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ABSTRACT
In this paper we present a realistic model of peer-to-peer
backup and storage systems in which users have the ability
to selfishly select remote peers they want to exchange data
with. In our work, peer characteristics (e.g., on-line avail-
ability, dedicated bandwidth) play an important role and are
reflected in the model through a single parameter, termed
profile. We show that selecting remote peers selfishly, based
on their profiles, creates incentives for users to improve their
contribution to the system. Our work is based on an exten-
sion to the Matching Theory that allows us to formulate a
novel game, termed the stable exchange game, in which we
shift the algorithmic nature of matching problems to a game
theoretic framework. We propose a polynomial-time algo-
rithm to compute (optimal) stable exchanges between peers
and show, using an evolutionary game theoretic framework,
that even semi-random peer selection strategies, that are
easily implementable in practice, can be effective in provid-
ing incentives to users in order to improve their profiles.
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1. INTRODUCTION
Nowadays, the need for safe on-line storage and backup

services with availability and reliability guarantees is a rel-
evant issue. Since centralized client-server solutions are not
scalable nor robust, alternatives based on distributed data
structures have recently appeared, offering on-line storage
as a web service (e.g., Amazon S3 [18]). Despite being often
built on commodity hardware, on-line storage systems do
not come for free because of the large amount of resources
service providers need to dedicate and maintain. For ex-
ample, for relatively small amount of storage space users
pay roughly $1/year/GB, but an excessive storage demand
is “punished” by a yearly fee of roughly $40 for 20 GB data
at [18]; moreover bandwidth issues, as well as user requests
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for accessing data come also into the pricing picture. Alter-
native storage providers offer unlimited storage capacity for
60 $ per year (e.g., AllMyData [1] and Mozy [16]).

Solutions based on distributed data structure generally
do not exploit resources (storage and bandwidth) available
at users, although very recently Amazon S3 adopted the
BitTorrent protocol [5] to amortize on bandwidth costs for
popular data stored in their system. Similarly to efficient
content distribution, a peer-to-peer (p2p) approach seems
to be a suitable scheme for on-line backup and storage ser-
vices. In such a system, users are expected to cooperate,
that is they are compelled to share their private resources
(storage and bandwidth) with other participants to make
the concept work. A notable example of a p2p backup and
storage solution is Wuala [21]. In contrast to p2p file shar-
ing systems where tit-for-tat based cooperation is temporary
and lasts only for the data transfer time, in a p2p backup
and storage system user cooperation must be long-term and
dedicated to well-defined partners. Hence, more elaborate
incentives schemes are required.

Although several works have defined subtle economic frame-
works to design and analyze incentive schemes to enforce
user cooperation (e.g., [2] and references therein), none of
them have addressed the question of whether it would be
possible to design a p2p backup and storage system with
built-in incentives without requiring additional mechanisms.
One of the main reasons is that existing p2p backup and stor-
age systems do not constrain the interaction among peers: in
systems such as AllMyData and Wuala peers exchange data
with a randomly chosen neighbor set, composed of remote
peers participating in the p2p system. An additional mech-
anism to degrade or eventually deny service to misbehaving
peers is required.

In this work we make the case for a p2p system in which
users can selfishly create their neighborhood. We build a
model of a p2p backup and storage system in which users are
described by a profile, that aggregates information such as
on-line availability, bandwidth capacity (accessibility), be-
havior, etc. Our model is used to formulate a selfish op-
timization framework (in game theoretic terms, a game) in
which peers can select the amount of data they wish to store
in the system, and the remote peers they wish to exchange
data with (termed peer selection). The novelty in our ap-
proach is that it allows users to selfishly determine their pro-
file: e.g., availability and accessibility become optimization
variables, all compacted in a user profile. Profiles are cou-
pled with peer selection and we show that this is sufficient
for providing incentives to users to improve their profile.



Due to the complexity of the joint optimization problem
we originally formulate, in this paper we focus on the impact
of peer selection on user profiles by extending the theory
of Stable Matching. We define a novel game, termed the
Stable Exchange Game, and propose a framework based on
evolutionary game theory to analyze optimal and heuristic
peer selection strategies and show that even semi-random
choices, which are simple to implement in a real system,
compel users to improve their profiles if they wish to obtain
a better quality of service.

The remainder of the paper is organized as follows. In
Section 2 we briefly discuss related works, while in Section 3
we formally introduce our system model. Section 4 focuses
on the analysis of peer selection strategies; in Section 5 we
show how prior results on matching theory can be extended
to account for the requirements of our model. Section 6 in-
troduces a framework based on evolutionary game theory
through which we analyze the impact of several heuristic
peer selection strategies on user profiles. Finally, we con-
clude the paper in Section 7 and discuss on our future work.

2. RELATED WORK
A number of related works focus on economic modeling

of backup and storage systems and focus in particular on
incentive mechanisms: we point the reader to [20] and its
references for an overview of such works. In [20] selfish user
behavior is described using non-cooperative game theory:
users are modeled by their strategies on their demand (in
terms of amount of data to backup) and their offer (offered
resources such as storage space, available bandwidth and
up-time). The user payoff function defined in [20] is linear
and split in two parts: the first term represents users’ will-
ingness to participate to the backup service as a function of
the amount of data they need to backup, the second term
accounts for the costs for a peer to offer local resources to
remote peers.

An example of a commercial p2p storage application is
Wuala [21]: the system relies on symmetric exchanges of
data between users. Each user has the right to backup the
amount of data in the system that she offers locally, dis-
counted by her availability, which must be kept above a cer-
tain threshold. Data persistence and integrity is periodically
checked by the data owner, and important peer parameters
(offered/used storage space, availability, bandwidth and ma-
licious behavior) are maintained using a distributed hash
table.

In [9] the authors present the performance evaluation of
different peer selection strategies in presence of churn: they
present a stochastic model of a p2p system and argue on the
positive effects of randomization. Peer selection strategies
in [9] are designed to mitigate the impact of churn while in
our work peer selection itself provides incentives to users to
increase their on-line time.

Papers on network formation (e.g., [7, 14]) discuss strate-
gic peer selection to find equilibrium networks in which users
selfishly minimize a cost function that accounts for end-to-
end connectivity. Our model is related to these works in that
users build their neighborhoods based on their local prefer-
ences. However, in our system end-to-end connectivity is
not necessary. Moreover, we assume the creation of a link
between peers to be bilateral, as discussed in [6]. Matching
theory, a field of combinatorial optimization, provides useful
tools to analyze peer selection in our setting: we discuss in

details related works in Section 5.
Data management is a crucial issue in backup and storage

systems. A vast literature exists tackling data redundancy
[17], resilience to peer churn, [4] and reputation systems [10].
These problems are not addressed in our work. We also gloss
over the problem of deciding which is the optimal amount
of data to be stored in the system [20].

3. SYSTEM MODEL
In this section we define a general model of a p2p backup

and storage system in which we assume symmetric exchange
of data between peers. The model presented in this paper
relies on the existence of a double-overlay structure. The
first overlay is a distributed hash table that maintains in-
formation on the characteristics and behavior of all peers
taking part to the system, as done in the Wuala application
[21]. We combine users’ features and behavior into a single
parameter, that we termed profile. The second overlay is
built by the users themselves through peer selection: every
peer decides which remote peer to select and exchange data
with.

We begin by defining the degrees of freedom of the sys-
tem: these are the variables a given peer is allowed to locally
optimize. We then present the utility function that charac-
terizes a peer: this allows to define a non-cooperative game
that we will dissert throughout the paper1.

3.1 User profile

Definition 1. Let I denote the set of participants in the
system. We introduce the parameter vector α = (αi) for
∀i ∈ I, which we will refer to as peers’ profiles.

Hence, peers’ characteristics are combined in one scalar,
αi ∈ [0, 1]. αi accounts for peer i’s: data possession behav-
ior (i.e., liability in storing data), availability (probability to
be found on-line), and accessibility (available bandwidth).
We assume αi to be computed, maintained and advertised
through a dedicated DHT overlay. We note that the defini-
tion of a method to compute users’ profiles calls for realistic
measurements on peers’ behavior: we will focus on this is-
sue in our future work, while in this paper we gloss over the
details of how profiles are computed.

In this work we make the case for users to control their
profiles: users’ behavior, as well as their (economic) efforts
directed to improve their availability and accessibility are
considered optimization variables that can be adjusted by
a peer when participating to the p2p backup and storage
system.

In the next section we discuss on data exchange strategies
between peers: these rules are necessary to ensure data avail-
ability despite peer churn. We suggest to use peers’ profiles
α as an important ingredient to drive peer exchanges.

3.2 Backup data exchange

Definition 2. We denote by c the set of ci for ∀i ∈ I,
ci being the amount of data user i needs to backup or store
in the system.

Most of the existing works on p2p backup and storage
systems consider a specific exchange rule in order to address
1In this paper the terms user, peer, player and participant
are synonyms.



the data availability issue and to enforce symmetric collab-
oration between peers. For example, [21] imposes on peer i,
with ci data units stored in the system, the duty of storing ci

pi

data units for others, where pi is peer i’s availability, pi ≤ 1.
This means that a peer can store only discount(o) < o in the
system when she offers o storage capacity to others. The re-
dundancy factor introduced through the discount function is
achieved using techniques such as erasure coding and repli-
cation, and guarantees a permanent backup service despite
peer churn.

In our model, discounting is achieved using peers’ profiles
α: if peer i offers ci

αi
storage space she can backup ci data

units in the system (note that 0 ≤ αi ≤ 1). We further
note that a fair barter-based p2p system should lie on sym-
metric exchanges of backup space between peers. In our
model, the profile-dependent redundancy factor is used to
reach symmetric exchanges.

Our general model considers peers being able to locally
decide (and optimize) the amount of data ci they will store
in the p2p system.

3.3 Peer selection
Along with the two optimization variables α, c discussed in

the previous sections, our model explicitly accounts for the
strategic selection of remote connections a peer establishes.
This process, termed peer selection, defines neighborhood
relations among peers: the union of all peers’ neighborhoods
defines an overlay network through which peers exchange
data.

Definition 3. We define the set n = {ni} ∀i ∈ I, where
ni is a |ni|-tuple describing user i’s neighborhood, and |ni|
is the number of user i’s neighbors. Each element of ni

has the form (cij , αj), where cij is the discounted amount
of data exchanged between user i and user j. Obviously,
cij > 0 holds for ∀j ∈ ni; moreover cij = cji ∈ nj for ∀i, j;
moreover, ci ≥

∑
j 6=i

cij must hold.

Note that although the definition of peer selection we give
in this section resembles to what has been previously studied
in network creation games [7], the utility function we next
define implies that peers are not interested in end-to-end
connectivity.

3.4 User utility function
The utility function is the key component of our model.

Every peer in the system is assumed to selfishly optimize
the utility function by appropriately selecting their strategy
which is a combination of three elements: their profiles, the
amount of data they want to store in the system and the
remote connections they establish. The utility function we
define in this section accounts for peers’ availability, acces-
sibility and behavior through the peers’ profiles.

Definition 4. For ∀i ∈ I, player i’s payoff Pi(αi, ci, ni)
can be described by the following form:

Pi(αi, ci, ni) = Ui(ci) − Di(ci, ni)

− Oi(αi, ci) − Ti(αi, ci, ni) − Ei(αi, α̂i),

where

• Ui(ci) stands for user i’s benefit which is assumed to
be positive, continuously differentiable, increasing and
quasi-concave in its argument;

• Di(ci, ni) indicates the service degradation due to non-
optimal neighbors. It takes peer i’s neighbors’ αjs,
weighted by the amount of data cij stored at each re-
mote peer as inputs. It is decreasing in the remote
peers’ profiles: connecting to a remote peer with a higher
αj value implies less degradation. If the cardinality |ni|
of a peer’s neighborhood drops drastically, the service
degradation increases;

• Oi(αi, ci) is the opportunity cost of offering private re-
sources (i.e., storage). This is a user specific function
of user i’s ci and αi, since it is assumed to be posi-
tive, continuously differentiable, increasing and convex
in the offered storage space, which is given by αi and
ci as discussed in Subsection 3.2;

• Ti(αi, ci, ni) represents the transfer cost related to the
service, and it is a user specific function of user i’s
ci, αi and weighted profile set of her neighborhood. Ti

is decreasing in αi, increasing in ci and shows similar
characteristics to Di on the neighbor set ni;

• Ei(αi, α̂i) describes the effort cost that peer i has to
bear when improving her initial effortless profile α̂i to
αi. Ei is assumed to be a positive increasing convex
function of αi > α̂i.

Authors in [20] model the utility as a function of the
amount of data stored at remote peers, while the upload-
ing/retrieving process is assumed to be ideal. In this work
we argue that the “quality of service” of a backup system
should appear in the user’s payoff. As a concrete example,
a peer may offer a large amount of storage space to remote
peers, but the value to other peers should be weighted by
her up-link capacity: 1 TeraByte of data is worth little if
the up-link capacity is only a few bytes per second.

3.5 Formal game description
We now formally define the dynamic, non-cooperative game

that can be built around the system model we discussed in
the previous sections:

• I denotes the player set (|I| is the number of players);

• S depicts the collection of strategy sets (S = (Si) for
∀i ∈ I), Si being the combination of the three differ-
ent strategy sets: αi ∈ R[0,1], ci ∈ R

+, ni ⊆ Ni =
{{i, j, cij} : j ∈ {I \ i}, cij ∈ R[0,min (ci,cj)]};

• P function gives the player payoffs (P = (Pi) for ∀i ∈ I)
on the combination of strategy sets (P : S1×· · ·×Sn →

R
|I|).

The user strategies and their effects on the payoff function
lead to the maximization problem a selfish user faces in the
system: user i always maximizes her payoff Pi on her three
strategy variables (i.e., her on-line characteristics described
by αi, her backup ci and her strategy regarding peer selec-
tion ni), all of them having effects on her payoff function as
the previous section presented, but not independently, e.g.,
a user may decide to make costly efforts to increase her αi in
order to have a better neighborhood (in terms of neighbors’
profiles).

The optimal user strategy tuple s∗i = (α∗
i , c∗i , n∗

i ) ∈ Si is
defined by solving the equation argi(max(Pi)) with the con-
straint that n = (ni) for ∀i ∈ I must ensure pairwise and



symmetric exchanges. In (Nash) equilibrium Pi(s
∗
i , s∗−i) ≥

Pi(s
′
i, s

∗
−i) for any player i and for any alternative strategy

tuple s′i 6= s∗i , where s∗−i = (α−i, c−i, n−i)
∗ depicts the com-

position of equilibrium strategy tuples of players other than
i.

In summary, the game defined in this section is a joint,
distributed optimization problem that turns out to be very
difficult to analyze. In Section 4 we restrict our attention to
peer selection and derive some simplifying assumptions to
improve the tractability of the problem.

4. MODELING PEER SELECTION
To the best of our knowledge, little work has been done in

studying the strategic selection of remote peers to exchange
data with in a p2p backup and storage system. In this sec-
tion we simplify the generic model defined in Section 3 and
focus on strategic peer selection. We leverage on the litera-
ture of p2p content sharing (see for example [15]) and cast
the peer selection as a stable matching problem. However,
we improve on previous models by allowing matchings to be
the results of a dynamic game in which peers can both select
remote connections based on some preference ordering and
can operate on their profiles αi to modify their rankings.

In the following section we primarily focus on determining
the existence of a dominant strategy for peer selection and
compare it against what is typically implemented in cur-
rent systems, i.e., a random peer selection. Next, we define
a simplified utility function derived from Definition 4 that
induces the peer selection game.

4.1 Dominant strategies
Before delving into the analysis of peer selection strategies

(n), we simplify the game previously discussed by constrain-
ing the degrees of liberty of the system: we simply “down-
grade” two strategic variables to play the role of parameters
in our simplified system:

Assumption 1. We assume that for ∀i ∈ I user i’s strate-
gies ci, αi are fixed; moreover, peer i equally splits the ci data
units among the neighbor set, i.e., cij = cik for ∀j, k ∈ ni.

Definition 5. • Player i adopts a selective strat-

egy if neighbors with high profile are preferred over
neighbors with low profile;

• Player i adopts a non-selective strategy if neighbors
are chosen at random.

Definition 6. A dominant strategy of a game 〈I,S ,P〉,
where I is the set of players, N = (Ni) for ∀i ∈ I is the
strategy set, and P = (Pi) gives player preferences over the
strategy set, is a strategy n∗

i = s∗i ∈ Si with the property
that for player i ∈ I we have P(n∗

i , n∗
−i) ≥ P(ni, n

∗
−i) for

∀ni ∈ Si and for any counter strategy set n∗
−i = s∗−i ∈ S−i.

Proposition 1. The selective strategy is dominant for
every player.

Proof. The proof’s key is that cooperation is bilateral,
i.e., needs consent from both parties. Under Assumption 1
a player’s payoff depends only on her selected partners’ pro-
files; moreover based on the payoff function, collaborating
with player j is less beneficial to a given user i than cooperat-
ing with player k instead, such that αk > αj . Let us separate

player i’s partners based on their strategies: selective and
non-selective partners. Then i’s payoff is the function of the
average profiles of her non-selective and selective partners,
depicted in the form of Pi(α

non−selective, αselective). Since
cooperation is pairwise, a selective player will not collabo-
rate with a worse player, if she can pick a better one. Thus,
assuming large number of heterogeneous profile players, a
selective (resp. non-selective) player’s Pi is a function of

(α̃i, αi) (resp.(α̃, α̃i)), where α̃i is the average profile of non-
selective players having at least αi (resp. α̃i stands for the
average profile of selective partners worse than αi). Since

P (α̃i, αi) > P (α̃, αi), and similarly P (α̃, αi) > P (α̃, α̃i),
being selective is always the best strategy as it assures the
highest payoff regardless the counter-strategy set.

4.2 Peer selection game: a simplified utility
function

Proposition 1 indicates that selfishly selecting remote peers
to connect to dominates a random strategy. We now define
a formal setting to study the problem of the existence of
stable matchings between peers that selfishly select both re-
mote connections based on some preference ordering and
that operate on their profiles αi to modify their ranking. To
improve the tractability of the problem we suppose peer ho-
mogeneity in the amount of data that needs to be stored and
an initial (effortless) profile parameter αi. The combinato-
rial problem that arises in our game is thoroughly discussed
in Section 5.

Assumption 2. We assume ci = C ∈ N
+ ∀i (also ex-

changes are discrete) and that α̂i = 0 for ∀i ∈ I, where α̂i

is the initial, effortless profile.

Leveraging on Assumption 2 we can define the following
simplified utility function, which is selfishly optimized by all
peers participating to the system:

Definition 7. We assume that user i’s payoff ∀i ∈ I is
defined as follows: P (αi, C, ni) = U(C)−D(C, ni)−O(αi, C)−
T (αi, C, ni) − Ei(αi, 0), where:

• the utility of service U(C) and the opportunity cost
O(αi, C) are such that exchanging backup data brings
positive gain with any αj peer, for simplicity U(C) = 2
and O = 0 in the subsequent analysis;

• the degradation cost, which increases (convex) in the
backup fraction exchanged with a particular peer but
decreases in the latter’s profile, has the following form:

D =
∑

j∈ni
(

cij

C
)
(1+αj)

(1 − αj);

• the transfer cost, which depends linearly on the backup
fractions, is T = (1 − αi)

∑
j∈ni

cij

C
(1 − αj);

• and the effort cost is equal to Ei = α2
i , assuming E =

(αi − α̂i)
2.

5. THE PEER SELECTION GAME
In this section we show that under the assumptions made

in Section 4.2 we can anticipate optimal peer selection strate-
gies and stable overlay graphs for any given α vector when
users selfishly optimize their utility from participating to
the system. Since we cast the problem as a stable matching
problem, we first provide a brief introduction to matching



theory and then focus on how to shift from the algorithmic
domain that characterizes simple matching problems to a
game theoretic framework.

At the end of the section we illustrate a heuristic algorithm
to study the game described in Section 4.2.

5.1 Matching problems
The game presented in Section 3 and its simplified version

discussed in Section 4.2 incorporates a matching problem on
the strategy vector n: we are interested in stable outcomes
of these games. Here we emphasize the complexity that the
pairwise symmetric backup exchanges introduce to the sys-
tem model. We define our problem starting from traditional
matching problems. In each case, we assume complete pref-
erence lists and that if player i prefers one of her strategies
to an other, it is because the strict preference order over the
payoff Pi for the given best response strategy set yields so.

The first works on matching theory focused on bipartite,
stable marriage problems [8]. However, in our setting there
is no such distinction of genders (womanhood and man-
hood), hence the bipartite approach is not suitable. Single
linking between players belonging to the same set was first
introduced in the stable roommates problem.

5.1.1 Stable roommates problem
In a stable roommates (SR) problem player i’s strategy is

ni ∈ Ni, where Ni is the set {{i, j} : j ∈ I \ {i}}, and P
is assumed to give strict order on i’s possible pairs, termed
preference list. The formal definition of the SR problem is
to find a matching M on the setting presented above, M

being a set of |I|
2

disjoint pairs of players, which is stable if
there are no two players, each of whom prefers the other to
his partner in M. Such a pair is said to block M. Following
the statement of the SR problem by Gale and Shapley in
[8], Irving’s [12] presents a polynomial-time algorithm to
determine whether a stable matching exists for a given SR
instance, and if so to find one such matching.

For the case where a given player may be part of multiple
pairs, the stable fixtures problem was introduced.

5.1.2 Stable fixtures problem
Irving and Scott present in [13] the stable fixtures (SF)

problem, which is a generalization of the SR problem. For-
mally, the notion of capacity is introduced such that for each
i ∈ I a positive integer ci, which is player i’s capacity, de-
notes the maximum number of matches, i.e., pairs (i, j) in
which player i can appear. i’s strategy is ni ⊆ Ni = {{i, j} :
j ∈ {I \ i}} and P gives again the strictly ordered prefer-
ence list on i’s matches. It is straightforward to see that
the SR problem is a special case of the SF problem when
ci = 1 ∀i ∈ I, i.e., each player may have 1 match at most.
A matching M here is a set of acceptable pairs {i, j} such
that for ∀i ∈ I |{j : {i, j} ∈ M}| ≤ ci, where a pair {i, j}
is acceptable if i appears in nj and j appears in ni. M is
stable if there is no blocking pair, i.e., an acceptable pair
{i, j} /∈ M such that

• either i has fewer matches than ci or prefers j to at
least one of her matches in M; and

• either j has fewer matches than cj or prefers i to at
least one of her matches in M.

[13] describes a linear-time algorithm that determines whether

a stable matching exists, and if so, returns one such match-
ing.

In this work, we define a more general problem by further
extending the SF problem with the possibility of multiple
matches between two given players. We call this problem the
stable exchange problem. In [3] the authors arrive at a very
similar extension of the SF problem through the definition
of SR problem generalizations under the names of stable
activities problem, where parallel edges in the underlying
graph are allowed, and stable multiple activities problem,
where multiple partners are allowed.

5.1.3 Stable exchange problem
In the stable exchange (SE) problem player i’s strategy is

ni ⊆ Ni = {{i, j, cij} : j ∈ {I \ i}, 0 ≤ cij ≤ min (ci, cj)},
where cij (resp. ci) denotes player i’s number of matches
towards player j (resp. towards all the players). A matching
M is a set of matches {i, j, cij} such that {i, j, cij} ∈ ni,
{j, i, cij} ∈ nj for ∀i, j ∈ I, and

∑
j:{i,j,cij}∈M cij ≤ ci holds

for ∀i ∈ I. To avoid inconsistency in the consequence order
of consecutive matches between given players, we make the
following assumption regarding the preference list:

Assumption 3. Pi(i, j, c
′) > Pi(i, j, c

′′) holds for any pair
of matches between players i and j if c′ < c′′ for ∀i, j, where,
by an abuse of notation, we denote players i and j’s c′th
pairwise match’s payoff for i by Pi(i, j, c

′).

M is stable if, similarly to the SF problem, there is no
blocking match, i.e., no match {i, j, c′} /∈ M, thus c′ > cij

for ∀i, j : (i, j, cij) ∈ M, such that

• either i has fewer matches than ci or Pi(i, j, c
′) >

Pi(i, k, cik) ∈ M, such that j 6= k, i.e., {i, j, c′} is
more beneficial for i than at least one of her matches
in M; and

• either j has fewer matches than cj or Pj(j, i, c
′) >

Pj(j, l, cjl) ∈ M, such that i 6= l, i.e., {j, i, c′} is more
beneficial for j than at least one of her matches in M;

In other words, in a stable matching no two players could
have a new match between themselves which is preferred by
both of them to any of their existing matches.

5.2 The capacity-uniform stable exchange prob-
lem

In this section we analyze a simplified instance of the sta-
ble exchange problem: we assume an homogeneous case in
which all users store the same amount of data in the system
while selfishly optimizing the simplified utility model (see
Section 4). Let us suppose that the payoff function P (and
thus the preference order on N = (Ni) for ∀i ∈ I) is defined
based on the player parameter set α. The implications of α
on P are compacted in the following proposition.

Proposition 2. In a capacity-uniform stable exchange
problem determined by Assumption 2 and Definition 7,

Pi(i, j, c
′) > Pi(i, k, c′)

holds for a given 0 < c′ ≤ C for any given pair j, k ∈ {I \ i}
if, and only if αj > αk for ∀i ∈ I. In the case αj = αk,
Pi(i, j, c

′) = Pi(i, k, c′) for any 0 < c′ ≤ C. Also, Assump-
tion 3 holds as direct consequence of Definition 7.



Proof. Statement comes directly from Assumption 2 and
Definition 7. Player i’s payoff of the cth match with player
j is Pi(i, j, c

′) = Ui −Di −Oi − Ti −Ei, where the different
terms are given as follows:

• Ui = 2
C

;

• Di =
(
( c′

C
)
(1+αj)

− ( c′−1
C

)
(1+αj )

)
(1 − αj);

• Oi = 0;

• Ti = (1 − αi)(1 − αj)
1
C

;

• Ei =
α2

i

C
.

This gives straightforwardly the proposition.

For the given capacity-uniform stable exchange problem,
constructed by the assumptions and holding properties given
in Proposition 2, we now prove that it is always possible to
find the optimal stable matching M.

Proposition 3. At least one stable matching exists for
a given uniform backup exchange problem instance, and a
slightly extended version of Irving’s algorithm (presented in
[13]) finds the optimal one in polynomial time.

Proof. The proposition comes directly from our exten-
sion of Irving’s algorithm for SF problems to SE problems
and from Proposition 2. By supposing deterministic be-
havior of our algorithm, the statement becomes straight-
forward. Note that non-determinism has no effect on the
outcome, therefore let us suppose that players place their
bids in the profile order. The best profile player i bids the
first C matches on her preference list, and based on Propo-
sition 2, all of them will be accepted and reciprocated, since
if Pi,j,cij

> Pi,k,cik
then Pj,i,cji

> Pj,k,cik
with cji ≥ cij for

∀i, j, k such that αi > αj and 0 < cij , cik, cji ≤ C. In other
words, this means that if a higher profile peer is interested
in a match with a lower profile one, then the latter is inter-
ested also at least to the same extent. After the best profile
peer has found her stable matches, all the bids of the other
players targeting her are dropped, and the same reasoning
stands for the best profiled player of the rest, and so forth.
This deterministic sequence of the algorithm also assures
that the optimal matching will be found, since there is no
possible further pairwise match which yields higher payoff
than the ones in M.

5.3 The capacity-uniform stable exchange game
We now shift from the basic algorithmic setting of match-

ing problems to a game theoretic setting. Formally, let α be
a strategy variable vector the players can decide on, which
indirectly influences the payoff function P : in this setting,
supposing that Assumption 2 and Definition 7 hold, the uni-
form stable backup exchange problem becomes a game.

5.3.1 Game definition
In the capacity-uniform stable exchange game, using the

Section 3’s notations, the joint strategy si for player i con-
sists of αi ∈ [0, 1] and an instance ni ⊆ Ni = {(i, j, cij) :
j ∈ {I \ i}, 0 ≤ cij ≤ C}. Player i ∈ I selfishly maximizes
her payoff Pi, given by P on the α strategy vector and the
peer-selection strategy vector n, i.e., P : α ×N → R

|I|.

5.3.2 Equilibrium
In Nash equilibrium, which must be a stable matching, the

Pi({α
∗
i , α∗

−i}, {n
∗
i , n∗

−i}) ≥ Pi({αi, α
∗
−i}, {ni, n

∗
−i}) holds for

any αi, ni and for ∀i ∈ I, where α∗
−i and s∗−i depict the best

response counter strategy sets.
The optimal player strategy tuple is

(α∗
i , n∗

i ) = argi(max(Pi(α,N )))

for ∀i ∈ I with the constraint that stable matching is sym-
metric in n∗ = (n∗

i ) for ∀i ∈ I, since every match is pairwise.
The social welfare is given by max(

∑
i∈I Pi(α,N )) also with

the stable matching constraint.
We suspect that showing the existence of the pairwise

Nash equilibrium of the game, as well as the joint optimiza-
tion problem defined above, are NP-hard problem, but defer
to an extended version of this work a formal proof.

5.4 An illustrative example
Based on Proposition 3, we propose a heuristic distributed

algorithm which approximates the optimal equilibrium strate-
gies in polynomial time. Players’ decisions regarding their
two strategic variables (i.e., α and n) are interleaved and car-
ried out iteratively. Players’ decisions on α follow a heuristic
based on evolutionary game theory [11]: players switch to
their partners’ average strategy α if they experience lower
payoff then their neighborhood’s average. In each iteration
we find the optimal matching on the actual profile vector
based on a variation of the Irving algorithm. The pseudo-
code of the algorithm is depicted in Algorithm 1.

Algorithm 1 Iterative distributed dynamic uniform ex-
change algorithm

k = 0, initial strategy set αk, initial fitness set P k

repeat

compute stable matching Mk by Irving’s algorithm’s
extended version based on nk

i = arg maxPi(N )|αk for

∀i ∈ I, where Mk =
⋃

i∈I Mk
i , i.e., player i’s matches

in Mk

compute Pk
i given αk and Mk for ∀i ∈ I

compute P̄k
−i =

∑
j∈Mk

i

ck
ij

C
Pk

j for ∀i ∈ I

for all i ∈ I do

if Pk
i < P̄k

−i then

αk+1
i :=

∑
j∈Mk

i

ck
ij

C
αk

j

else

αk+1
i := αk

i

end if

end for

k := k + 1
until αk = αk−1

We implemented Algorithm 1 in a custom simulator and
studied its convergence properties. Our experiments involve
|I| = 100 players with strategies and payoffs as defined in
Assumption 2 and Definition 7; we assume C = 30, and
starting user profiles to be uniformly distributed on the [0, 1]
interval.

Figure 1 illustrates the distribution of profiles at the sta-
ble state. It is possible to distinguish 5 major groups of
players holding nearly the same profile level. These players
are colluded into clusters, and in each cluster players end up
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Figure 1: Distribution of player profiles in equilib-

rium

with the same profile strategy since they all have the same
neighborhood to compare themselves to.

We point out that the initial profile distribution includes a
fraction of players with a profile αi close to zero: this is the
case for peers having, e.g., poor connectivity or malicious
tendency. Figure 1 shows that “low-profile” peers do not im-
prove their profiles throughout subsequent generations. This
phenomenon is due to the fact that no peer is willing to co-
operate with such peers: user-driven peer selection induces
robustness against low-profile peers, that are eventually iso-
lated from the system.

Figure 2 depicts the evolution in time of players’ profile
strategies: we show the average system profile in each gener-
ation. It is possible to deduce that user-driven peer selection
results in higher average peer contribution (profile) than a
random overlay creation scheme. Here we outline the main
reasons for this outcome, but we defer the details to Section
6. Initially, when profiles are uniformly distributed on the
[0, 1] interval, the average profile is 0.5. Although it appears
to decrease throughout the iterations of the algorithm, the
average profile when stability is reached is above 0.4; with-
out user-driven peer selection the equilibrium average profile
is bounded by the value 0.33: selfish players would not in-
crement their profiles beyond that level (note that αi > 0
implies Ei = α2

i > 0 cost). While we formalize this result in
Proposition 4, here we observe that a peer’s best response to
the uniform profile distribution is α∗ = 0.25 by maximizing
the payoff’s T and E (α∗

i = maxαi
(αi(0.5 − αi))) while the

neighborhood is not profile-dependent. As we show later,
evolution makes α∗ = 1

3
to be the dominant strategy.

Finally, Figure 3 depicts the evolution of player payoffs
compacted in the the social welfare (i.e., sum of all players’
payoffs) for each generation: the heuristic scheme we defined
in this section (that is, copying winning strategy from within
the neighborhood) drives the system to higher social welfare.

6. PEER SELECTION STRATEGIES:
AN EVOLUTIONARY FRAMEWORK

In this section we build a framework based on evolutionary
game theory to analyze the properties of a range of peer
selection strategies. Our goal is to study the impact of peer
selection on peers’ profile α, that is we address the following
question: how much effort will a peer dedicate to improve
her profile, given a specific peer selection strategy?

We build upon the illustrative example presented in sec-
tion 5.4, and define the following evolutionary game: players
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Figure 2: Evolution of player profiles

execute an interleaved sequence of peer selection and profile
selection. In the first phase, peers adopt one of the peer
selection strategies we define hereafter, in the second phase,
they adapt their profiles based on the average profile com-
puted over the first phase’s strategy set. Only an increment
in their fitness will motivate an additional effort in improv-
ing their profile. These two phases are repeated throughout
generations until an equilibrium is reached. The asymptotic
evaluation of the system we present aims at determining
evolutionary stable strategies (ESS) over peers’ profile α.

Assumption 4. We assume the number of players to tend
to infinity: |I| → ∞; the initial strategy profile α is assumed
to be uniformly distributed on [0, 1] and continuous over the
infinite population. Moreover, we assume that in each gen-
eration, every player attempts to establish C

2
matches (i.e.,

data exchanges).

Definition 8. Let ∆v(αi, αj) denote the variation in fit-
ness for a player with profile strategy αi when establishing a
match to a player with profile strategy αj.
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Figure 3: Evolution of player payoffs



Assumption 5. We assume a cumulative fitness function
that accounts for a player’s payoff obtained in previous gen-
erations. Effort cost is assumed to be equally attributed to
the maximum number of matches (C) a player can establish.
Therefore2

∆v(αi, αj) =
1

C
(αj(2 − αi) + αi(1 − αi)) .

We now turn our attention to a range of heuristic peer se-
lection techniques. Instead of selfishly maximizing a utility
function as illustrated in Section 5.4, we make the case for
simpler strategies. The following peer selection strategies
can be easily implemented in a realistic setting and they do
not require global knowledge. Informally, we first propose a
completely random, un-biased and unilateral peer selection.
We then constrain peer selection accounting for the profile
of the two peers involved in a matching. First, we explore a
strategy in which the remote peer accepts a matching with a
probability that is proportional to the profile of the initiator
of the matching. Then, we propose a strategy in which ran-
dom peer selection is biased by the profile of remote peers:
a peer with a high profile will be more likely selected than
one with a low profile. Remote peers accept a connection
with a probability proportional to the initiator.

Definition 9. Heuristic peer selection strategies:

• one-sided random matches: remote peers are ran-
domly chosen and the match is not pairwise, i.e., when
chosen, a player has to cooperate with the initiator one;

• pairwise random matches: a player with αi ran-
domly selects a remote player, and the match is ac-
cepted with probability αi;

• pairwise strategic matches: a player with profile αi

selects a remote player with profile αj with probability
αj and the match will be accepted with probability αi.

Before delving into the analysis of the impact of peer se-
lection strategies on profile selection, we briefly review two
important concepts in evolutionary game theory.

6.1 Evolutionarily stable strategy
The definition of an ESS that Maynard Smith [19] gives

cases involving two possible pure player strategies is the fol-
lowing. In order for a strategy to be evolutionarily stable,
it must have the property that if almost every member of
the population follows it, no mutant (i.e., an individual who
adopts a novel strategy) can successfully invade. Let v(α′)
denote the total fitness of an individual following strategy
α′; furthermore, suppose that each individual in the popu-
lation has an initial fitness of v0. If α∗ is an evolutionarily
stable strategy and α′ a mutant attempting to invade the
population, then

v(α∗) = v0 + (1 − p)∆v(α∗, α∗) + p∆v(α∗, α′);

v(α′) = v0 + (1 − p)∆v(α′, α∗) + p∆v(α′, α′);

where p is the proportion of the population following the
mutant strategy α′.

Since α∗ is evolutionarily stable, the fitness of an indi-
vidual following α∗ must be greater than the fitness of an

2Assumption 4 allows to approximate (
cij

C
)
(1+αj)

by 1
C

.

individual following α′ (otherwise the mutant following α′

would be able to invade), and so v(α∗) > v(α′). Now, as p
is very close to 0, this requires that either that

∆v(α∗, α∗) > ∆v(α′, α∗) (1)

or that

∆v(α∗, α∗) = ∆v(α′, α∗) and ∆v(α∗, α′) > ∆v(α′, α′).
(2)

In other words, what this means is that a strategy α∗ is
an ESS if one of two conditions holds: (1) α∗ does better
playing against α∗ than any mutant does playing against α∗,
or (2) some mutant does just as well playing against α∗ as
α∗, but α∗ does better playing against the mutant than the
mutant does.

6.2 Replicator dynamics
An ESS is a strategy with the property that, once all

members of the population follow it, then no “rational” al-
ternative exists. To determine the stable equilibrium state,
at first we need to study the replicator dynamics of the sys-
tem from the initial state. During each generation, players
establish matches, and their fitness improves thereby.

As mentioned above, the system is assumed to show dis-
crete dynamics characters, i.e., generations follow each other.
The proportion of the population following a given strategy
in the next generation is related to the proportion of the
population following the same strategy in the current gen-
eration according to the rule:

xt+1
αi

= xt
αi

vαi
(x)

v̄(x)
,

where xt
αi

(resp. vαi
(x)) denotes the proportion (resp. the

average fitness) of population holding strategy αi during the
t-th generation. v̄(x) depicts the average fitness of the whole
player set.

6.3 One-sided random matches
When considering one-sided random matches, each player

randomly selects C
2

players to connect to: the match is es-
tablished even if the remote peer profile is low compared to
the initiator profile.

We now establish the ESS profile selection strategy:

Proposition 4. In a SE game where one-sided random
matching is used α∗ = 1

3
is the only ESS.

Proof. Let α′ be a mutant strategy such that α′ 6= 1
3
.

We show that ∆v(α∗, α∗) > ∆v(α′, α∗) always holds. Since
∆v(α∗, α∗) = 7

9
, after some algebra we arrive at (α′− 1

3
)2 >

0 inequality for the condition to hold, which is always true
given α′ 6= 1

3
. Similarly, we can show that α′ = 1

3
is suc-

cessful as mutant strategy against any other strategy, thus
it can invade any other overall population α∗ strategy.

6.4 Pairwise random matches
When supposing pairwise random matches, a player with

αi gets rejected with a probability of (1-αi). In case of
rejection, the match is not successful, therefore it does not
increase the player’s fitness. With this extension we reduce
the success possibility of low profile players, so their fitness is
expected to increase slower than a player with higher profile.
The expected payoff of a match initiated by a player holding



αi becomes:

∆v(αi, αj) =
1

C
(αj(2 − αi) + αi(1 − αi)) αi.

When considering pairwise random matches, no player has
C expected matches, unless all players in the generation hold
the maximum profile, i.e., α = I1. A low profile peer will be
rejected with high probability when she initiates a match,
on the other hand she will be selected randomly by others,
thus despite her bad profile, she might be matched to some
peers. To embrace this duality, which does not occur in the
previous case where every initiated match is supposed to be
successful, we need to distinguish between the payoffs due
to “incoming” matches from those obtained from “outgoing”
matches. A player with profile αi will improve her fitness
by ∆vb(αi) due to “outgoing” matches and by ∆vt(αi) due
“outgoing” matches.

The player fitness improvements depend on the distri-
bution of the population proportions holding given profile
strategies. This distribution is time variant due to the inter-
generation strategy changes, thus the probability of pick-
ing a specific profiled player randomly for a match attempt
evolves through subsequent generations. This evolution re-
acts to the fitness improvement of the player with a given
strategy. Assuming uniform initial strategy distribution, we
make the following proposition, limited to the second gener-
ation.

Proposition 5. Under Assumption 4, the proportion of
population with αi < 0.31 and with αi > 0.89 will decrease,
and the number of players with strategy profiles in between
is going to increase in the second generation.

Proof. At the initial state, profile strategy set is uni-
formly distributed, i.e., xαi

= 1 where xαi
denotes the prob-

ability density function (i.e., distribution) of players holding
αi as strategy. The average fitness of the population’s pro-
portion holding strategy αi is

vαi
(x) = ∆v(αi) = ∆vb(αi) + ∆vt(αi) =

1

2

∫ 1

0

(α(2 − αi) + αi(1 − αi))αixαdα

+
1

2

∫ 1

0

(α(2 − αi) + αi(1 − αi))αxαdα,

since based on the law of large numbers each player initiates
and receives C

2
match attempts during a generation lifetime.

After some algebra we get vαi
(x) = − 1

2
α3

i + 7
12

αi + 1
3

under
the assumption xα = 1. Since the average fitness improve-

ment is given by v̄(x) =
∫ 1

0
vα(x)xαdα, in our case it is equal

to 0.5. Thus based on Subsection 6.2 only the proportion of
players holding strategies such that − 1

2
α3

i + 7
12

αi + 1
3

> 1
2

will increase, establishing the proposition.

Pairwise random peer selection provides incentives to player
for improving their profiles: compared to the ESS of the ran-
dom matching strategy, the average profile will be higher.

6.5 Pairwise strategic matches
We have seen in section 5.4 that the case of utility-based

pairwise matching yields stricter exclusion effect on low pro-
file players. Pairwise strategic matches brings the heuris-
tic strategy closer to the idea behind pairwise utility-based
matching, yet it is simpler to implement.

In a SE game of pairwise strategic matches, the expected
payoff of a match initiated by a player holding αi is:

∆v(αi, αj) =
1

C
(αj(2 − αi) + αi(1 − αi)) αiαj . (3)

Based on Equation 3, we establish the following proposi-
tion:

Proposition 6. Under Assumption 4, the lowest profile
(under 0.4) players will increase their profiles in a system
implementing pairwise strategic matches.

Proof. The proof is similar to the one given for Proposi-
tion 5. Here vαi

(x) = 1
2

∫ 1

0
(α(2 − αi) + αi(1 − αi)) αiαxαdα

+ 1
2

∫ 1

0
(α(2 − αi) + αi(1 − αi)) ααixαdα = − 1

2
α3

i + 1
6
α2

i +
2
3
αi, so at the initial state v̄(x) = 19

72
. This result implies

that the proportion of population holding higher profile than
0.4 will increase, thus players worse than this threshold will
increase their profiles.

Proposition 6 indicates that if peer profiles are part of the
peer selection strategy, the consequence is that peers will be
compelled to improve their profiles in order to obtain better
matching. In summary, even simple techniques that are not
based on any local optimization of a utility function, provide
incentives for peers to improve their profiles.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a realistic model of a p2p

backup and storage system that accounts for the characteris-
tics (profiles) of peers participating to the system, including
their availability, accessibility and (malicious) behavior. We
used game theory to define a game in which peers can self-
ishly optimize the amount of data they wish to store in the
system, the set of remote peers to exchange data with, and
their profile.

Hindered by the complexity of the joint optimization prob-
lem, we focused on the important problem of peer selection
with the aim of understanding if peer selection alone can
be used to provide incentives to peers for improving their
profiles. We cast the problem of peer selection and pro-
file selection as a game, and showed how to extend Stable
Matching Theory to fit our problem setting. We extended a
known polynomial-time algorithm to compute multiple sta-
ble matching and showed through a numerical evaluation
that matching alone can be used to compel peers to im-
prove their profile. We also showed that the consequence of
the proposed peer selection strategy for the whole system is
to have an increased aggregate utility.

We then established a framework based on evolutionary
game theory to study simplified peer selection strategies and
showed that even semi-random peer selection can be suffi-
cient to provide incentives to peer for improving their profile.

As part of our research agenda, we plan to perform mea-
surements on existing backup and storage solutions (not nec-
essarily p2p systems) in order to build realistic data-sets
on peer availability, accessibility and behavior. This will
allow us to focus on a clear formulation of the profile set
α: which ingredient has an outstanding importance for in-
centive compatibility to arise? We will also design a real
system implementing our heuristic peer selection strategies,
study its performance in terms of aggregate utility (benefit
for peers) and investigate on the benefit a service provider
could derive in managing such a “self-improving” system.
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