example we carry
out simulations for a rate = 0.3 bits/s/Hz. First, it is clear
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Fig. 4. The downlink outage probability as function of the number of secondary users for a target outage probability = 1% and a rate = 0.3 bits/s/Hz.

Fig. 5. The uplink outage probability as function of the number of secondary users for a target outage probability = 1% and a rate = 0.3 bits/s/Hz.

from Figs. 4 and 5 that the distributed outage probability
always outperforms the centralized one. We also remark
that, for the outage probability of interest (i.e., q = 1%),
the number of allowed SUs to transmit is equal to 6 for
the uplink and 12 for the downlink. This is exactly what
Figs. 2 and 3 show in the saturation state at a rate =
0.3 bits/s/Hz.
Fig. 6 depicts the sum secondary user capacity per

user for both downlink and uplink as expressed in (5). As

expected, it is found that the capacity of the uplink system
outperforms that of the downlink system. On the other
hand, increasing the number of SUs yields significantly
an increase in capacity because the increase in degree of
freedom more than compensates for the decrease in SINR
due to interference. However, reaching a certain number of
SUs, the sum SU capacity per user decreases as the number
of SUs increases. Notice here that, as the primary cell radius
R and the primary protection area radius Rp decrease,
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Fig. 6. Sum secondary user capacity per user vs. number of SUs for different rates.

the sum secondary user capacity per user becomes more
sensitive to the interference impairments leading to a
significant decrease in the sum secondary rate. The current
curve claims that in CRN, when one attempts to maximize
the number of active SUs, the cognitive capacity degrades
asymptotically. Typically, there is a fundamental trade-off
between cognitive capacity maximization and number of
active SUs maximization.

7. Conclusion

In this paper, we explored the idea of combining multi-
user diversity gains with spectral sharing techniques to
maximize the secondary user sum ratewhilemaintaining a
QoS to a primary user. Both uplink and downlink scenarios
are treated. Our contribution within this paper is two-fold.
In the first part of the paper, we derived a distributed
algorithm for power allocation under a cognitive capacity
maximization criterion and minimum and peak power
constraints. We found out that a secondary user can self-
adapt its spectrum assignment to approximate a new
optimal assignment in order to maximize the system
spectral efficiency. We also investigated the QoS issues
from an outage point of view. In the second part, we
explored the user selection strategies. In this setting,
centralized and distributed strategies are presented. Both
theoretical and simulation results based on a realistic
network setting are shown to exhibit interesting features
in terms of CRN deployment while maintaining QoS for
the primary system by means of outage probability. In
particular, we showed that in such CRN, one should make
a trade-off between cognitive capacity maximization and
number of active SUs maximization.
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