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Abstract

Multiple-input multiple-output (MIMO) wireless communication systems ha-
ve the potential to offer high data rates as well as link reliability. Over the
past years, MIMO systems have been regarded as firm candidates for future
mobile communication standards, both in single user and multiuser modes
of operation. The feasibility of these systems in future standards depends in
great measure on the ability to provide high rates with a reduced amount of
channel state information at the transmitter (CSIT), due to limited resource
availability on the feedback link. This thesis addresses the problem of op-
timizing MIMO wireless communication systems with partial CSIT. On the
one hand, we focus on how to design methods for obtaining CSIT, identifying
what types of CSIT are relevant. On the other hand, we propose techniques
to exploit the available sources of CSIT to optimize the system performance.

In the first part, point-to-point MIMO channels are considered for the
purpose of error rate minimization. Linear precoding techniques are pro-
posed to enhance the performance of space-time coded (STC) MIMO sys-
tems, based on statistical information on the MIMO channel. As we show,
the performance of such systems can be significantly improved by appropri-
ately combining mean and covariance information.

In the second part of this thesis, we focus on sum-rate performance
optimization in MIMO broadcast channels with limited feedback. Low-
complexity cross-layer approaches are proposed for systems with joint linear
beamforming and multiuser scheduling, optimizing the following parts in the
MIMO communications system: linear beamforming techniques, scheduling
algorithms, feedback strategies and feedback quantization techniques.

Different feedback models are considered. In a simple scenario where
feedback consists of only channel quantization indices, we study the bene-
fits of generating quantization codebooks adapted to the channel statistics,
exploiting spatial and temporal correlations. A different feedback model con-
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4 Abstract

siders separate feedback for channel direction information (CDI) and channel
quality information (CQI). In such systems, the users need to estimate the
amount of multiuser interference, which is a difficult task since the users
can not cooperate. We propose a design framework for scalar CQI feedback
design in MIMO broadcast channels, based on an estimate on each user’s
signal-to-interference-plus-noise ratio (SINR). The proposed scalar feedback
encapsulates relevant information, such as the channel gain, the quantiza-
tion error, the orthogonality constraints between beamforming vectors and
the number of active beams. A comparative study between space division
multiple access (SDMA) and time division multiple access (TDMA) is pro-
vided in different asymptotic regimes, showing the cases in which SDMA
becomes more beneficial than TDMA in terms of sum-rate performance and
viceversa. In addition, a more realistic system is considered in which each
user has a sum rate feedback constraint. In this scenario, the existing tradeoff
between multiuser diversity and multiplexing gain is identified, arising from
the fact that the available feedback bits need to be shared for CDI and CQI
quantization.

The problem of designing linear beamforming techniques for MIMO broad-
cast channels is also addressed. An iterative optimization method for unitary
beamforming is proposed, which achieves linear sum-rate growth with the
number of transmit antennas if full CSIT is available. The proposed tech-
nique exhibits robustness to channel estimation errors, providing better sum
rates than zero-forcing (ZF) beamforming and even minimum mean-square
error (MMSE) beamforming as the variance of the estimation error increases.
Our work highlights the importance of linear beamforming optimization in
limited feedback scenarios. Rather than designing sophisticated feedback
schemes, relying on simple linear beamforming techniques, the system per-
formance can be improved by using simple channel quantization strategies
combined with optimized linear beamforming techniques robust to CSIT er-
rors.
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back en fonction du nombre d’utilisateurs, pour B = 9 bits,
M = 3 antennes au transmetteur et SNR = 10 dB. . . . . . . 30
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avec beamforming linéaire et sélection d’utilisateurs, M = 4
antennes, K = 10 utilisateurs, et B = 10 bits sur la voie de
retour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 PEP vs. SNR for different CSIT levels, ρ = 0.9 and γ = 40% . 64

2.2 PEP vs. SNR for different CSIT levels, ρ = 0.9 and γ = 20% . 65

3.1 Sum rate as a function of the SNR for M = 2, 4 transmit
antennas and K = M users. . . . . . . . . . . . . . . . . . . . 88

3.2 Sum rate as a function of the number of users for M = 2
transmit antennas, and average SNR = 0 dB. . . . . . . . . . 89

3.3 Sum rate comparison of suboptimal beamforming approaches
as a function of the number of users for M = 2 transmit
antennas, for a) average SNR = 0 dB (below) and b) average
SNR = 10 dB (above). . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Sum rate as a function of the number of users for M = 2
transmit antennas, and σθ = 0.1π. . . . . . . . . . . . . . . . 97

3.5 Sum rate as a function of angle spread for M = 2 transmit
antennas, antenna spacing d = 0.4λ and K = 100 users. . . . . 98

4.1 Approximated lower bound on the sum rate using Metric I
versus the alignment (cos θk) for M = 4 antennas, variable
number of active beams Mo, orthogonality factor ε = 0.1 and
SNR = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Sum-rate function using Metric I versus orthogonality factor ε
and number of active beams Mo, for K = 35 users, SNR = 10
dB and B = 1 bit. . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Comparison of analytical and simulated lower bounds on the
sum rate using Metric III, for M = 2 antennas, K = 15 users,
SNR = 10 dB and B = 1 bit. . . . . . . . . . . . . . . . . . . 116

4.4 Simulated lower bound on the sum rate using Metric III as a
function of the orthogonality factor ε for large K. . . . . . . . 118

4.5 Finite sum rate feedback model. . . . . . . . . . . . . . . . . . 123



List of Figures 11

4.6 Comparison of simulated lower bound on the sum rate using
Metric III, and actual sum rates obtained with second step of
feedback and full CSIT. M = 2 antennas, K = 10 users, SNR
= 20 dB and B = 1 bit. . . . . . . . . . . . . . . . . . . . . . 128

4.7 Sum rate achieved by different feedback approaches as a func-
tion of the number of users, for B = 9 bits, M = 3 transmit
antennas and average SNR = 10 dB. . . . . . . . . . . . . . . 129

4.8 Sum rate achieved by different feedback approaches versus av-
erage SNR, for B = 9 bits, M = 3 transmit antennas and
K = 10 users. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 Sum rate vs. number of users for M = 2 and SNR = 10 dB. . 131

4.10 Sum rate vs. number of users for M = 2 and SNR = 20 dB. . 132

4.11 Sum rate vs. number of users in a system with optimal B1/B2

balancing for different SNR values. . . . . . . . . . . . . . . . 133

5.1 Broadcast channel model with mobile stations (MS) surrounded
by local scatterers grouped in clusters, located in different
mean angles of departure (AoD) with respect to uniform linear
array (ULA) broadside. . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Sum rate for different number of users in a spatially correlated
channel, M = 2 transmit antennas and SNR = 10 dB. . . . . . 153

5.3 Sum rate for different SNR values in a spatially correlated
channel, M = 2 transmit antennas and K = 10 users. . . . . . 154

5.4 Sum rate for different number of users in a temporally corre-
lated channel, M = 2 transmit antennas and SNR = 10 dB. . 155

6.1 Sum rate as a function of the number of plane rotations (al-
gorithm iterations) for different number of transmit antennas,
K = M users and average SNR = 10 dB. . . . . . . . . . . . . 169

6.2 Convergence of unitary beamforming matrix for different num-
ber of transmit antennas. . . . . . . . . . . . . . . . . . . . . . 171

6.3 Sum rate as a function of the number of antennas M for K =
M users and average SNR = 10 dB. . . . . . . . . . . . . . . . 173

6.4 Sum rate as a function of the average SNR for M = 8 transmit
antennas and K = M users. . . . . . . . . . . . . . . . . . . . 174

6.5 Sum rate as a function of the channel estimation error variance
for M = 4, 8 transmit antennas, K = M users and average
SNR = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



12 List of Figures

6.6 Sum rate as a function of the number of users in a system
with joint beamforming and user scheduling, M = 4 transmit
antennas, SNR = 10 dB, and B = 10 feedback bits. . . . . . . 177

6.7 Sum rate as a function of the average SNR in a system with
joint beamforming and user scheduling, M = 4 transmit an-
tennas, K = 10 users, and B = 10 feedback bits. . . . . . . . . 178



List of Tables
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Résumé

Les systèmes de communication multi-antennaires à émission et réception
(MIMO) sans fil ont le potentiel d’offrir hauts débits et fiabilité. La fais-
abilité de cette technologie dans des systèmes de communication mobiles
dépend dans une large mesure de la capacité à offrir des débits élevés avec
une quantité réduite de connaissance du canal à l’émetteur (CSIT), car la
disponibilité des ressources sur la voie de retour est limitée. Cette thèse
traite du problème de l’optimisation des systèmes MIMO avec CSIT par-
tielle. D’une part, nous fournissons des méthodes pour obtenir CSIT. D’autre
part, nous proposons des techniques pour exploiter les sources de CSIT afin
d’optimiser la performance du système.

Dans la première partie, les systèmes MIMO mono-utilisateur sont con-
sidérés dans le but de minimiser le taux d’erreur. Des techniques de précodage
linéaire sont proposées pour améliorer le fonctionnement des systèmes MIMO
avec codage spatio temporel (STC), en combinant des informations sur la
moyenne et la covariance du canal. Dans la deuxième partie de cette thèse,
nous nous concentrons sur la maximisation de la somme totale des débits
sur la voie descendante des systèmes MIMO multi-utilisateur, avec débit
limité sur la voie de retour. Nous proposons des algorithmes inter-couche à
complexité réduite pour les systèmes avec beamforming linéaire et sélection
d’utilisateurs, en optimisant les parties suivantes dans un système de commu-
nication MIMO: techniques de beamforming linéaire, algorithmes de sélection
d’utilisateurs, informations à transmettre sur la voie de retour et stratégies
de quantification.

Différents modèles sont considérés pour la voie de retour (feedback). Dans
un scénario où les utilisateurs n’envoyent que des indices de quantification
du canal, nous étudions les avantages de la génération des quantificateurs
adaptés à la statistique du canal, afin d’exploiter les corrélations spatiales et
temporelles. Un autre modèle considère le feedback séparé pour l’information
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de direction du canal (CDI) et l’information de qualité du canal (CQI). Dans
ces systèmes, les utilisateurs ont besoin d’estimer le montant d’interférence
inter-utilisateur, ce qui est une tâche difficile puisque les utilisateurs ne peu-
vent pas coopérer. Nous proposons un cadre de conception pour CQI dans
les systèmes MIMO multi-utilisateur, basé sur l’estimation du rapport sig-
nal à interférence plus bruit (SINR). Dans ce cadre, une étude comparative
entre multiplexage spatial des utilisateurs (SDMA: space division multiple
access) et multiplexage temporel (TDMA: time division multiple access) est
présentée dans différents régimes asymptotiques. En outre, dans les systèmes
où les bits envoyés sur la voie de retour doivent être partagés pour quan-
tification de CDI et CQI, nous présentons le compromis entre la diversité
multi-utilisateur et le gain de multiplexage.

Le problème de la conception des techniques de beamforming linéaire
pour systèmes MIMO multi-utilisateur est également abordé. Une méthode
d’opti-
misation itérative pour beamforming linéaire unitaire est proposée, robuste
aux erreurs d’estimation du canal. La technique proposée permet d’améliorer
la performance des émetteurs basés sur le critère de forçage à zéro (ZF),
et même avec un critère de minimisation de l’erreur quadratique moyenne
(MMSE) si la variance de l’erreur d’estimation augmente. Notre travail
montre l’importance de l’optimisation du transmetteur quand le débit sur
la voie de retour est limité. Plutôt que de concevoir des systèmes complexes
de feedback, en s’appuyant sur des techniques de transmission simples, la
performance du système peut être améliorée en utilisant un beamforming
linéaire optimisé et des stratégies simples de quantification du canal.

Chapitre 1: Introduction

La croissance rapide des services sur IP sans fil a eu une importante influ-
ence sur l’évolution des standards de communications mobiles au cours des
dernières années. La troisième et quatrième génération de systèmes de com-
munication mobiles fournissent services de communication orientée paquets,
qui sont plus tolérants aux délais que les services vocaux traditionnels mais
ont besoin de très haut débit. L’efficacité spectrale des systèmes sans fil peut
être considérablement améliorée par les technologies MIMO, en exploitant la
dimension spatiale en plus des dimensions temps et fréquence exploitées dans
les systèmes SISO. Les systèmes MIMO ont reçu une attention considérable,
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car ils offrent fiabilité et communication haut débit.
Dans le cas du MIMO point à point, plusieurs antennes peuvent exploiter

la diversité de l’espace-temps en utilisant le codage spatio-temporel (STC),
fournissant des taux d’erreur très faibles en l’absence de connaissance du
canal à l’émetteur. Si un certain degré de CSIT est disponible, ces connais-
sances peuvent être utilisées afin d’améliorer le taux de transfert des données
avec multiplexage spatial, transmettant des flux de données indépendants.
Dans un système cellulaire multi-utilisateur avec des antennes multiples sur
la station de base, CSIT peut être utilisé pour communiquer avec plusieurs
utilisateurs en même temps par multiplexage spatial, dans le but de max-
imiser la somme totale des débits.

La connaissance du canal au récepteur (CSIR) peut être facilement obtenue
grâce aux symboles pilotes émis depuis la station de base. D’autre part,
l’obtention de CSIT est une tâche complexe qui nécessite l’exploitation de la
réciprocité â la station de base ou l’utilisation de la voie de retour. Ainsi,
toute source de CSIT partiel, instantané ou statistique, doit être exploitée
dans le but d’optimiser la performance du système. Cette thèse traite du
problème de l’optimisation de la performance des systèmes MIMO avec CSIT
partiel, en fournissant des solutions pratiques aux problèmes actuels et futurs
dans les réseaux sans fil MIMO mono et multi-utilisateur.

Dans la première partie de cette thèse, nous nous concentrons sur la
conception de techniques de précodage linéaire pour les canaux MIMO point
à point. Ces précodeurs utilisent des informations statistiques pour améliorer
la performance du système et ils peuvent être concaténées avec STC, offrant
ainsi une solution flexible et robuste. Nous considérons la moyenne et la
covariance du canal comme CSIT partiel, car ils peuvent refléter différents
scénarios pratiques.

Dans la deuxième partie, nous abordons le problème de la maximisation
de la somme totale des débits sur la voie descendante pour les systèmes
MIMO multi-utilisateur. Nous nous concentrons sur l’optimisation des as-
pects suivants au niveau PHY/MAC: les techniques de beamforming linéaire
multi-utilisateur ou beamforming (formation de faisceaux), algorithmes de
sélection d’utilisateurs, informations à transmettre sur la voie de retour et
stratégies de quantification. Toutefois, l’optimisation conjointe de l’ensemble
de ces éléments est assez compliquée. Lors de l’optimisation de ces réseaux,
nous nous posons les questions suivantes:

• Quelles informations doivent être envoyées sur la voie de retour afin
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de concevoir des précodeurs linéaires et d’exploiter la diversité multi-
utilisateur?

• Comment quantifier les informations sur la voie de retour avec débit
limitê disponible en vue d’optimiser la performance du système?

• Comment concevoir des algorithmes de sélection d’utilisateurs à com-
plexité réduite pour exploiter la diversité multi-utilisateur?

• Comment concevoir des techniques robustes de beamforming linéaire
avec un débit réduit sur la voie de retour?

• Pouvons-nous trouver des solutions conjointes à ces problèmes?

Chapitre 2: Systèmes MIMO mono-utilisateur

avec précodage linéaire

Dans ce premier chapitre, nous examinons différents cas de CSIT partial
basés sur la moyenne et la covariance du canal MIMO point à point. D’une
part nous considérons le cas avec moyenne et covariance à priori (ou la dis-
tribution à priori du canal est Ricean), et d’autre part le cas avec moyenne et
covariance à posteriori (approche Bayésienne basée sur l’estimation du canal
et la covariance à priori ).

En outre, plusieurs cas particuliers d’intérêt pratique sont étudiés, à
savoir: le cas avec moyenne nulle, le cas où la moyenne est de rang unitaire
et le cas avec matrice de covariance singulière.

Dans les systèmes sans fil pratiques, des séquences ou des symboles pilotes
sont intégrés dans le signal transmis pour permettre l’estimation de canal au
récepteur.

La connaissance du canal à l’émetteur permet l’amélioration du débit
dans les systèmes sans fil. Un moyen d’obtenir CSIT est l’utilisation de
la voie de retour, en envoyant l’estimation du canal obtenue au récepteur.
Puisque la bande de fréquences disponible est limitée, toutes les informations
statistiques sur le canal devraient être prises en compte.

Afin d’exploiter CSIT partial dans les systèmes MIMO point à point,
la plupart des études actuelles avec précodage exploitent des informations
sur la moyenne ou la covariance séparément. La combinaison des deux peut
améliorer l’exploitation de la connaissance du canal. Dans notre travail,
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Figure 1: PEP en fonction du SNR pour différents niveaux de CSIT, ρ = 0.9
and γ = 40%

nous présentons différentes techniques pour combiner les informations sur la
moyenne et la covariance dans le but d’optimiser le taux d’erreur dans les
systèmes MIMO mono-utilisateur.

Nous considérons un système où l’émetteur encode les bits en utilisant le
codage spatio-temporel. Un mot codé C est de dimension M × T , où T est
la longueur de bloc. Avant la transmission, les mots ST codés sont précodés
avec la matrice de précodage de dimension M ×M .

Nous dérivons une stratégie de précodage optimale pour la minimisa-
tion du taux d’erreur dans les systèmes MIMO, qui combine moyenne et
covariance. La performance du système est mesurée en termes de probabilité
d’erreur par paires (PEP), définie comme la probabilité de choisir le plus
proche mot erroné Cj au lieu de Ci, moyennée sur la distribution (à priori
ou à posteriori) du canal. En appliquant la borne de Chernoff, nous trouvons
le précodeur linéaire qui minimise une borne supérieure sur la PEP moyenne.

La Figure 1 montre le gain de performance que l’on peut obtenir par rap-
port à un système non-précodé en combinant les informations sur la moyenne
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et la covariance. La contribution de la moyenne à la puissance totale du canal
est dénotée par γ, et ρ est le facteur de correlation. Nous pouvons observer
une amélioration remarquable de jusqu’à environ 2.5 dB SNR pour une PEP
fixée. Dans ce cas particulier, la performance est proche de celle obtenue par
un précodeur optimale avec CSIT parfait.

Chapitre 3: Systèmes MIMO multi-utilisateur

avec beamforming linéaire et sélection d’uti-

lisateurs

Les systèmes MIMO peuvent améliorer l’efficacité spectrale, en exploitant
les degrés de liberté créés par de multiples antennes. La capacité dans les
scénarios multi-utilisateur peut être renforcée grâce au multiplexage spa-
tial, en transmettant à plusieurs utilisateurs simultanément avec SDMA,
plutôt qu’en maximisant la capacité de chaque lien mono-utilisateur. Il a
été démontré récemment que la somme-capacité des canaux MIMO est at-
teinte par codage ’papier sale’ (DPC, dirty paper coding) [1]. Toutefois,
l’applicabilité de DPC est limitée en raison de sa complexité et de la nécessité
de CSIT parfait.

Une alternative prometteuse pour la liaison descendante des systèmes
MIMO à faible complexité est le beamforming linéaire. Par opposition à
DPC, le beamforming ne réalise aucune pré-soustraction d’interférence, et
donc l’interférence multi-utilisateur est traitée comme du bruit. Le problème
de trouver les vecteurs de beamforming optimal est un problème d’optimisa-
tion non-convexe, et la solution optimale pour une liaison descendante avec
K utilisateurs ne peut être donnée que par recherche exhaustive. Evidem-
ment, la complexité de ce problème devient extrêmement élevée pour très
grand K. Par conséquent, nous nous concentrons plutôt sur les stratégies
suboptimaux de beamforming linéaire qui, combinées avec des algorithmes
de sélection d’utilisateurs afin d’exploiter la diversité multi-utilisateur, at-
teignent des sommes de débits élevés.

Dans les systèmes MIMO multi-utilisateur, le gain de capacité est forte-
ment lié à la disponibilité de CSIT. Si une station de base avec M antennes
de transmission, en communication avec K récepteurs mono-antennaires,
a un CSIT parfait, un gain de multiplexage min(M,K) peut être atteint.
S’il n’y a pas de CSIT, le gain de multiplexage s’effondre à 1. Donc, il
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est particulièrement intéressant d’identifier quel type de CSIT partiel peut
être transmis à la station de base en vue d’atteindre des débits de données
raisonnablement proche de l’optimum.

Une technique populaire avec très faible taux de feedback est celle de
beamforming aléatoire (RBF)[2], où M vecteurs orthonormaux aléatoires
sont générés et le meilleur utilisateur (celui avec le plus haut SINR) sur
chaque faisceau est sélectionné. En exploitant la diversité multi-utilisateur,
il est démontré que la croissance optimale de la capacité est de M log logK
pour K →∞. D’autres techniques populaires de beamforming sont basés sur
le critère de forçage à zéro (ZF), et sur le critère de minimisation de l’erreur
quadratique moyen (MMSE).

Pour illustrer ces défis, les avantages et les inconvénients de ces systèmes,
deux approches a complexité reduite sont proposées. Dans la première ap-
proche, un scénario avec CSIT parfait est considéré, dans lequel une simple
stratégie de sélection d’utilisateurs est combinée avec beamforming linéaire
basé sur faisceaux orthogonaux. Cela conduit à une forte réduction de
la complexité dans l’étape de sélection d’utilisateurs. Nous montrons que
l’algorithme proposé peut réaliser une grande partie de la capacité multi-
utilisateur.

Dans la deuxième approche, une solution a complexité réduite est pro-
posée pour un scénario avec feedback limité. Comme nous le montrons, des
codebooks simples adaptés à la corrélation spatiale au transmetteur peuvent
produire des gains élevés de performance. Le système proposé fournit une
performance proche de celle de CSIT parfait, lorsque l’ouverture angulaire
multi-antennaire à l’émetteur est assez petite, ce qui rend cette approche par-
ticulièrement intéressante pour systèmes sans fil avec station de base élevée.
En outre, une borne supérieure sur l’interférence multi-utilisateur est dérivée,
basé sur une interprétation géométrique du problème. Cette borne est d’une
importance capitale car, comme nous montrons dans le chapitre suivant, elle
peut être utilisé pour la conception des mesures de feedback aux fins de la
sélection d’utilisateurs.



26 Résumé

Chapitre 4: Un cadre de conception pour la

voie de retour

Dans ce chapitre, le beamforming linéaire et la sélection d’utilisateurs sont ef-
fectuées dans un système où la voie de retour est limitée, et les utilisateurs ont
des codebooks de quantification de direction du canal. Le feedback transmis
par chaque utilisateur vers la station de base se compose de l’information
de direction du canal (CDI) et l’information de qualité du canal (CQI).
Nous présentons un cadre de conception pour le feedback de CQI scalaire
dans les systèmes MIMO multi-utilisateur qui généralise des techniques pro-
posées précédemment. Une famille de métriques est présentée, basée sur des
différents mesures de SINR, qui sont calculés par les récepteurs et envoyés à
la station de base en tant que CQI. Les informations suivantes peuvent être
combinées par chaque utilisateur sur les paramètres scalaires de CQI

• Puissance du signal: P

• Variance du bruit: σ2

• Gain du canal: ‖hk‖2

• Erreur de quantification: sin2 θk

• Facteur d’orthogonalité: ε

• Nombre de faisceaux actifs: Mo

Le facteur d’orthogonalité ε indique le degré maximum de non orthogonalité
entre deux vecteurs beamforming normalisés.

L’algorithme de sélection d’utilisateurs, basé sur feedback scalaire ξk de
chaque utilisateur, est présenté dans le Tableau 1 (MS: station mobile, BS:
station de base). L’ensemble des utilisateurs sélectionnés est dénoté par S,
wi est le vecteur beamforming du i-ème utilisateur (dans ce cas là aussi égal
à la direction du canal quantifié) et B est le nombre de bits dédiés à la
quantification de CDI. Le nombre de faisceaux actifs au transmetteur Mo

et le facteur d’orthogonalité ε sont des paramètres du système fixés par la
station de base qui peuvent être adaptés afin de maximiser la somme des
débits.



Résumé 27

Table 1: Algorithme de Sélection d’Utilisateurs

MS

Calculer & Envoyer sur la voie de retour

CQI: → ξk

CDI: → Index de quantification i ∈ {1, . . . , 2B}
BS

Initialiser S = ∅
Itérer Pour i : 1 . . .Mo répéter

Fixer ξimax = 0

Itérer Pour k : 1 . . .K, k /∈ S répéter

Si ξk > ξimax et
∣∣wH

k wj

∣∣ ≤ ε ∀ j ∈ S

ξk → ξimax et ki = k

Selectioner ki → S

Dans le cadre de conception qu’on propose, toute métrique scalaire peut
être décrite comme suit:

ξ =
‖hk‖2 cos2 θk

‖hk‖2 (α cos2 θk + β sin2 θk + 2γ sin θk cos θk) + Moσ2

P

. (1)

Le numérateur dans l’expression ci-dessus reflète la puissance effective reçue
dans un système avec quantification du canal. D’autre part, le dénominateur
reflète la puissance du bruit et donne une mesure de l’interférence subie par
l’utilisateur, par exemple une borne inférieure ou supérieure, en exploitant
la structure de la matrice de beamforming. En choisissant différentes valeurs
pour les paramètres α, β, γ et Mo, la signification de la métrique est modifiée
et elle produit différents mesures de SINR.

Nous proposons 4 cas particuliers dans le cadre de conception proposée:

• Métrique I: Borne inférieure sur SINR moyen. Fonction de ε et Mo.

• Métrique II: Borne supérieure sur SINR, avec ε = 0 et Mo = M fixés.
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• Métrique III: Borne inférieure sur SINR. Fonction de ε et Mo.

• Métrique IV: Borne supérieure sur SINR moyen. Fonction de Mo, en
fixant ε = 0.

Une approximation sur la somme des débits ergodique est fournie pour
la famille de métriques proposée. La Figure 2 montre une comparaison en-
tre la fonction somme des débits proposée et les résultats des simulations.
Dans cette simulation, la Métrique III a été utilisée, dans un système avec
M = 2 antennes, K = 15 utilisateurs et SNR = 10 dB. La fonction pro-
posée correspond bien aux résultats simulés, même dans des cellules avec un
faible nombre d’utilisateurs actifs. Cette fonction est utile pour la conception
de systèmes et dans le même temps, elle simplifie grandement l’analyse du
système. En effet, une comparaison entre la somme des débits de SDMA et
TDMA a été fournie dans différentes situations d’intérêt. En particulier, la
performance de SDMA est meilleure que celle de TDMA quand le nombre
d’utilisateurs est grand. TDMA offre un meilleur taux que SDMA à haut
SNR (cas limité par l’interférence). En outre, nous montrons l’importance
d’optimiser le facteur d’orthogonalité ε à bas SNR.

Dans les Figures 3 et 4, nous comparons la somme des débits effectifs
obtenue par des systèmes avec préfiltrage adapté au transmetteur et basés
sur les différentes métriques proposées (Métriques I, II, III et IV), pourM = 3
antennes et B = 9 bits. A titre de comparaison, les performances de RBF et
préfiltrage adapté avec CSIT parfait sont fournies.

La Figure 3 montre une comparaison des performances en termes de
somme des débits en fonction du nombre total d’utilisateurs, dans une cel-
lule avec un nombre d’utilisateurs actifs realiste. Le système basé sur la
Métrique I fournit des performances légèrement meilleures que les autres ap-
proches. La Figure 4 représente les performances des différents systèmes en
fonction de SNR, dans un système avec K = 10 utilisateurs. Les systèmes
avec Métriques I et II présentent une croissance linéaire de la somme des
débits en fonction de la SNR, ce qui correspond à une solution TDMA. Le
système qui utilise la Métrique IV bénéficie également d’un nombre variable
de faisceaux actifs, bien que fournissant une moins bonne performance que
les systèmes avec Métriques I et III.

En outre, l’effet de la quantification scalaire des métriques est étudié dans
le cadre d’un système ou la somme totale des bits disponibles sur la voie de
retour est finie. D’un côté, la quantification de CDI encourt une perte de
gains de multiplexage, et de l’autre, la quantification de CQI provoque une
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Figure 2: Comparaison des résultats analyse-simulation de la borne inférieure
sur la somme des débits en utilisant la métrique III, pour M = 2 antennes,
K = 15 utilisateurs, SNR = 10 dB et B = 1 bit.

dégradation de l’exploitation de diversité multi-utilisateur. Donc, dans les
systèmes MIMO avec feedback limite, nous identifions un compromis entre
la diversité multi-utilisateur et le gain de multiplexage. Nous considérons un
système où chaque récepteur a un nombre total de bits disponibles sur la
voie de retour Btot. De ce montant total de bits, B1 bits sont utilisés pour
quantifier le CDI et B2 bits sont utilisés pour la quantification scalaire de
CQI, soit Btot = B1 +B2.

La Figure 5 montre la somme des débits en fonction du nombre d’utilisa-
teurs pour toutes les combinaisons possibles de bits de CDI (B1) et bits de
CQI (B2) dans un système avec Btot = 7 bits. Comme prévu, il est plus
utile d’allouer plus de bits sur CDI dans un système avec un faible nombre
d’utilisateurs actifs. D’autre part, quand le nombre d’utilisateurs augmente,
il devient plus avantageux d’allouer des bits sur CQI.
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Figure 3: Somme des débits obtenue par différentes approches de feedback
en fonction du nombre d’utilisateurs, pour B = 9 bits, M = 3 antennes au
transmetteur et SNR = 10 dB.

Chapitre 5: Optimisation des quantificateurs

du canal

Dans ce chapitre, nous proposons des techniques de quantification de canal
pour les systèmes MIMO multi-utilisateur avec voie de retour limitée. Plutôt
que de séparer les mesures de CDI et CQI, nous considérons un scénario sim-
ple dans lequel chaque utilisateur quantifie directement son vecteur canal.
Le compromis entre la diversité multi-utilisateur et le gain de multiplexage
introduit dans le chapitre précédent est implicitement optimisé dans les ap-
proches proposées, au détriment d’avoir un haut débit sur la voie montante
pendant la période initiale dans laquelle les codebooks sont optimisés. Notre
objectif consiste à trouver des codebooks de quantification simples qui, dans
des scénarios avec corrélation spatiale ou temporelle, fournissent des gains
de performances sur les techniques classiques de quantification.

Nous soulignons l’importance des statistiques dans la cellule pour la con-
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Figure 4: Somme des débits obtenue par différentes approches de feedback
en fonction de SNR moyen, pour B = 9 bits, M = 3 antennes et K = 10
utilisateurs.

ception de codebooks dans les canaux MIMO multi-utilisateur. En premier
lieu, l’importance d’exploiter les corrélations spatiales est adressée. La dis-
torsion de la somme moyenne des débits dans un système avec beamforming
linéaire et sélection d’utilisateurs est minimisé, en exploitant les informa-
tions sur la nature macroscopique des canaux. Dans cette première partie,
un modèle de canal stochastique non-géométrique est considéré, dans lequel
chaque utilisateur peut être atteint par différentes directions spatiales et avec
des angles d’ouverture différents.

Sur la base de ce modèle, nous comparons l’approche proposée avec des
approches basées sur des codebooks aléatoires afin d’illustrer l’importance
d’associer la conception des codebooks aux statistiques de la cellule. L’appro-
che de génération des codebooks est implémentée avec les stratégies de beam-
forming linéaire avec forçage à zéro et filtre adapté. L’approche LF-OSDMA
[3] avec CQI quantifié est simulée; elle généralise le RBF pour les codebooks
de taille plus grande que log2 M . Le codebook de quantification scalaire CQI
utilisé pour LF-OSDMA a été conçu avec l’algorithme généralisé Lloyd.
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Figure 5: Somme des débits en fonction du nombre d’utilisateurs pour M =
2 et SNR = 10 dB.

La Figure 6 représente les performances pour différents nombres d’utilisa-
teurs avec un SNR de 10 dB. Nous voyons que les performances de forçage
a zéro et filtre adapté avec un CSI quantifié sont meilleures que celle de LF-
OSDMA avec SINR quantifié. L’approche proposée donne de bons résultats
particulièrement dans des scénarios avec ouverture angulaire réduite et util-
isateurs distribués sur la cellule de manière non-uniforme.

Deuxièmement, nous abordons le problème de l’exploitation des corréla-
tions temporelles dans le système. Nous présentons une approche qui utilise
la quantification vectorielle prédictive (PVQ) afin d’exploiter la corrélation
entre les réalisations successives du canal dans le but d’améliorer la quan-
tification, et donc d’améliorer la somme des débits. La Figure 7 montre la
somme des débits avec PVQ et ZFBF, et celle de LF-OSDMA. La corrélation
temporelle est modélisée avec le model de Jake, avec une fréquence Doppler
fD et une longueur de trame Tf . L’algorithme prédit le canal sur la base des
dernières 3 réalisations du canal. PVQ utilise une simple étape de prédiction
afin de supprimer la corrélation entre les canaux précédents et le canal en
train d’être quantifié. Ceci permet d’améliorer la performance de l’étape de
quantification, comme indiqué dans nos simulations.
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Figure 6: Somme des débits en fonction du nombre d’utilisateurs dans un
canal corrélé spatialement, M = 2 antennes et SNR = 10 dB.

Chapitre 6: Optimisation des techniques de

beamforming linéaire

Dans ce chapitre, une méthode d’optimisation itérative pour le beamforming
unitaire dans les systèmes MIMO multi-utilisateur est proposée, basée sur
l’optimisation successive des rotations de Givens. Initialement, nous con-
sidérons un système avec CSIT parfait.

La stratégie unitaire proposée cherche l’équilibres entre la puissance et les
interférences reçues par chaque utilisateur. À partir d’une matrice unitaire
arbitraire initiale W0, nous proposons un algorithme itératif qui consiste à
faire tourner la matrice de beamforming en effectuant des successives optimi-
sations des rotations de Givens jusqu’à ce que la convergence soit atteinte. À
la i-ème itération, une nouvelle matrice de beamforming unitaire est calculée
par rotation de la matrice de Wi−1 (calculée à l’itération précédente) dans
le plan défini par les vecteurs complexes (wm,wn), en multipliant à droite
par la matrice de rotation de Givens. La matrice de Givens est déterminée



34 Résumé
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Figure 7: Somme des débits en fonction du nombre d’utilisateurs avec un
canal corrélé temporellement, M = 2 antennes et SNR = 10 dB.

par les paramètres de rotation α et δ. L’algorithme proposé est présenté
dans le Tableau 2. L’ensemble de toutes les paires possibles d’indices {m,n}
est dénotée G, où les indices sont choisis parmi l’ensemble complet d’indices
{1, . . . ,M}, avec n > m. Le nombre de rotations de plans effectuées par
l’approche proposée est NPR.

La convergence de l’algorithme est illustrée à la Figure 8 pour différents
nombres d’antennes de transmission. Dans cette simulation, des rotations
de Givens sont effectuées dans tous les paires possibles de vecteurs de beam-
forming, et un grand nombre de rotations est considéré.

Premièrement, nous comparons la performance de l’approche proposée
avec le beamforming ZF et MMSE, dans un scénario où CSIT parfait est
disponible et le nombre d’utilisateurs est égal au nombre d’antennes au trans-
metteur. En outre, nous montrons à titre de référence la performances d’un
système qui effectue TDMA, en sélectionnant l’utilisateur avec le plus grand
gain du canal. La Figure 9 montre une comparaison en termes de somme des
débits en fonction du nombre total d’antennes de transmission M , pour SNR
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Table 2: Méthode d’Optimisation Itérative pour Beamforming Unitaire
Initialisation

• Initialiser la matrice unitaire W0

i-ème iteration, i = 1, . . . , NPR

• Choisir une paire d’indices {m,n} parmi G

• Trouver les paramètres optimaux de rotation pour le plan (wm,wn)
{α∗, δ∗} = arg min

α,δ
Fmn(α, δ)

• Calculer la nouvelle matrice Wi = Wi−1Rmn(α
∗, δ∗)

= 10 dB. Comme prévu, la solution de beamforming MMSE linéaire fournit
une croissance linéaire de la somme des débits avec le nombre d’antennes de
transmission, tandis que le ZF beamforming s’aplatit. L’algorithme proposé
fournit également une croissance linéaire avec M , étant proche de beamform-
ing MMSE.

L’impact de la connaissance imparfaite du canal à l’émetteur dans un
système avec K = M utilisateurs est aussi étudié. La Figure 10 montre une
comparaison de sommes des débits entre l’approche proposée, le beamforming
ZF, le beamforming MMSE et TDMA en fonction de la variance de l’erreur
d’estimation du canal, pour M = 4, 8 antennes et un SNR moyen de 10 dB.
L’approche proposée se révèle plus robuste aux erreurs de CSIT quele beam-
forming ZF ou MMSE. En effet, une petite variance d’erreur suffit pour que
l’approche unitaire proposée devienne plus performante que le beamforming
MMSE, même pour un grand nombre d’antennes de transmission.

Nous évaluons aussi la technique proposée dans un système MIMO multi-
utilisateur avec K ≥M et feedback limité sur la voie de retour. La Figure 11
montre les performances pour différents nombres d’utilisateurs avec SNR de
10 dB, dans un système avec M = 4 antennes de transmission et B = 10
bits disponibles pour feedback. L’approche proposée utilise une technique
de quantification vectorielle à complexité réduite, basée sur la quantifica-
tion aléatoire des vecteurs avec “pruning”, ce qui signifie qu’il doit avoir
une distance minimale entre chaque mot du codebook. La performance de
l’approche proposée est meilleure que celle de RBF et LF-OSDMA avec feed-
back quantifié, en particulier dans les systèmes à nombre réduit d’utilisateurs,
fournissant des gains de débit proches de 1.5 bps/Hz.
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Figure 8: Somme des débits en fonction du nombre de rotations de plans
(itérations de l’algorithme) pour différents nombres d’antennes au transmet-
teur, K = M utilisateurs et SNR = 10 dB.

Dans la Figure 12, la somme des débits est montrée en fonction de SNR
moyen dans un système avec M = 4 antennes de transmission, K = 10
utilisateurs et B = 10 bits. Dans le scénario simulé, la technique proposée
fournit des gains de performance allant jusqu’à 2-bps/Hz par raport aux
autres techniques.

Conclusion

Dans cette thèse, nous avons mis l’accent sur l’optimisation des performances
des systèmes MIMO sans fil avec CSIT partiel. D’une part, nous avons étudié
le problème de l’obtention et de la conception de CSIT en systèmes mono et
multi-utilisateur, en montrant quelles sources d’information sont nécessaires
à l’émetteur. D’autre part, cette thèse a abordé la question de comment
exploiter efficacement les sources de CSIT disponibles afin d’améliorer la
performance du système.

Dans la première partie de cette thèse, les canaux MIMO point à point
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Figure 9: Somme des débits en fonction du nombre d’antennes M pour
K = M utilisateurs et SNR = 10 dB.

ont été pris en considération, en soulignant l’importance de CSIT statistique
pour la conception de techniques de précodage linéaire. Comme nous l’avons
montré, le taux d’erreur d’un système MIMO avec codage spatio-temporel
peut être considérablement amélioré, grâce a un précodeur linéaire qui ex-
ploite les informations de covariance et moyenne du canal. Afin de fournir une
idée claire de la manière dont la moyenne et la covariance doivent être com-
binées pour obtenir de bonnes performances, différents modèles de canaux
MIMO ont été considérés.

La deuxième partie de cette thèse a été consacrée à l’optimisation de la
somme des débits dans les systèmes MIMO multi-utilisateur avec ressources
limitées sur la voie de retour. Nous avons surtout examiné les systèmes dans
lesquels une station de base communique avec un ensemble d’utilisateurs
ayant chacun une seule antenne réceptrice. Dans le but de concevoir des
techniques pratiques à complexité reduite, nous avons mis l’accent sur les
systèmes avec beamforming linéaire et sélection d’utilisateurs. Dans notre
travail, nous avons montré l’importance de la conception inter-couche à
niveau PHY-MAC, en optimisant les éléments suivants d’un système MIMO
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Figure 10: Somme des débits en fonction de la variance de l’erreur
d’estimation du canal pour M = 4, 8 antennes, K = M utilisateurs et SNR
= 10 dB.

multi-utilisateur: techniques de beamforming linéaire, algorithmes de sélec-
tion d’utilisateurs, informations à transmettre sur la voie de retour et straté-
gies de quantification.

Un cadre de conception pour la voie de retour des systèmes MIMO multi-
utilisateur a été proposé. Un scénario a été envisagé où le feedback pour
l’information de direction du canal (CDI) et l’information de qualité du
canal (CQI) sont envoyées séparément. Dans ces systèmes, les utilisateurs
ont besoin d’estimer l’interférence multi-utilisateur, ce qui est une tâche dif-
ficile puisque les utilisateurs ne peuvent pas coopérer. Nous avons proposé
une borne sur l’interférence multi-utilisateur qui peut être utilisée dans les
métriques scalaires CQI. Cette information est transmise sur la voie de retour
pour sélectionner les meilleurs utilisateurs, avec d’autres mesures d’intérêt,
tels que le gain du canal, l’erreur de quantification, l’orthogonalité entre les
vecteurs de précodage et le nombre de faisceaux actifs. Une étude compar-
ative entre SDMA et TDMA a été fournie dans différents régimes asympto-
tiques, indiquant les cas dans lesquels SDMA devient plus avantageux que
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Figure 11: Somme des débits en fonction du nombre d’utilisateurs dans un
système avec beamforming linéaire et sélection d’utilisateurs, M = 4 an-
tennes, SNR = 10 dB, et B = 10 bits sur la voie de retour.

TDMA en termes de somme des débits et vice versa. En particulier, la perfor-
mance de SDMA surpasse celle de TDMA quand le nombre d’utilisateurs est
grand. TDMA offre un meilleur taux que SDMA à haut SNR (cas limité par
l’interférence). En outre, l’importance d’optimiser le facteur d’orthogonalité
à bas SNR a été démontrée.

Un système plus réaliste a été également examiné dans lequel chaque util-
isateur dispose d’une nombre de bits total limité pour CQI et CDI sur la voie
de retour. Dans ce scénario, le compromis existant entre la diversité multi-
utilisateur et le gain de multiplexage a été identifié, découlant du fait que les
bits de feedback disponibles doivent être partagés pour la quantification de
CQI et CDI. Le problème de l’optimisation de la distribution de bits pour
CQI/CDI a été abordée, ce qui révèle une interaction intéressante entre le
nombre d’utilisateurs, la moyenne du rapport signal sur bruit et le nombre de
bits de feedback. Alors que dans les systèmes à faible nombre d’utilisateurs
la plupart des bits sont alloues à CDI, il devient plus avantageux d’allouer
bits à CQI pour un nombre élevé d’utilisateurs. D’autre part, quand le SNR
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Figure 12: Somme des débits en fonction de SNR moyen dans un système avec
beamforming linéaire et sélection d’utilisateurs, M = 4 antennes, K = 10
utilisateurs, et B = 10 bits sur la voie de retour.

moyen augmente, plus de bits devraient être alloués à CDI.

Nous avons aussi abordée le problème de conception des codebooks pour
la quantification des canaux MIMO multi-utilisateur, dans les systèmes avec
beamforming linéaire et sélection d’utilisateurs. Plutôt que de considérer
un cadre séparé pour CQI et CDI, comme étudié dans la partie précédente,
un simple cadre a été examiné dans lequel chaque utilisateur quantifie di-
rectement son vecteur canal ou l’erreur de prédiction. Des techniques de
génération des codebooks ont été proposées, fondées sur l’adéquation entre
les codebooks de quantification et les statistiques des canaux, exploitant les
corrélations temporelles et spatiales. Nos résultats ont montré que des gains
de performance peuvent être atteints en utilisant des codebooks de quantifi-
cation optimisés en fonction des statistiques dans la cellule.

La conception de techniques optimisées de beamforming a été abordée
dans la dernière partie de cette thèse. Une méthode d’optimisation itérative
de beamforming unitaire a été proposé, basées sur l’optimisation successive
des rotations de Givens. La technique proposée fournit une croissance linéaire
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de la somme des débits en fonction du nombre d’antennes de transmission
si un CSIT parfait est disponible. En outre, il montre une robustesse aux
erreurs d’estimation, en fournissant une somme des débits meilleure que le
beamforming ZF et même beamforming MMSE quand la variance de l’erreur
d’estimation augmente.

L’approche de beamforming unitaire proposée a été évaluée dans des
scénarios multi-utilisateur avec voie de retour à débit limité. Une tech-
nique de quantification vectorielle de complexité réduite a été utilisée, basée
sur la quantification aléatoire des vecteurs. Notre travail met en évidence
l’importance de l’optimisation de beamforming linéaire dans scénarios avec
feedback limité. Plutôt que de concevoir des systèmes complexes de feedback,
en s’appuyant sur des techniques de transmission simples, la performance du
système peut être améliorée en utilisant un beamforming linéaire optimisé et
des stratégies simples de quantification du canal.

Tout au long de cette thèse, nous avons insisté sur le fait que l’optimisation
conjointe des différentes parties des systèmes de communication MIMO sans
fil est nécessaire afin d’offrir de bonnes performances, avec un bas débit sur
la voie de retour. Certains aspects d’intérêt pratique pour de tels systèmes de
communication ont été optimisés, en considérant principalement des scénarios
réalistes avec un nombre raisonnable d’utilisateurs et d’antennes de transmis-
sion, et des conditions habituelles de SNR moyen. L’obtention de CSIT dans
les systèmes sans fil actuels est coûteuse, car les ressources disponibles sur
la voie montante sont limitées. Ainsi, toute source de CSIT, instantanée ou
statistique, doit être exploitée à l’émetteur afin d’améliorer la performance
du système.
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Chapter 1

Introduction

The ever increasing growth of IP-based wireless services has dictated the
evolution of mobile communication standards over the past years. Third and
fourth generation of wireless communication systems support packet-oriented
services, which are more delay tolerant than conventional voice services but
require very high throughput. The spectral efficiency of wireless systems
can be significantly improved by means of multiple-input multiple-output
(MIMO) technologies, exploiting the spatial dimension in addition to the
time and frequency dimensions exploited in single-input single-output (SISO)
systems. MIMO systems have received considerable attention since they pro-
vide reliable, high data rate communication. In point-to-point MIMO sys-
tems, multiple antennas can exploit the spatio-temporal diversity by means
of space-time coding (STC), achieving low error rates in the absence of chan-
nel state information at the transmitter (CSIT). If a certain degree of CSIT
is available, this knowledge can be utilized in order to improve the data rate
through spatial multiplexing, by transmitting independent data streams. In
the downlink of a cellular system with multiple antennas at the base station,
CSIT can be incorporated to serve users at different locations by means of
space division multiple access (SDMA), for the purpose of system throughput
maximization.

In practical wireless communication systems, channel state information
at the receiver (CSIR) can be easily obtained through training. On the other

43
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hand, obtaining CSIT is a complicated task that requires exploiting channel
reciprocity or acquiring feedback from the receiver. Hence, any available
source of partial CSIT, instantaneous or statistical, needs to be exploited
in order to optimize the system performance. This dissertation addresses
the problem of optimizing the performance of MIMO systems with partial
CSIT, providing practical solutions to present and future challenges in single
user and multiuser MIMO wireless networks. The remainder of this chapter
provides a brief overview of this dissertation. In addition, a detailed list of
technical contributions is also provided.

1.1 Thesis Overview and Outline

This dissertation is composed of two parts. In the first part, comprising
Chapter 2, point-to-point MIMO channels are considered for the purpose of
error rate minimization in single user scenarios. In the second part, compris-
ing Chapters 3 through 6, the problem of maximizing the sum-rate in MIMO
broadcast channels is addressed, providing practical designs for user schedul-
ing algorithms, feedback strategies and transmission schemes. An abstract
and introduction is provided at the beginning of each chapter.

1.1.1 Point-to-Point MIMO Channels

MIMO systems have received considerable attention in response to the in-
creasing requirements of high throughput in wireless communications. The
capacity of point-to-point MIMO channels increases linearly with the min-
imum of the number of transmit and receive antennas, assuming that the
fading coefficients between all antenna pairs are statistically independent
and known to the receiver [4], [5]. The spatial diversity provided by MIMO
systems can be exploited to reduce the error rate by transmitting the in-
formation signal over independently faded branches, or to increase the rate
by transmitting independent data streams. It has been shown [6] that there
exists a tradeoff between the spatial multiplexing gain

r = lim
SNR→∞

R(SNR)

log SNR
(1.1)

and the diversity gain

−d = lim
SNR→∞

log Pe(SNR)

logSNR
(1.2)
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which are defined in the high signal-to-noise (SNR) regime, given the system
rate R and average error probability Pe. This tradeoff is due to the fact that
there is a certain number of degrees of freedom in the MIMO channel that
need to be shared in order to achieve diversity or increase the transmission
rate. In the absence of CSIT, multiple antennas can exploit the spatial diver-
sity by means of space-time coding, making use of the spatial and temporal
dimension [7], [8], [9]. A simple orthogonal space-time block code (O-STBC)
was proposed by S. M. Alamouti in [7] for systems with 2 transmit antennas
and N receive antennas, which achieves full diversity order of 2N , which
equals the number of independently faded branches. An extension to higher
number of transmit antennas was proposed in [8]. If the transmitter has
additional channel knowdledge, either instantaneous or statistical, perfect or
partial, the performance of such systems can be further improved.

In Chapter 2, the design of simple mechanisms to incorporate partial
CSIT at the transmitter side of ST-coded MIMO systems is addressed. The
goal consists of designing linear precoders that use statistical information to
improve the system performance and that can be concatenated with STC,
thus providing a flexible and robust solution. The performance measure of
interest in this chapter is the pairwise error probability (PEP) averaged over
the channel statistics. As partial CSIT, mean and covariance information are
considered, which, as we describe, can reflect different practical scenarios.

1.1.2 MIMO Broadcast Channels

The interest in MIMO systems has shifted from point-to-point MIMO chan-
nels to MIMO broadcast channels during the last years. As shown in [10],
[11], the capacity can be boosted by exploiting the spatial multiplexing ca-
pability of transmit antennas, transmitting to multiple users simultaneously
over the same bandwidth by means of SDMA, rather than trying to maximize
the capacity of a single-user link. If a base station with M transmit anten-
nas communicating with K single-antenna receivers has perfect channel state
information (CSIT), a multiplexing gain of min(M,K) can be achieved. In
cellular systems, this is a setting of practical interest, since multiple antennas
can be easily deployed at the base station.

It has recently been proven [12] that the capacity region of the MIMO
broadcast channel is achieved by dirty paper coding (DPC) [1]. The fun-
damental idea behind this technique is that when the interference is known
non-causally at the transmitter, it is possible to achieve the same capacity



46 Chapter 1 Introduction

as if there were no interference. However, this technique has two main dis-
advantages that limit its applicability: a high computational complexity and
the need for full CSIT. Hence, it is of particular interest to identify what kind
of partial CSIT can be conveyed to the BS and what type of low-complexity
transmission techniques can be used in order to achieve sum rates reasonably
close to the optimum.

Lack of perfect CSIT in point-to-point MIMO systems simply translates
into an offset in the capacity versus SNR curve. The slope is not affected by
imperfect channel knowledge and thus the multiplexing gain does not change.
However, in MIMO broadcast channels, the level of CSIT critically affects the
system performance, and thus feedback design has a greater importance in
such systems. This is due to the fact that CSI not only provides better SNR
at the receiver side, but also reduces the interference from data intended to
other users in the cell. Thus, in a multiuser MIMO environment, co-channel
interference must be taken into account for throughput maximization. In a
system with K users, the capacity region is characterized by a K dimensional
volume. The maximum achievable system throughput is the sum capacity,
which is the point in the capacity region that maximizes the sum of all users’
information rates. Our goal is to design systems based on partial CSIT
that provide sum rates close to the sum capacity while exhibiting reasonable
complexity.

A promising low complexity alternative to DPC for the downlink of
MIMO systems is linear beamforming. Downlink linear beamforming, al-
though suboptimal, has been shown to achieve a large portion of the DPC
capacity, exhibiting the best tradeoff between complexity and performance
[13], [14], [15], [16]. In order to achieve the optimal capacity growth of
M log logK for K → ∞ and single antenna receivers, linear beamforming
schemes need to be combined with efficient multiuser scheduling algorithms
that exploit multiuser diversity [17]. However, finding the optimal beamform-
ing vectors is a non-convex optimization problem, and the optimal solution
for a downlink channel with K users is given by exhaustive search over all
possible combinations. Evidently, the complexity of the above problem be-
comes prohibitively high for large K. Thus, we are interested in designing
suboptimal linear beamforming techniques that, combined with efficient low-
complexity multiuser scheduling algorithms, provide high sum rates.

In realistic scenarios, it is not reasonable to assume that all channel coef-
ficients from each user can be perfectly fed back to the transmitter. Accurate
CSIT is difficult to realize in practice, especially in frequency-division duplex
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(FDD) systems. Training can be used to obtain channel estimates at the re-
ceiver side and thus the assumption of perfect CSIR is reasonable. Methods
for obtaining instantaneous CSIT can in general be of two types, by exploit-
ing channel reciprocity (in TDD systems) or by obtaining feedback from the
mobile terminals. In reciprocity-based approaches, the CSIT is obtained in
the uplink, which in turn is used for downlink transmission. In the latter
case, each mobile user obtains estimates of its own channel by using pilot
symbols transmitted in the downlink. The users feedback information to the
base station by using a dedicated feedback link. Identifying the type of feed-
back that has to be made available at the base station in order to achieve
high sum rates is a critical issue that is addressed in this dissertation.

Based on the above motivations, the second part of this dissertation fo-
cuses on systems with joint linear beamforming and multiuser scheduling
with limited feedback. In general, a single-cell setting is considered, in which
the base station has multiple antennas and each user terminal is equipped
with a single antenna receiver. The goal consists of maximizing the sum-rate
performance of such systems, while satisfying an average power constraint at
the transmitter. At a PHY/MAC level, we focus on the optimization of the
following aspects: feedback strategies, feedback quantization techniques, user
scheduling algorithms and linear beamforming techniques. However, a joint
optimization of all these elements is rather complicated. When optimizing
such networks, we address the following issues:

• What feedback measures are of importance at the base station in order
to design spatial transmission filters and exploit the multiuser diversity?

• How should users perform feedback quantization in order to optimize
the system performance for a given available feedback rate?

• How should multiuser scheduling algorithms be designed in order to
exploit multiuser diversity while exhibiting reasonable complexity?

• How to design robust linear beamforming techniques in limited feedback
scenarios?

• Can we find joint solutions to these problems?

Chapter 3 provides a general perspective of the challenges in systems
with joint linear beamforming and multiuser scheduling. An overview of
these systems is provided, introducing some standard linear beamforming
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techniques and multiuser scheduling algorithms. The remainder of the chap-
ter is devoted to low-complexity solutions to the joint linear beamforming
and multiuser scheduling problem. Initially, a scenario with perfect CSIT is
considered, in which a simple scheduling algorithm and linear beamforming
technique based on orthogonal beams are presented. This leads to a dra-
matic complexity reduction in the multiuser scheduling part with respect
to exhaustive user search. In the last part of this chapter, an integral low-
complexity solution is proposed in a scenario with limited feedback. As we
show, simple codebooks adapted to the transmit spatial correlation can yield
large performance gains. In addition, a bound on the multiuser interference
experienced by each user is derived, based on a geometric interpretation of
the problem. This bound is of practical importance since, as we show in the
following chapters, since it can be used for the design of feedback metrics for
the purpose of user selection.

In Chapter 4, a design framework for scalar feedback in MIMO broadcast
channels is proposed. We consider limited feedback scenarios in which each
user conveys channel quality information to the base station for the pur-
pose of user scheduling along with channel direction information. A family
of metrics is presented based on bounds on the individual SINRs, which are
computed at the receivers and fed back to the base station as channel quality
information. Based on this framework, the sum rate of systems with joint
linear beamforming, multiuser scheduling and limited fedback is analyzed,
in a variety of asymptotic regimes. Particular importance is given to the
comparison between time division multiple access (TDMA) and SDMA tech-
niques, due to its timely relevance in the current developments of wireless
standards. The effect of quantization on such scalar feedback is also studied,
introducing the tradeoff between multiuser diversity and multiplexing gain
that arises in scenarios with a finite sum-rate feedback model.

In Chapter 5, an alternative limited feedback model to the one presented
in Chapter 4 is considered, in which the users quantize directly their vector
channels by using optimized channel quantization codebooks, thus embed-
ding channel direction and quality information in a single codebook. We
focus on the design of such quantization codebooks for MIMO broadcast
channels, adapting them to arbitrary linear beamforming techniques and
multiuser scheduling algorithms. The proposed quantization codebooks ex-
ploit spatial and temporal correlations in the system, providing performance
increases over non optimized channel quantization techniques.

Chapter 6 addresses the design of linear beamforming techniques for
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MIMO broadcast channels. So far, most designs in the literature, and also the
schemes considered for future wireless standards, rely on simple beamform-
ing techniques, focusing on the design of accurate and meaningful feedback
measures. In this chapter, we highlight the importance of designing linear
beamforming techniques robust to noisy CSIT. A linear beamforming tech-
nique based on iterative optimization of unitary matrices is proposed, which
achieves linear sum-rate growth with the number of transmit antennas and
outperforms common linear beamforming techniques under imperfect CSIT
conditions. As our results show, the performance of a system with joint lin-
ear beamforming and multiuser scheduling in limited feedback scenarios can
be improved by optimizing the linear beamformers, combined with simple
feedback design and quantization techniques.

Finally, the general conclusions reached in this dissertation are presented,
summarizing the main results obtained as well as future challenges of MIMO
technologies.

1.2 Contributions

The contribution in Chapter 2 is the derivation of linear precoding schemes
that minimize an upper bound on the pairwise error probability [18], [19].
Our work generalizes the work presented in [20], by averaging the PEP over
a Gaussian distribution - prior or posterior - that can correspond to differ-
ent scenarios, providing a solution to the general problem and a variety of
particular cases.

In Chapter 3, the two main contributions are the low-complexity schemes
proposed in [21] and [22], for perfect CSIT and limited feedback, respectively.
The former, coined as orthogonal linear beamforming (OLBF), consists of a
joint solution for beamforming and scheduling which aims at reducing the
complexity of exhaustive-search user selection algorithms, and builds upon
the work presented in [2] for limited feedback scenarios. The second part
of the chapter proposes a scheme which exploits the spatial correlation at
the transmitter in a setting with limited feedback. The users are assigned
a fixed channel quantization vector - which is used as beamforming vector -
and feed back information regarding the channel strength and quantization
error. We derive a useful upper bound on the multiuser interference, which
is computed at the base station for the purpose of user selection.

The contributions in Chapter 4 are the result of a number of publications



50 Chapter 1 Introduction

in the quest for high-performance scalar feedback measures. In Chapter 4, a
design framework is proposed [23] that generalizes the work in [24], [25], [26],
[27], as well as other scalar measures used in well known approaches such as [2]
or [28]. After deriving an approximated cumulative distribution function for
the proposed family of metrics and its associated sum rate approximation,
our framework enables us to perform simple asymptotic analysis in different
regimes, namely: large number of users, high SNR regime and low SNR
regime. In addition, a clarifying comparison between TDMA and SDMA is
given under different conditions, highlighting the importance of allowing a
variable number of active beams at the transmitter. We identify the multiuser
diversty vs. multiplexing gain tradeoff arising in scenarios where the total
sum of bits for channel direction information and channel quality information
- contained in the scalar feedback - is limited [29].

In Chapter 5, new codebook design approaches are proposed [30]. A
Monte Carlo approach is used to generate optimized channel quantization
codebooks in order to exploit the cell statistics, by minimizing the average
sum rate distortion. In the first part, we stress the importance of adapting
the codebook to non uniform user distributions. In the second part, predic-
tive vector quantization is used to improve the performance by exploiting
temporal correlations.

A novel method for iterative optimization of unitary beamformers is pro-
posed in Chapter 6 [31], [32], based on successive optimization of Givens
rotations. A convergence and complexity study is presented, evaluating the
performance through simulations in several scenarios. As we show, the pro-
posed technique achieves linear sum-rate increase with the number of trans-
mit antennas and perfect channel knowledge at the transmitter side. More
importantly, the proposed unitary beamforming approach proves to be very
robust to channel estimation errors. When combined with simple vector
quantization techniques for CSI feedback in MIMO broadcast channels, the
proposed technique is shown to be well suited for limited feedback scenarios.

Other articles published in parallel during the course of this thesis, which
have not been included in this dissertation, are the following. In [33], linear
precoders that exploit the covariance information of the MIMO channel are
presented, which are combined with spatio-temporal spreading. In the con-
text of WCDMA systems, adaptive complexity equalizers have been proposed
in [34].
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Point-to-Point MIMO Channels
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Chapter 2

Linear Precoding

In this chapter techniques are proposed for combining information about the
mean and the covariance of the channel for the purpose of MIMO trans-
mission in point-to-point systems. Partial channel state information at the
transmitter (CSIT) is typically used in MIMO systems for the design of spa-
tial prefiltering and waterfilling. For the purpose of generating CSIT, the
cases of mean or covariance information have generally been solved sepa-
rately in the literature. A Bayesian approach is presented here incorporating
both pieces of information. The proposed Bayesian approach encompasses
the existing cases of mean or (transmit) covariance information as special
instances. Various cases of mean and covariance information are discussed,
including prior mean and covariance (Ricean channel distribution) and pos-
terior mean and covariance (based on a noisy channel estimate and prior
covariance information). For a given Gaussian channel distribution (prior
or posterior), an optimized linear precoding solution is derived, which mini-
mizes an upper bound on the pairwise error probability in a space-time coded
system. In addition, several particular cases of practical interest are studied,
namely: zero mean information, unit rank mean and singular covariance in-
formation. Simulation results illustrate the performance benefits that can be
reached by effectively exploiting the available mean and covariance informa-
tion in point-to-point MIMO systems.

53
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2.1 Introduction

In practical wireless systems, training sequences or pilot symbols are in-
corporated in the transmitted signal to allow for channel estimation at the
receiver. The density of training data needs to increase as the mobility
and the channel variation increases. Nevertheless, even with training data
available, the channel estimate can only be of limited quality, and the chan-
nel estimation errors reduce the channel capacity. Furthermore, the fact of
substituting information symbols by training symbols obviously limits the
capacity. Channel knowledge at the transmitter helps improving the system
throughput in wireless systems. A means to obtain CSIT consists of feeding
back to the transmitter channel estimates obtained at the receiver. Since the
bandwidth available is limited, all statistical information about the channel
should be taken into account. For instance, a priori information on the chan-
nel distribution can be used to yield improved channel estimates, leading to
a posterior channel distribution, as we show in this chapter.

The presence of severe correlations has important detrimental effects on
the capacity and performance of MIMO systems. In fact, most space-time
code designs assume independent Rayleigh fading for each stream, which in
practice is not true as shown in [35]. The problem has been addressed by
transmitting on the eigen-modes of the transmit antenna correlation ma-
trix [36], which yields better performance and capacity gains. In [37], a
prefiltering approach is proposed assuming partial CSIT, where knowledge
of the transmit antenna correlations is successfully exploited to improve the
pairwise error probability (PEP) of a space-time (ST) coded system.

In order to exploit partial CSIT in point-to-point MIMO systems, most of
the current precoding schemes exploit either information about the mean [38]
or the covariance [37]. A combination of the two can improve exploitation of
channel knowledge by weighting them according to certain criteria. In [20],
the combination of mean and covariance information at the transmitter side
of a point-to-point MIMO system is considered, for the purpose of PEP min-
imization. In that work, the transmitter concatenates orthogonal space-time
block coding (O-STBC) and linear precoding. The available CSIT is used
to design an optimized linear precoder, which adapts the transmitted ST
codewords to the channel statistics. However, no closed form solution is pro-
vided to the general problem, and the optimal precoder is solved numerically.
In our work, we consider a similar scenario, in which the linear precoder is
optimized in order to minimize an upper bound on the PEP. Following the
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optimization problem formulated in [20], we provide a closed form solution.
In addition, several particular cases of practical interest are studied, namely:
zero mean information, unit rank mean and singular covariance information.
Independently to the work presented herein, similar results were obtained
in [39] for non-zero mean channels with transmit correlation. Practical as-
pects such as the asymptotic PEP reduction at high SNR provided by a mean
component can be found in [40].

In our work, we present different techniques to combine mean and covari-
ance information. We show how to exploit both sources of partial CSIT to
optimize the error rate in MIMO systems, by performing linear precoding
at the transmitter. As we describe, the source of partial CSIT can be of
different nature. It may correspond to a Ricean distribution with a line-of-
sight (LOS) component, or perhaps to a noisy channel estimate with known
noise covariance. In addition, mean and covariance information do not nec-
essary have to correspond to prior distributions, but they can be given by a
Bayesian approach, with a certain posterior mean and covariance. To that
end, we provide a generalized perspective, in which the system performance
is optimized over a Gaussian channel distribution.

2.2 MIMO Channel Model

A point-to-point multiple antenna channel is considered, in which a trans-
mitter equipped with M antennas communicates with a receiver that has
N antennas. Representing the impulse response between transmit antenna
m and receive antenna n as hnm, the MIMO channel is described by the
following N ×M matrix

H =

⎡⎢⎢⎢⎣
h11 h12 . . . h1M

h21 h22 . . . h2M
...

...
. . .

...
hN1 hN2 . . . hNM

⎤⎥⎥⎥⎦ (2.1)

A flat-fading MIMO channel is assumed, with random complex Gaussian
entries and separable covariance structure. Hence

EHHH = tr{CT}CR (2.2)

EHTH∗ = tr{CR}CT (2.3)
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where CR and CT denote the covariance matrix between transmit and receive
antenna elements, respectively. The vectorized channel is defined as h =
vec(H), which stacks the columns of H in a vector of dimension MN × 1.
The MN ×MN covariance matrix for the MIMO channel is denoted as Chh,
which in our separable model can be factorized as

Chh = CT ⊗ CR (2.4)

where ⊗ denotes Kronecker product. In addition, the MIMO channel may
have a certain mean, denoted as mH. The vectorized version of dimension
MN × 1 is denoted as mh. As a special case, if the MIMO channel has
separable mean structure, the vectorized mean can be represented as mh =
m∗
T ⊗mR and in matrix form as mH = mRm

H
T .

2.3 System Description

The transmitter encodes the information bits into a ST codeword C of di-
mension M×T , where T is the block length, i.e. the number of time instants
spanned by a ST codeword. A quasi-static scenario is considered, where the
MIMO channel is assumed to remain constant during the transmission of a
ST codeword. Prior to transmission, the ST codewords are prefiltered with
the matrix W of dimension M × M , which is determined by taking into
account mean and covariance information, as we detail in the following sec-
tions. The linear precoding uses this statistical information to improve the
system performance of the ST coded system, by minimizing pairwise error
probability. In the presence of zero-mean additive white Gaussian noise, the
received signal is given by

Y = HWC + V (2.5)

where the noise covariance matrix is Cvv = σ2IMN . The matrices Y and V
have dimension N × T . The transmitted data is recovered by means of a
Maximum Likelihood (ML) receiver.

2.4 Partial CSIT Combining Mean and Co-

variance

When mean and covariance information are present at the transmitter side,
this information can be of different nature. In the presence of a LOS com-
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ponent between transmitter and receiver, the MIMO channel may be mod-
eled as Ricean. In this first case of interest, the vectorized channel h has a
prior distribution h ∼ CN(mh, Chh), with mean mh due to the LOS compo-

nent. The Ricean channel can be modeled as H = mH + C
1/2
R HwC

H/2
T with

hw = vec(Hw) distributed as CN(0, IMN).
A second scenario is the case when mean information corresponds to

the channel estimate and perfect covariance information is present at the
transmitter. The channel in this case is modeled as Rayleigh with distribution
h ∼ CN(0, Chh). On the other hand, the channel estimates can be modeled

as Ĥ = H+ H̃, with h̃ = vec(H̃) following a distribution CN(0, σ2�hIMN), and
could be due to a combination of the following sources of error: estimation
noise, quantization noise and prediction noise. The combination of mean
and covariance information leads to a Gaussian posterior distribution with
posterior mean given by

̂̂
h = (IMN + σ2�h C−1

T ⊗ C−1
R )−1ĥ (2.6)

and posterior covariance

Ĉhh = (σ−2�h IMN + C−1
T ⊗ C−1

R )−1. (2.7)

The expressions for posterior mean and covariance are found by refining
the channel estimates Ĥ (mean information), assuming that the statistics

of H and H̃ are known, as shown in Appendix 2.A. If only posterior mean
is present, it is due to noise-free channel estimation (σ2�h → 0) and thus

‖Ĉhh‖F → 0. On the other hand, only posterior covariance will be present if̂̂
h = ĥ = 0, or if the estimation noise tends to infinity. In addition, if a rich
scattering environment is assumed at the receiver side, the covariance at the
receiver can be modeled as identity. In this case, the posterior (unvectorized)
mean is given by ̂̂

H = Ĥ(IM + σ2�hC−1
T )−1 (2.8)

and the posterior covariance

Ĉhh = ĈT ⊗ IN (2.9)

with posterior covariance seen from the transmitter

ĈT = (σ−2�h IM + C−1
T )−1. (2.10)
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In a simplified scenario with noisification of the mean, assume we only

have access to D
̂̂
H instead of having acess to

̂̂
H directly, where the elements

of the diagonal matrix D are i.i.d. CN(0, 1). Now the distribution becomes

zero mean with transmit side covariance matrix R̂T =
̂̂
H
H ̂̂
H + ĈT . Under

these circumstances, the mean information falls into the covariance infor-
mation, and thus the correlation becomes the covariance. Hence, optimal
MIMO transmission schemes with partial CSIT for the case of only covari-
ance information will apply for the described model that combines mean and
covariance information. If linear prefiltering is carried out at the transmitter
side (after the ST encoding stage) to adapt the transmission to the channel
knowledge, an optimal prefilter will lead to capacity maximization or typi-
cally PEP minimization. If we assume CR = IN , the optimal prefilter that
maximizes capacity and minimizes PEP pours power along the eigenvectors
of the posterior correlation matrix seen from the transmitter, following a wa-
terfilling power allocation policy for minimum PEP [37] and possibly different
weighting for the capacity maximization solution [41].

2.5 Linear Precoding for Error Rate Mini-

mization

In this section, we derive an optimal precoding strategy for error rate mini-
mization in MIMO systems combining mean and covariance information at
the transmitter. The source of mean and covariance information can be ei-
ther prior or posterior, as described in the previous section. We optimize the
performance of the proposed system in terms of PEP averaged over h, prior
or posterior, with a distribution CN(mh, Chh). We assume identity covari-
ance matrix at the receiver. In the analysis, we follow the work developed
by Jongren et al. in [20].

The transmitter is supposed to have a codebook containing a finite num-
ber of ST codewords. Our goal consists of designing a linear precoder, which
minimizes the PEP for the ST encoded system by incorporating statistical
knowledge. The PEP is defined as the error probability of choosing the near-
est distinct codeword Cj instead of Ci. The code error matrix can be defined
as Ẽ(i, j)

.
=
[
Ci −Cj

]
. In practice, the average PEP is limited by the mini-

mum distance code error matrix, given by E = arg min�E(i,j)

det
[
Ẽ(i, j)Ẽ

H
(i, j)

]
.
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The average PEP is given by

P (Ci → Cj) =

∫
P (Ci → Cj|h)ph(h)dh (2.11)

where the complex Gaussian probability density function (pdf) ph(h) is

ph(h) =
e−tr[(h−mh)HC−1

hh (h−mh)]

πMNdet(Chh)
. (2.12)

By applying the Chernoff bound and averaging over the distribution of
h, an upper bound on the average PEP is given by

P (Ci → Cj) ≤
∫
e−d

2
min(Ci

,Cj
)/4ph(h)dh. (2.13)

When concatenating the Space-Time encoder at the transmitter with a
linear prefilter to exploit partial CSIT, the minimum Euclidean distance is

d2
min(C

i,Cj) = d2(E) =
1

σ2
‖HWE‖2F (2.14)

where W is the linear prefilter. Note that the Chernoff bound is a convex
function of W, which greatly simplifies the search for an optimal W matrix.
On the other hand, it can be shown that if EEH = αI, the PEP is minimized
at high SNR for a given optimal prefilter. Thus, the system under consider-
ation has EEH = αI, e.g. orthogonal ST block codes [8] (single stream) or
ST spreading [42] (full stream). Let η = α

4σ2 and Ψ = WWH . Particulariz-
ing for the defined scenario, with separable covariance structure and identity
covariance matrix at the receiver, the solution to (2.13) is given by

P (Ci → Cj) ≤ etr[mHC
−1
T ((ηΨ+C−1

T )−1−CT )C−1
T mH

H]

det(ηΨ + C−1
T )Ndet(CT )N

. (2.15)

The performance criterion can be expressed logarithmically (neglecting parameter-
independent terms) as follows

J = tr
[
mHC

−1
T

(
(ηΨ + C−1

T )−1 − CT
)
C−1
T mH

H

]−N log det(ηΨ+C−1
T )
(2.16)

By solving the problem above, we obtain the following theorem.
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Theorem 2.1 Assuming a normalized average power constraint, the op-
timal Ψ that minimizes the performance criterion in (2.16) is given by

Ψ=

{
1

2µ

[
NIM+

(
N2IM+

4µ

η
C−1
T mH

HmHC
−1
T

)1
2

]
−1

η
C−1
T

}
+

(2.17)

where µ is the Lagrange multiplier associated with the power constraint and
{·}+ takes the positive semidefinite (PSD) part1.

Proof. See Appendix 2.B.

It can be seen straightforwardly from (2.17) that as η tends to infinity
(i.e. SNR tends to infinity), the optimal Ψ tends to Ψ = 1

M
IM , since in this

particular case the value of the Lagrange multiplier is µ = NM . This result
is equivalent to transmission without CSIT, which shows that as the SNR
increases the importance of CSIT gets reduced. Another solution assuming
full-rank Ψ is provided in what follows, to have a more intuitive idea of the
unequal power-loading policy at the transmitter. We define the eigenvalue
decomposition C−1

T mH
HmHC

−1
T = UΣUH where U is a unitary matrix and

Σ = diag(σ1, σ2, . . . , σM).

Corollary 2.1 Assuming the matrix Ψ is full rank, the solution to the
optimization problem in (2.16) is given by

Ψ = UΛUH − 1

η
C−1
T (2.18)

where Λ = diag(λ1, λ2, . . . , λM). The elements in the matrix of eigenvalues
Λ are given by

λi =
N +

√
N2 + 4µσi

η

2µ
. (2.19)

Proof. See Appendix 2.C.

1Note that {·}+ is an extension of the scalar function max(0, x) to matrices. This
operation can be done by calculating first the eigenvalue decomposition of the matrix
argument, setting al nonnegative eigenvalues to zero, and computing the resulting positive
semidefinite matrix.
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To obtain the optimal precoder either from (2.17) or (2.18), let the eigen-
value decomposition of Ψ be Ψ = VΨΛΨVH

Ψ . Since Ψ = WWH , the opti-

mal precoder is W = VΨΛ
1/2
Ψ . Thus, the optimal transmission strategy as

reflected in the above equations corresponds to transmission along the eigen-
vectors of a matrix that combines mean and covariance, and a waterfilling
power allocation policy. The first and second term in (2.18) are differently
weighted depending on the SNR and the covariance information. In the re-
mainder of this section we introduce some particular cases of special interest.

2.5.1 Zero Mean Information

When the mean is zero, it can be seen from equation (2.17) that in this case
Ψ becomes

Ψ =

{
N

µ
IM − 1

η
C−1
T

}
+

. (2.20)

The value of the Lagrange multiplier can be analytically expressed as

µ =
NM[

1 + 1
η
tr(C−1

T )
] . (2.21)

It is clear from (2.20) and (2.21) that as the SNR increases the covariance
information becomes less important, and Ψ converges to a scaled identity
matrix.

2.5.2 Unit Rank Mean

A particular case of interest is the case when the mean information has rank
one. Since mH is unit rank, also C−1

T mH
HmHC

−1
T becomes unit rank. The

mean mH can be represented as a combination of a pair of vectors s and t,
mH = s tH . The solution for Ψ in the case of unit rank mean derived from
the full-rank solution in (2.18) is given by

Ψ = [u1U2]Λ[u1U2]
H − 1

η
C−1
T (2.22)

where Λ = diag(1 +
tr[C−1

T ]
η

, 0, . . . , 0), u1 is the eigenvector associated with
the only non-zero eigenvalue and U2 are arbitrary vectors chosen such that
the matrix [u1U2] forms an orthonormal basis. It can be seen from (2.22)
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that as the SNR increases the solution approaches to beamforming along a
single direction, defined by C−1

T mH
HmHC

−1
T , which is a combination of mean

and covariance information.

2.5.3 Singular Covariance Information

When the covariance information is singular, it can be modeled as follows

CT =
[
X//X⊥

] [ A 0
0 0

] [
X//X⊥

]H
(2.23)

where ⊥ and // represent singular and non-singular parts respectively. Let[
mH//mH⊥

]
= mH

[
X//X⊥

]
and CT// be the non-singular part of CT . The

optimization problem in this case becomes⎧⎪⎪⎨⎪⎪⎩
J = min

Ψ
tr

[
mH//C

−1
T//

(
ηΨ// + C−1

T//

)−1

C−1
T//m

H
H//

]
−N log det(ηΨ// + C−1

T//)− ηtr
(
mH⊥Ψ⊥mH

H⊥
)

s.t. tr(Ψ// + Ψ⊥) = 1

(2.24)

where Ψ = [Ψ//Ψ⊥]T . The objective function J can be divided in two opti-
mization problems J = J//+J⊥ minimized separately. The power constraints
in both cases have to be adjusted so that P//+P⊥ = 1. Hence, each minimiza-
tion problem has a different power constraint associated. The optimization
problem for the singular part is given by{

J⊥ = min
Ψ⊥
−ηtr (mH⊥Ψ⊥mH

H⊥
)

s.t. tr(Ψ⊥) = P⊥
(2.25)

In order to minimize the objective function in (2.25) subject to the power con-
straint, we introduce the following eigenvalue decompositions: mH

H⊥mH⊥ =
Vm⊥Λm⊥VH

m⊥ and Ψ⊥ = VΨ⊥ΛΨ⊥VH
Ψ⊥. By applying the following inequality

tr(AB) ≤∑i λi(A)λi(B), it can be seen that (2.25) is minimized (the trace
is maximized) by setting VΨ⊥ = Vm⊥. Let Λm⊥ = diag(λm⊥,1, . . . , λm⊥,M)
and ΛΨ⊥ = diag(λΨ⊥,1, . . . , λΨ⊥,M) ordered decreasingly. The optimization
problem becomes ⎧⎪⎨⎪⎩ J⊥ = min

λΨ⊥,i

−η
M∑
i=1

λΨ⊥,iλm⊥,i

s.t.
∑M

i=1 λΨ⊥,i = P⊥

(2.26)
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Clearly, the function described above is minimized (the summation is maxi-
mized) if all the power is transmitted along the strongest eigenvalue, λm⊥,1.
Hence, the solution is given by choosing λΨ⊥,1 = P⊥ and λΨ⊥,i = 0, i =
2, 3, . . . ,M . With this choice, the value of the objective function becomes
J⊥ = −ηP⊥λm⊥,1. Hence, the precoding solution corresponds to eigenbeam-
forming in the direction of the eigenvector of mH

H⊥mH⊥ associated with the
largest eigenvalue λm⊥,1. The remaining optimization problem for the non-
singular part is given by⎧⎪⎪⎨⎪⎪⎩

J// = min
Ψ//

tr

[
mH//C

−1
T//

(
ηΨ// + C−1

T//

)−1

C−1
T//m

H
H//

]
−N log det(ηΨ// + C−1

T//)− ηP⊥λ⊥1

s.t. tr(Ψ//) = P// = 1− P⊥

(2.27)

The solution for this part is equivalent to the general solution with waterfill-
ing shown in (2.17), but with reduced dimension and power constraint due
to singularities. On the other hand, an optimal power split solution exits
(P//, P⊥) under certain circumstances such that J(P//) = J//(P//)+J⊥(1−P//)
is minimized. If J(P//) has an absolute minimum P//|Jmin

, there are three dif-
ferent possibilities. If 0 < P//|Jmin

< 1, the optimal power for the non-singular
part is P//|opt = P//|Jmin

and for the singular part P⊥|opt = 1 − P//|opt. The
solution is a combination of beamforming (in ⊥ part) and waterfilling (in //
part). If P//|Jmin

≥ 1 then P//|opt = 1 and P⊥|opt = 0, and the solution is given
by waterfilling in the non-singular part. Finally, if P//|Jmin

≤ 0 then P//|opt = 0
and P⊥|opt = 1, and the solution is given by beamforming in mH

⊥m⊥.

2.6 Simulation Results

The system considered is 2x2 O-STBC as described in [8] with QPSK mod-
ulation. The symbols are transmitted over a channel with an arbitrary mean
and a correlation factor ρ (cross-diagonal terms in CT ).

Figure 2.1 shows the gain in performance that can be obtained w.r.t. a
non-precoded system by combining mean and covariance knowledge. We can
observe a remarkable improvement in the simulated range of up to approxi-
mately 2.5 dB in SNR decrease for a given PEP. In this particular case, the
performance is close to the one achieved by an optimal prefilter with perfect
CSIT.
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Figure 2.1: PEP vs. SNR for different CSIT levels, ρ = 0.9 and γ = 40%

In Figure 2.2 we compare the performance of a system with only covari-
ance or mean knowledge at the transmitter and a system with both sources
of CSIT. As we have shown, the cases of only mean or covariance CSIT
can be considered special instances of a system that combines both. The
contribution of the mean to the average channel power is denoted by γ.

2.7 Conclusions

In this chapter, techniques for combining mean and covariance information
have been presented. Both sources of information can be either prior (e.g.
correlated channel with LOS) or posterior (given by a Bayesian approach).
We have provided a general precoding solution for PEP minimization when
combining both sources of partial CSIT at the transmitter, and analyzed
some cases of special interest. The simulation results have shown how mean
and covariance information should be combined in order to exploit the avail-
able sources of CSIT in point-to-point MIMO systems.
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Figure 2.2: PEP vs. SNR for different CSIT levels, ρ = 0.9 and γ = 20%
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APPENDIX

2.A Derivation of Posterior Ditribution

Assuming the additive noise model ĥ = h+h̃, our goal is to find the posterior
distribution of h, given knowledge of the distributions of h̃ and h and perfect
knowledge of ĥ. Let ph(h) and p�h(ĥ) be the probability density functions of h

and ĥ, respectively. We are interested in finding the posterior distribution (or

conditional distribution) of h conditioned on ĥ, denoted as ph|�h(h|ĥ), which is
completely specified by its mean and covariance since it is a Gaussian process.

We define the posterior mean as
̂̂
h = Eh|�hh and the posterior covariance as

Ĉhh = Eh|�h
[
h− Eh|�hh

] [
h− Eh|�hh

]H
.

The posterior mean is calculated as follows

̂̂
h = mh + Ch�hC−1�h�h

(
ĥ−m�h

)
(2.28)

where Ch�h = E[h −mh][ĥ −m�h]H , C�hh = E[ĥ −m�h][h −mh]H and C�h�h =

[ĥ−m�h][ĥ−m�h]H . The posterior covariance is given by

Ĉhh = Chh − Ch�hC−1�h�hC�hh. (2.29)

Based on the known distributions of h and h̃ and due to independence
between these random processes, we have that Ch�h = C�hh = Chh and
C�h�h = Chh + C�h�h. Substituting the obtained expressions for Ch�h, C�hh and
C�h�h into equations (2.28) and (2.29), and after standard matrix manipula-
tions, we obtain the desired result for the posterior mean and covariance.

2.B Proof of Theorem 2.1

The optimization problem described in (2.16) can be expressed as{
min

Ψ
tr
[
mHC

−1
T

(
ηΨ + C−1

T

)−1
C−1
T mH

H

]
−N log det(ηΨ + C−1

T )

s.t. tr(Ψ) = 1
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The solution is obtained by means of the Karush-Kuhn-Tucker (KKT) con-
ditions. Define the Lagrangian as

L(Ψ, µ) = tr
[
mHC

−1
T

(
ηΨ + C−1

T

)−1
C−1
T mH

H

]
(2.30)

−N log det(ηΨ + C−1
T ) + µ [tr(Ψ)− 1]

where µ is the Lagrange multiplier associated with the equality constraint.
Differentiating L(Ψ, µ) w.r.t. Ψ, we get

µΦΦ− ηNΦ− ηC−1
T mH

HmHC
−1
T = 0 (2.31)

where the change of variable Φ = ηΨ + C−1
T has been used for clarity. The

solution for Ψ to the quadratic matrix equation described above is given by

Ψ =

{
1

2µ

[
NIM+

(
N2IM +

4µ

η
C−1
T mH

HmHC
−1
T

) 1
2

]
−1

η
C−1
T

}
+

where {·}+ takes the positive semidefinite (PSD) part.

2.C Proof of Corollary 2.1

Introducing the eigenvalue decompositions C−1
T mH

HmHC−1
T = UΣUH and

Ψ + 1
ηC

−1
T = VΛVH in equation (2.30) and eliminating constant terms, the

minimization problem becomes⎧⎨⎩ min
Ψ
tr

(
1

η
Λ−1VHUΣUHV

)
−N log det(Λ)

s.t. tr(Λ) = β

where β = 1 + 1
η
tr
[
C−1
T

]
and the properties tr(AB) = tr(BA) and VHV =

IM have been used. Since the solution we seek assumes Ψ to be PSD, also
Λ − 1

η
VHC−1

T V is assumed PSD. The optimum V that minimizes the first

term can be chosen as V = U [20].
Let Σ = diag(σ1, , . . . , σM) and Λ = diag(λ1, . . . , λM). The Lagrangian in
this case is given by

L(λi, µ) =

M∑
i=1

(
1

η

σi
λi
−N log λi

)
+ µ

(
M∑
i=0

λi − β
)

(2.32)



68 Chapter 2 Linear Precoding

where µ is the Lagrange multiplier corresponding to the power constraint.
Differentiating L(λi, µ) w.r.t. λi, we get

λi =
N +

√
N2 + 4µσi

η

2µ
. (2.33)

Thus, the solution for Ψ is given by

Ψ = UΛUH − 1

η
C−1
T .
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Chapter 3

Joint Linear Beamforming and
Multiuser Scheduling

In this chapter, the problem of joint linear beamforming and multiuser schedul-
ing is presented. A brief overview is provided, introducing the most extended
linear beamforming techniques and scheduling algorithms in the literature. In
order to illustrate the challenges, advantages and disadvantages of such sys-
tems, two low-complexity approaches are proposed. In the first approach, a
scenario with perfect CSIT is considered, in which a simple multiuser schedul-
ing strategy combined with a linear beamforming technique based on orthog-
onal beams are presented. This, as we show, leads to a dramatic complexity
reduction in the multiuser scheduling stage. In the second approach, a low-
complexity solution is proposed for a scenario with limited feedback. As we
show, simple codebooks adapted to transmit spatial correlation can yield large
performance gains. In addition, a bound on the multiuser interference ex-
perienced by each user is derived, based on a geometric interpretation of the
problem. This bound is of capital importance since, as we show in the next
chapter, it can be used for the design of feedback measures for the purpose of
user selection.

71
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3.1 Introduction

MIMO systems can significantly increase the spectral efficiency by exploiting
the spatial degrees of freedom created by multiple antennas. The capacity
can be boosted by exploiting the spatial multiplexing capability of transmit
antennas, transmitting to multiple users simultaneously by means of space
division multiple access (SDMA), rather than maximizing the capacity of a
single-user link, as shown in [10], [11]. It has recently been proven in [43]
that the sum capacity of the MIMO broadcast channel is achieved by dirty
paper coding (DPC) [1]. However, the applicability of DPC is limited due to
its computational complexity and the need for full CSIT.

A promising low complexity alternative for the downlink of MIMO sys-
tems is linear beamforming. As opposed to DPC, linear beamforming does
not perform any interference pre-subtraction, and thus multiuser interference
is treated as noise. Finding the optimal beamforming vectors is a non-convex
optimization problem, and the optimal solution for a downlink channel with
K users can only be given by exhaustive search. Evidently, the complex-
ity of this problem becomes prohibitively high for large K. Hence, we fo-
cus instead on suboptimal linear beamforming strategies which, combined
with efficient multiuser scheduling algorithms to exploit the multiuser diver-
sity [17], achieve high sum rates. Downlink linear beamforming has been
shown to achieve a large portion of DPC capacity, exhibiting the best trade-
off between complexity and performance [13], [14], [16]. When combined
with multiuser scheduling, zero-forcing beamforming [44] has been shown to
achieve the same asymptotic sum rate as that of DPC [15].

In point-to-point MIMO systems, the capacity increases linearly with the
minimum of the number of transmit/receive antennas, irrespective of the
availability of channel state information (CSIT) [4], [5]. In multiuser MIMO
systems, the capacity gain is highly dependent on the available CSIT. If
a base station with M transmit antennas, communicating with K single-
antenna receivers, has perfect CSIT, a multiplexing gain of min(M,K) can
be achieved. The approximation of close to perfect CSI at the receiver (CSIR)
is often reasonable; however, this assumption is unrealistic at the transmit-
ter. Recently, it was shown that if the base station has imperfect channel
knowledge, the full multiplexing gain is reduced at high SNR [45], whereas
if there is complete lack of CSI knowledge, the multiplexing gain collapses
to one [46]. Hence, as the broadcast channel’s capacity is sensitive to the
accuracy of CSIT, it is of particular interest to identify what kind of partial
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CSIT can be conveyed to the base station in order to achieve data rates rea-
sonably close to the optimum. In this disertation, we give special interest to
this issue, defining and optimizing the feedback that the user terminals need
to compute and send to the base station. This feedback must be designed
with the purpose of not only yielding good channel estimates for linear beam-
forming design, but also enabling the base station to perform efficient user
selection.

Several limited feedback approaches, imposing a bandwidth constraint
on the feedback channel, have been studied in point-to-point MIMO sys-
tems [47], [48], [49], [50]. In this context, each user feeds back finite precision
(quantized) CSIT on its channel direction by quantizing its normalized chan-
nel vector to the closest vector contained in a predetermined codebook. An
extension of the limited feedback model for multiple antenna broadcast chan-
nels for the case of K ≤M is made in [51], [52]. In [51] it was shown that the
feedback load per user must increase approximately linearly with M and the
transmit power (in dB), in order to achieve the full multiplexing gain. These
schemes rely only on channel direction information and no information on
the channel magnitude is provided.

Recently, MIMO broadcast channels with limited feedback and more users
than transmit antennas (i.e. K ≥M) have attracted particular interest and
several joint beamforming and scheduling schemes aiming to maximize the
sum rate have been proposed. A popular, very low-rate feedback technique,
coined as random beamforming (RBF), is proposed in [2], where M random
orthonormal beamforming vectors are generated and the best user on each
beam is scheduled. By exploiting multiuser diversity, this scheme is shown to
yield the optimal capacity growth of M log logK for K →∞. However, the
sum rate of this scheme degrades quickly with decreasing number of users.

A different type of limited feedback approaches considers that each user
reports channel direction information (CDI) related to a codebook back to
the transmitter, as well as some form of scalar channel quality informa-
tion (CQI). Several beamforming methods have been investigated, including
unitary beamforming [53], transmit matched-filtering [54], and zero-forcing
beamforming [54], [55], [26], [56]. Note that in these contributions, the CQI
feedback is considered unquantized for analytical simplicity. Considering the
more realistic constraint of finite CSI feedback rate, [29] studies the problem
of optimal bit rate allocation between CQI and CDI, and the resulting mul-
tiuser diversity - multiplexing gain tradeoff in limited feedback MIMO sys-
tems. On the other hand, [57] proposes a threshold-based feedback scheme
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for SDMA systems under a sum feedback rate constraint.

The benefit of using as CQI a measure related to the signal-to-interference-
plus-noise ratio (SINR) was shown in [28]. One challenge of designing feed-
back metrics is that the SINR measurement depends, among others, on the
channel as well as on the number of simultaneously scheduled users. Since
user cooperation is not allowed, the number of simultaneous users and the
available power for each of them is generally unknown at the mobile. In
addition, the feedback metrics must be computed at the user end prior to
computation of the beamforming vectors at the transmitter side. Thus, es-
timation of the multiuser interference at the receiver side is a difficult and
critical task. A principal drawback of previous works is that the proposed
metrics assume a fixed number of scheduled SDMA users, based on non-
achievable SINR upper bounds. Instead, it may be interesting to consider
schemes allowing adaptive transition between SDMA and time division mul-
tiple access (TDMA) modes, as well as more practical received SINR esti-
mates. This problem is addressed in Chapter 4, in a scenario with separate
CDI and CQI feedback. In Chapter 5, a different limited feedback scenario
is considered, in which the users quantize directly their vector channels by
using optimized channel quantization codebooks, thus embedding channel
direction and quality information in a single codebook.

The remainder of this chapter is organized as follows. Initially, an intro-
duction to linear beamforming schemes with perfect CSIT is provided. Com-
mon linear beamforming techniques used in the multiuser MIMO literature
are formally presented, namely zero-forcing beamforming, minimum mean
squared error beamforming and transmit matched filtering. In the following
section, the problem of multiuser selection comes into play. Standard user
selection algorithms are reviewed, which, together with the linear beamform-
ing techniques previously mentioned, will be often referred to throughout
this dissertation. In the last two sections of this chapter, reduced-complexity
approaches combining linear beamforming and multiuser scheduling are pro-
posed, first in a scenario with perfect CSIT and next in a more realistic
scenario with limited feedback.

3.2 System Model

The model here presented describes a generic system model for MIMO broad-
cast channels, which will be often used throughout this dissertation. User
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terminals with a single antenna are in general considered, unless stated oth-
erwise. This is a practical case of interest in current cellular networks, and
it also leads to more tractable mathematical problems.

We consider a multiple antenna broadcast channel consisting of M anten-
nas at the transmitter and K single-antenna receivers. We assume that the
number of mobiles is greater than or equal to the number of transmit anten-
nas, i.e., K ≥ M , implying the use of a user selection algorithm. We limit
here to the case of linear beamforming where exactly M spatially separated
users access the channel simultaneously. However, in practice, the number
of scheduled users may be considered less than or equal to the number of
transmit antennas, as proposed in next chapter. The received signal yk of
the k-th user is mathematically described as

yk = hHk x + nk, k = 1, . . . , K (3.1)

where x ∈ CM×1 is the transmitted signal, hk ∈ CM×1 is the channel vector,
and nk is additive white Gaussian noise at receiver k. We assume that nk is
independent and identically distributed (i.i.d.) circularly symmetric complex
Gaussian with zero mean and variance σ2. The transmitted signal is subject
to an average transmit power constraint P , i.e., E{‖x‖2} = P . We consider
an homogeneous network where all users have the same average SNR.

An i.i.d. block Rayleigh flat fading channel is considered, whose param-
eters are considered invariant during each coded block, but are allowed to
vary independently from block to block. Let H ∈ CK×M refer to the con-
catenation of all channels, H = [h1 h2 . . .hK ]H , where the k-th row is hHk .
Define G as the set of all possible subsets of cardinality M of disjoint indices
among the complete set of user indices Q0 = {1, . . . , K}. Let S ∈ G be one
such group of M users selected for transmission at a given time slot. Then
H(S), W(S), s(S), y(S) are the concatenated channel vectors, unit-norm
beamforming vectors, unit-variance uncorrelated data symbols and received
signals respectively for the set of scheduled users S. When concatenating the
beamforming matrix W(S) prior to transmission, the signal model can be
described as follows

y(S) = H(S)W(S)s(S) + n (3.2)

The SINR at the k-th receiver is

SINRk =
|hHk wk|2∑

i∈S,i�=k |hHk wi|2 + σ2
. (3.3)
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We focus on the ergodic sum rate, which means that the capacity is averaged
over the fading distribution, and thus the block size does not affect our
results. Assuming Gaussian inputs, the ergodic sum rate (SR) is given by

SR = E

{∑
k∈S

log [1 + SINRk]

}
(3.4)

3.3 Linear Beamforming Techniques

In the following lines, a brief description of the most extended linear beam-
forming techniques is provided. The beamforming matrices are computed on
the basis of the concatenated user channels H(S) = [hk1 . . .hkM

]H , where the
subindex ki stands for the user index scheduled over the i-th beamforming
vector. Note that, in the absence of perfect CSIT, the beamfoming matrix W
is instead computed on the basis of the concatenated estimated user chan-

nels, denoted as Ĥ(S) =
[
ĥk1 . . . ĥkM

]H
. Special attention has been paid

to zero forcing (ZF) beamforming (or channel inversion) techniques in the
recent literature [58], extended in [15] to systems with multiuser scheduling.
The ZF beamformer is computed as follows

WZF (S) =
1

λ
H(S)H

[
H(S)H(S)H

]−1
(3.5)

where λ = 1√
P
tr
[
(H(S)H(S)H)−1

]
. However, a main drawback of this tech-

nique is that the sum rate does not scale with the number of antennas. This
is due to the large spread in the singular values of the channel matrix, as dis-
cussed in [59]. In order to overcome this limitation, minimum mean squared
error (MMSE) beamforming (or regularized channel inversion) [59] has been
proposed, which regularizes the channel inversion and improves the condition
of the inverse, enabling linear capacity growth with the number of transmit
antennas. The MMSE beamformer is given by

WMMSE(S) = γH(S)H
[
µI + H(S)H(S)H

]−1
(3.6)

where γ is chosen such that tr
(
WMMSE(S)WMMSE(S)H

)
= P . By fixing

µ = Mσ2

P
, the resulting SINR at each receiver is maximized for large K, as

shown in [59]. Another linear beamforming technique that will be used in
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our work is transmit matched filtering (TxMF), which consists of employ-
ing as beamforming vectors the vector channels of the users scheduled for
transmission. The beamfoming matrix is computed as follows

WMF (S) = H(S)H . (3.7)

3.4 Multiuser Scheduling Algorithms

The optimal multiuser scheduling solution can be conceptually given by ex-
haustive search over all possible user sets. In a system employing exhaustive
search, the scheduler selects the set of users that maximize the sum rate as
follows

S∗ = arg max
S∈G

∑
k∈S

log2 [1 + SINRk(S)] (3.8)

where the values SINRk(S) have to be computed for each user k in each
possible set S, given a certain beamforming strategy. In order to avoid the
prohibitive complexity of exhaustive search, suboptimal user selection algo-
rithms are often implemented at the transmitter side. In addition, in the
presence of imperfect CSIT, other user selection metrics rather than the ex-
act SINR values may be considered instead.

In this chapter, we consider multiuser scheduling algorithms that rely
on scalar scheduling metrics to select a set of users for transmission. The
scalar metric for the k-th user, denoted as ξk, may be computed either at
the base station or at the user terminal. In the latter case, the user feeds
back the scheduling metric to the base station. The design of such scalar
metrics is treated in detail in the next chapter. These metrics can be com-
bined with different user selection algorithms. As our optimization objective
is to maximize the system capacity, the optimum policy under max-sum-rate
scheduling is to select M ≤M users among K users that maximize the sum
rate through exhaustive search. In this chapter, for simplicity, we assume
that M = M users are scheduled at a given time slot. As the complexity
of such a combinatorial optimization problem is prohibitively high for large
K, we resort to low-complexity scheduling strategies based on greedy user
selection (see e.g. [15], [16], [28]).
In the remainder of this section, a brief overview of standard user selection
algorithms found in the literature is provided.
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Table 3.1: Outline of G-SUS Algorithm
Step 0 set S∗ = ∅, Q0 = 1, . . . , K

For i = 1, 2, . . . ,M repeat

Step 1 ki = arg max
k∈Qi−1

ξk

Step 2 S∗ = S∗ ∪ ki
Step 3 Qi =

{
k ∈ Qi−1 | |hHk hj | ≤ ε ∀j ∈ S∗}

G-SUS algorithm

We first review a heuristic scheduling algorithm based on greedy semi-
orthogonal user selection (G-SUS) [15], [28]. Using ξk and hk, k = 1, . . . , K,
the base station performs user selection to support up to M out of K users
at each time slot. Note that, in the case of imperfect CSIT, the estimated
(or quantized) user channels are used instead, denoted as ĥk, k = 1, . . . , K.

The algorithm is outlined in Table 3.1. The first user is selected from
the set Q0 = {1, . . . , K} of cardinality |Q0| = K as the one having the
highest channel quality, i.e. k1 = arg maxk∈Q0 ξk. The (i + 1)-th user, for
i = 1, . . . ,M − 1, is selected as ki+1 = arg maxk∈Qi ξk among the user set Qi

with cardinality |Qi| ≤ K, defined as Qi =
{
k ∈ Qi−1 | |hHk hj | ≤ ε ∀j ∈ S∗}.

The system parameter ε defines the maximum allowed non-orthogonality
(maximum correlation) between quantized channels and it is a parameter
set in advance. Evidently, if ε is very large, the selected users may cause
significant multiuser interference, reducing the system sum rate. Conversely,
if ε is too small, the scheduler may not find enough semi-orthogonal users to
transmit to.

G-US algorithm

We generalize here the low-complexity greedy user selection (GUS) scheme
[16] for the case of imperfect (or quantized) CSIT. The algorithm here de-
scribed is envisaged either for a system with perfect CSIT, or a scenario in
which each user feeds back its quantized channel direction based on a prede-
termined codebook and scalar instantaneous feedback ξk, which are used in
turn to perform joint scheduling and beamforming with quantized CSIT. In
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Table 3.2: Outline of G-US Algorithm
Step 0 Set S0 = ∅, R(S0) = 0, and Q0 = 1, . . . , K

Step 1 k1 = arg max
k∈Q0

ξk

Set S1 = S0 ∪ {k1}
While i < M repeat

i← i+ 1
Step 2 ki = arg max

k∈(Q0−Si−1)
R(Si−1 ∪ {k})

Step 3 Set Si = Si−1 ∪ {ki}
Step 4 if R(Si) ≤ R(Si−1)

finish algorithm and i← i− 1

Step 5 Set S∗ = Si and M = i

the perfect CSIT case, ξk takes on the meaning of the SINR of user k, while
in the imperfect CSIT case ξk corresponds to an estimate on the SINR, e.g.
an upper or lower bound on the SINR (refer to Chapter 4 for more details).
The algorithm is summarized in Table 3.2, where R(Si) =

∑
k∈Si

log2(1 + ξk)
and Si is the set of selected users up to the i-th step. The user with the high-
est estimated rate (equivalently ξk metric) among K users is first selected,
and at each iteration, a user is added only if the sum rate (based on the
estimated SINR) is increased. At each step, it is important to re-process the
set of previously selected users (thus, re-calculating the linear beamformers)
once a user is added to the set Si.

A main advantage of G-US compared to G-SUS is that it does not nec-
essarily require the use of the predetermined system parameter ε. The value
of the orthogonality constraint ε affects the performance of the user selection
algorithm. If ε is set too small, the multiuser diversity gain decreases, and
the user set Qi can be empty before M quasi-orthogonal users are found.
The optimal value decreases with K, as the probability of finding M semi-
orthogonal users among K is larger, however it is difficult to be optimized
analytically. Furthermore, since the G-US algorithm re-processes the set of
already selected users under the same zero-forcing beamforming optimization
when one user is added at each step, its performance can be better or equal
to that of G-SUS.
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3.5 Full CSIT Case: A Low-Complexity Ap-

proach

In this section, the problem of joint linear beamforming and scheduling in
a MIMO broadcast channel with full CSIT is considered. We show how
orthogonal linear beamforming (OLBF) can be efficiently combined with a
low-complexity user selection algorithm to achieve a large portion of the mul-
tiuser capacity. The use of orthogonal transmission enables the transmitter
to calculate exact SINR values during the user selection process. The knowl-
edge of multiuser interference proves to be of particular importance for user
scheduling as both the number of users in the cell and the average signal-to-
noise ratio (SNR) decrease. The sum capacity of our scheme is characterized
in the low-SNR regime, providing analytical results on the performance gain
over zero-forcing beamforming (ZFBF).

Simulation results show performance improvements with respect to ZFBF
and transmit matched filtering (TxMF) in realistic networks with low to mod-
erate number of users. The proposed algorithm is also compared with the
ZFBF scheme with G-US (ZFBF-GUS) introduced in [16]. We show that in
systems with low to moderate number of active users, the proposed scheme
exhibits sum-rate gains over ZFBF-GUS in the low-SNR regime. However,
as the average SNR and number of users increase, suboptimal ZFBF tech-
niques like [16] can provide higher rates. One of our main results is to show
that in the regime of low number of users, orthogonal SDMA offers better
performance than optimal zero-forcing beamforming. Analytical results are
provided and corroborated through numerical simulations.

3.5.1 Motivation

In this section, we focus on joint downlink linear beamforming and scheduling
with the objective of maximizing the system sum rate. The optimal solution
is given by exhaustive search over all possible user sets, as described by (3.8).
Combining multiuser scheduling with a particular beamforming strategy, the
base station is required to compute the beamformers for each user set S. In
addition, the SINR values have to be computed for each possible set S and
user k.

In order to avoid exhaustive user search, suboptimal scheduling approaches
can be implemented instead, such as greedy user selection algorithms. The
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idea behind gredy approaches is to pre-select a reduced number of users
according to different criteria, e.g. orthogonality properties as in G-SUS,
hence reducing the search space. Once scheduling is performed, the base
station computes the beamformers for transmission and is able to determine
each user’s achievable SINR. The inconvenience of these approaches is that in
order to precisely know the SINR of a user, the beamformers have to be com-
puted first, which is in general a computationally complex operation. Hence,
suboptimal scheduling techniques rely generally on criteria other than the
exact SINR values. In certain scenarios, such as systems with low number
of users or in low SNR conditions, precise knowledge of SINR can help to
increase the system performance, as we show later on.

We propose a low-complexity user selection technique valid under the
constraint of using orthonormal beamforming vectors for transmission. Or-
thonormal transmission enables calculation of the exact signal-to-interference
plus noise ratio (SINR) values during the user selection process in a compact
and computationally efficient manner. This SINR expression was introduced
as a scalar feedback metric for MIMO broadcast channels with limited feed-
back [28], [60]. In the case of full channel knowledge and suboptimal user
scheduling, the use of orthogonal beamformers provides a precise control on
the multiuser interference at the transmitter. In order to improve the sys-
tem performance, this knowledge proves to be of particular importance for
decreasing number of users and average signal-to-noise ratio (SNR). In ad-
dition, the exact per-user contribution to the sum rate can be computed at
each selection step.

3.5.2 System Assumptions

We consider equal power allocation over each transmit beam. Let P be
an M × M diagonal matrix with entries equal to

√
P/M . Assuming the

columns of the beamforming matrix W are normalized, the system model
given in (3.2) can be described as follows

y(S) = H(S)W(S)Ps(S) + n. (3.9)

In addition, the use of OLBF and normalized beamforming vectors implies
that the matrix W(S) is unitary, i.e., W(S)W(S)H = W(S)HW(S) = IM .
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At the k-th mobile, the received signal is given by

yk =

√
P

M

∑
i∈S

hHk wisi + nk, k = 1, . . . , K. (3.10)

3.5.3 Proposed User Selection Algorithms

In order to avoid the prohibitively high complexity of exhaustive search, we
use a low-complexity user selection approach. The base station schedules M
among K users for downlink transmission with the purpose of maximizing
the sum rate and under the constraint of orthonormal beamforming.

The user selection criterion consists of scheduling the users with the
largest SINR values. In order to express each user’s SINR, we use the fol-
lowing simplified expression

SINRk =
‖hk‖2 ρ2

k

‖hk‖2 (1− ρ2
k) + Mσ2

P

(3.11)

where ρk is the alignment between the k-th user instantaneous normalized
channel vector hk = hk

‖hk‖ (channel direction) and the corresponding beam-

forming vector wk, defined as ρk =
∣∣∣hHk wk

∣∣∣. Note that a similar metric is also

reported in [28], [60]. Since the linear beamformers used for transmission
are orthonormal, the beamforming vectors wj, ∀ j �= k span the null space
of wk. Hence, as shown in [51], the multiuser interference can be simplified
as Ik = P

M
‖hk‖2 (1− ρ2

k). In next section, we provide a bound for the mul-
tiuser diversity, treating the case of orthonormal beamforming vectors as a
particular case (see Corollary 3.1).

In what follows, we propose two algorithms with different computational
complexity. As we later show through simulations, Algorithm B shows better
performance than Algorithm A at the expense of higher processing complex-
ity.

Algorithm A

An outline of Algorithm A is provided in Table 3.3. The proposed sub-
optimal transmission scheme has reduced complexity, in the sense that it
has
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• Simple beamforming strategy: given K users, only 1 possible transmis-
sion set is taken in consideration.

• Reduced user search space: greedy algorithm with linear complexity of
order O(K) is used. Hence, combinatorial search over the entire index
set is avoided.

Table 3.3: Outline of Scheduling Algorithm A

Step 0 Select first scheduled user and beamforming vector

k1 = arg max
k∈Q0

‖hk‖
wk1 = hk1
Set S∗ = {k1}

Step 1 Gram-Schmidt orthogonalization

Compute orthonormal basis W from wk1

Step 2 Loop

For i = 2, . . . ,M repeat

Step 2.1 Set SINRi
max = 0

Step 2.2 Loop

For k = 1, . . . ,K, k /∈ S∗ repeat

Step 2.2.1 Compute ρk =
∣∣∣hHk W(i)

∣∣∣
Step 2.2.2 Compute SINRk = ‖hk‖2ρ2k

‖hk‖2(1−ρ2k)+ Mσ2

P

Step 2.2.3 If SINRk > SINRi
max

SINRk → SINRi
max and ki = k

Step 2.3 ki → S∗

Given M possible users to be scheduled out of K active users, the user
scheduled on the first beam, denoted as k1, is the one that exhibits the largest
channel norm, i.e.,

k1 = arg max
k∈Q0
‖hk‖ . (3.12)
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Once the best user is identified, its beamforming vector is given by

wk1 = hk1 (3.13)

so that transmit matched filtering is performed for the first user. Hence,
this user observes an alignment of ρk1 = 1, and thus SINRk1 = P

Mσ2 ‖hk1‖2,
independently of the users scheduled on the remaining beams. Note also
that the first user is selected as the best over K users, therefore exploiting
all multiuser diversity gain. The remaining M − 1 beamforming vectors are
found by the following procedure. Since orthogonal transmission is to be
performed, the already selected vector wk1 corresponds to a basis vector of
the orthonormal basis W ∈ CM×M to be used for transmission. Hence, the
complete set of beamforming vectors can be found by applying the Gram-
Schmidt orthogonalization method [61]. Let W(i) be the i-th column of the
beamforming matrix W and define W(1) = wk1. Once the beamforming
vectors are determined, the user scheduled on the i-th beam, i = 2, . . . ,M ,
corresponds to the user that maximizes the SINR expression

ki = arg max
k∈Q0−{k1,...,ki−1}

SINRk (3.14)

s.t. wk = W(i)

Note that selection of the ki user does not affect the expression of SINRkj
,

for j �= i, j =, 2 . . . ,M , since the beamforming vectors in OLBF are already
determined in the first step, and therefore the SINR expression of k-th user is
only a function of hk and ρk as equation (3.11) shows. In the selection process,
exact SINR values are computed for the given beamforming vectors. This
ensures that, even though the transmit directions are fixed (after selecting
k1), the exact knowledge of interference will allow to capture a large portion
of the sum rate even when the number of users is reduced.

The sum rate of the scheduled user set S∗ = {k1, k2, . . . , kM} is given by

R (S∗) =

M∑
i=1

log2 [1 + SINRki
] . (3.15)

Algorithm B

An outline of Algorithm B is provided in Table 3.4. This algorithm ex-
hibits increased complexity compared to Algorithm A, which can be summa-
rized as follows
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• Simple beamforming strategy: given K users, only K possible trans-
mission sets are taken in consideration.

• Reduced user search space: user selection algorithm of complexity of
order O(K2) (hence, combinatorial search over the entire index set is
avoided).

Table 3.4: Outline of Scheduling Algorithm B

Initialize Set S∗ = ∅ and R(S∗) = 0

For k = 1, . . . ,K repeat

Step 0 Set k1 = k

wk1 = hk

S = {k1}
Step 1 Gram-Schmidt orthogonalization

Compute orthonormal basis W from wk1

Step 2 Loop

For i = 2, . . . ,M repeat

Step 2.1 Set SINRi
max = 0

Step 2.2 Loop

For j = 1, . . . ,K, j /∈ S repeat

Step 2.2.1 Compute ρj =
∣∣∣hHj W(i)

∣∣∣
Step 2.2.2 Compute SINRj =

‖hj‖2ρ2j

‖hj‖2(1−ρ2j )+ Mσ2

P

Step 2.2.3 If SINRj > SINRi
max

SINRj → SINRi
max and ki = j

Step 2.3 ki → S

Step 3 R(S) =
∑

j∈S log [1 + SINRj ]

Step 4 If R(S) > R(S∗), R(S)→ R(S∗) and S→ S∗

Hence, Algorithm B also considers a finite set of possible beamformers (thus
limiting the complexity) but does not perform a greedy selection procedure.
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This algorithm is equivalent to Algorithm A, but instead of selecting the
first user as in equation (3.12), all users are considered as possible candi-
dates, i.e., k1 = k, k = 1, . . . , K. In other words, the procedure described in
Algorithm A is performed K times. Each time, a new set of beamforming
vectors is computed, given that wk1 = hk1 changes from user to user, and its
corresponding rate is computed by using (3.15). Let Rm(S) denote the sum
rate for a user set S at m-th iteration of the algorithm, where m = 1, . . . , K.
The set of beamforming vectors W(S∗) and scheduled users S∗ are those hav-
ing the maximum sum rate Rm(S) among the K iterations of the algorithm.
Thus the resulting sum rate of Algorithm B is given by

R (S∗) = max
S,m∈Q0

Rm(S). (3.16)

At this point, we should note that here we focus on the region of low to
moderate number of users, which is of particular interest in real scenarios.
A sum rate analysis of our proposed algorithms for K → ∞ can show that
both our schemes achieve asymptotically the optimum sum rate scaling of
M log logK. This is also evident as random opportunistic beamforming [2],
which has been shown to achieve the DPC capacity scaling [13], is a pes-
simistic lower bound on the performance of our scheme.

3.5.4 Performance Analysis

In this section, we study the sum rate performance of OLBF (Algorithm
A) at low-power regime, and its capacity growth is compared with that of
zero-forcing beamforming with equal power allocation. For simplicity, we
assume that K = M , and thus the results are independent of the user selec-
tion strategy. The analytical tool used for the characterization of capacity at
asymptotically low SNR was proposed by Verdú [62]. At low SNR, the capac-
ity C(SNR) (in nats/dimension) can be approximated by the second-order
Taylor series expansion:

C(SNR) = Ċ(0)SNR +
C̈(0)

2
SNR2 + o(SNR2) (3.17)

with Ċ(0) and C̈(0), the first and second derivative, respectively, of the
function C(SNR) at SNR = 0.
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The sum capacity of zero-forcing beamforming with equal power alloca-
tion CZFBF (SNR) is given by

CZFBF (SNR) = E

{∑
i∈S

log

(
1 +

SNR

M
|γi|2
)}

(3.18)

where γi = hHi wi is the effective channel of the i-th user, and wi the zero-
forcing beamformer, corresponding to the i-th column of the matrix W(S).
Note that |γi|2 is a chi-square random variable with two degrees of freedom
for all i (denoted χ2

(2)).
The derivatives of the sum capacity in nats are equal to

ĊZFBF (0) = E
{|γi|2} = 1 (3.19)

and

C̈ZFBF (0) = −E
{|γi|4}
M

. (3.20)

Similarly, when OLBF is used, the sum capacity COLBF (SNR) is given
by

COLBF (SNR) = E

{
log

(
1 +

SNR

M
‖hk1‖2

)}

+E

⎧⎨⎩ ∑
i∈S−{k1}

log (1 + SINRki
)

⎫⎬⎭ (3.21)

with ‖hki
‖2 ∼ χ2

(2M).
The derivatives of the sum capacity in nats are equal to

ĊOLBF (0) = 2− 1/M (3.22)

and

C̈OLBF (0) = −E
{‖hk‖4}
M

+
M − 1

M2
E
{‖hk‖4 (1− ρ2

k)
2
}
. (3.23)

Note that for isotropically distributed channels, ‖hk‖ and ρk are inde-
pendent random variables. As a first-order approximation, as SNR → 0,
the capacity grows linearly with SNR, i.e. CZFBF ≈ SNR and COLBF ≈
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Figure 3.1: Sum rate as a function of the SNR forM = 2, 4 transmit antennas
and K = M users.

(2−1/M)SNR, meaning that the capacity scaling (for fixed M) at low SNR
satisfies

lim
SNR→0

CZFBF (SNR)

SNR
= 1 (3.24)

and

lim
SNR→0

COLBF (SNR)

SNR
= 2− 1/M. (3.25)

By taking the capacity scaling ratio CSR = COLBF (SNR)
CZF BF (SNR)

, we conclude that

a system employing OLBF provides at low SNR a gain of 10 log10(
2M−1
M

) dB
compared to a system based on zero-forcing beamforming, or equivalently, a
factor of CSR = (2M − 1)/M in rate (nats/s/Hz) for the same power.

Figure 3.1 shows a sum rate comparison between OLBF and ZFBF versus
average SNR for M = 2 and M = 4 transmit antennas. We can observe the
consistency of the simulation results with the above analysis, since the sum
capacity gap between OLBF and ZFBF increases with the number of transmit
antennas (by a factor of 2− 1/M) at low SNR.
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Figure 3.2: Sum rate as a function of the number of users for M = 2 transmit
antennas, and average SNR = 0 dB.

3.5.5 Numerical Results

The performance of the proposed algorithms is evaluated through simula-
tions, for M = 2 transmit antennas, comparing the sum rate with three
alternative transmission techniques for the MIMO downlink: ZFBF with ex-
haustive user search, TxMF with exhaustive user search, and ZFBF-GUS
[16]. We consider in the simulated ZFBF approaches simple power normal-
ization as described in equation (3.5) instead of optimal power allocation
techniques.

Figure 3.2 shows a performance comparison between ZFBF with exhaus-
tive search, TxMF with exhaustive search and the proposed OLBF subop-
timal techniques in the low SNR regime. In this scenario, the proposed
algorithm outperforms matched filtering for the simulated range of active
users. We can observe that the proposed scheme with orthogonal beamform-
ing shows even better performance than zero-forcing where the user selection
is performed via exhaustive search. However, as the number of active users
in the cell increases, the gap between ZFBF and OLBF becomes smaller.

In Figure 3.3, instead of comparing with optimal scheduling techniques



90 Chapter 3 Joint Linear Beamforming and Multiuser Scheduling

0 5 10 15 20 25 30
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Users, K

S
um

 R
at

e 
[b

its
/s

/H
z]

SNR = 10 dB

 

 

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

Users, K

S
um

 R
at

e 
[b

its
/s

/H
z]

SNR = 0 dB

 

 

OLBF − Algorithm A
OLBF − Algorithm B
ZFBF − GUS

Figure 3.3: Sum rate comparison of suboptimal beamforming approaches as
a function of the number of users for M = 2 transmit antennas, for a) average
SNR = 0 dB (below) and b) average SNR = 10 dB (above).

as done in Figure 3.2, we focus on another suboptimal technique, ZFBF-
GUS [16]. It is a fair comparison, since the proposed OLBF approaches and
ZFBF-GUS rely on suboptimal scheduling algorithms. However, our pro-
posed scheduling algorithm is computationally much less complex than [16],
which involves computation of matrix inversions. We observe that knowledge
of the interference exploited during the user selection process is particularly
beneficial as the total number of users K and the average SNR decrease.
In this region, ZFBF-GUS exhibits a performance degradation. Knowledge
of the interference between users that do not have good spatial separability
helps to improve the task of the scheduler. Hence, the proposed scheme with
joint beamforming and scheduling can effectively select users for transmis-
sion in sparse networks where moderate number of users is present, providing
good average rates through a low-complexity design. However, as the aver-
age SNR increases, ZFBF-GUS can provide higher rates except for the case
when the number of transmit antennas equals the number of users.
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3.5.6 Discussion

In this section, we have shown how orthogonal linear beamforming (OLBF)
can be efficiently combined with a low-complexity user selection algorithm
to achieve a large portion of the multiuser capacity. The use of orthogonal
transmission enables the transmitter to calculate exact SINR values dur-
ing the user selection process. The proposed suboptimal algorithms provide
performance gains with respect to optimal ZFBF and TxMF, as both the
number of users in the cell and the average SNR decrease. Sum rate com-
parison with a ZFBF technique based on greedy user selection further shows
the benefits of OLBF in cells with low to moderate number of active users in
low SNR environments, highlighting the importance of multiuser interference
knowledge for user scheduling.

3.6 Partial CSIT Case: A Low-Complexity

Approach

The problem of joint scheduling and beamforming for a multiple antenna
broadcast channel with partial CSIT is considered. We show how long-term
statistical channel knowledge can be efficiently combined with instantaneous
low-rate feedback for user selection and linear beamforming. A low complex-
ity algorithm based on an estimate (bound) of the multiuser interference is
proposed. Our scheme is shown to exhibit significant throughput gain over
opportunistic techniques, approaching the sum rate of full CSIT for small
angle spreads.

3.6.1 Motivation

The capacity gain of multiuser MIMO systems is highly dependent on the
available CSIT. While having full CSI at the receiver can be assumed, this
assumption is not reasonable at the transmitter side. In [51], a finite rate
feedback model is proposed, in which each receiver quantizes its channel and
feeds back a finite number of bits regarding its channel realization based on
a codebook. An SDMA extension of opportunistic beamforming [63] using
partial CSIT in the form of individual SINR is proposed in [2], achieving
optimum capacity scaling for large number of users. However, these schemes
do not exploit long-term statistical knowledge of the channel. Combining the
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spatial correlation with the channel norm is addressed in [64], however it has
not been exploited in an SDMA context. A means to combine instantaneous
scalar feedback with statistical CSIT for the sole purpose of user selection is
proposed in [65].

Here we make the following key points:

• Statistical CSIT, while causing almost negligible per-slot feedback over-
head, can reveal information about the spatial separability of users.

• Scalar feedback can be used at the transmitter to evaluate the quality
of the CSIT and estimate the multiuser interference.

Based on the above points we propose a practical low complexity scheme
with joint scheduling and beamforming. Each user has a predefined beam-
forming vector, matched to the principal eigenvector of the channel correla-
tion matrix. In order to achieve full multiuser diversity gain, we propose to
feed back the following scalar values: 1) the alignment between the channel
and each user’s predefined beamforming vector 2) the channel norms. Our
method shows a considerable gain over random opportunistic beamforming
for angle spread less than 45 degrees, which makes it a practical approach
especially for cellular outdoor systems.

3.6.2 System Assumptions

As considered in the previous section, equal power allocation over each of the
data streams is assumed also here. We consider transmission in a downlink
where insufficient scattering around the transmitter makes the MIMO chan-
nel spatially correlated. The channel vector is complex Gaussian distributed
with zero mean and full-rank correlation matrix Rk = E{hkhHk }. We assume
that Rk is perfectly known at both ends of the link, which can be obtained
from uplink measurements or using a low-rate feedback channel. The eigen-
decomposition of the transmit correlation matrix is Rk = VkΛkV

H
k , where

Λk is a diagonal matrix with the eigenvalues of Rk in descending order and
Vk =

[
v1
k v2

k · · ·vMk
]

is a unitary matrix with the eigenvectors of Rk.

3.6.3 Proposed Algorithm

We propose an algorithm that performs joint scheduling and beamforming
in the downlink, based on statistical channel information and limited instan-
taneous channel feedback. As our optimization criterion is to maximize the
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system throughput, it is desirable to schedule a set of M users with large
channel gains and mutually orthogonal beamforming vectors. The proposed
algorithm is outlined in Table 3.5.

Feedback Strategy

If the CSIT consists of channel gains and quantized channel directions, the
multiuser interference cannot be completely eliminated, resulting to a bounded
sum rate even for K → ∞ [24]. Motivated by this fact, in order to achieve
full multiuser diversity gain, we propose that each user feeds back the fol-
lowing scalar values: 1) the alignment between its instantaneous normalized

channel vector hk and a predefined beamforming vector, ρk =
∣∣∣hHk wk

∣∣∣ and 2)

its channel norm ‖hk‖2.

User scheduling

If a perfectly orthogonal set of beamforming vectors can be found, the above
mentioned instantaneous limited feedback is sufficient to achieve the same
asymptotic sum rate as that of DPC. However, in practice, this cannot
be fulfilled and the remaining interference cannot be calculated explicitly.
Therefore, we derive a bound on the multiuser interference based on the
available limited feedback, which is shown in detail in the next section.
For user k and index set S, the multiuser interference can be expressed as
Ik(S) =

∑
i∈S,i�=k

P
M
|hHk wi|2 = P

M
‖hk‖2 Ik(S), where Ik(S) denotes the inter-

ference over the normalized channel hk. Using IUBk
(S), the upper bound on

Ik(S), we have the following lower bound on the SINR:

SINRLB
k (S) =

P
M
‖hk‖2 ρ2

k

P
M
‖hk‖2 IUBk

(S) + σ2
. (3.26)

The scheduler is optimized to select the set of users that maximize a lower
bound on the SR as follows

S∗ = arg max
S

∑
k∈S

log
[
1 + SINRLB

k (S)
]
. (3.27)

In order to reduce the complexity of the user search, we define a threshold µth
and consider only users with product ‖hk‖ ρk > µth. This threshold is defined
by selecting the top µ percent values of ‖hk‖ ρk, and becomes necessary in
dense networks where exhaustive search may be prohibitive, even though the
computation of (3.27) entails low complexity.
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Table 3.5: Outline of Proposed Low-Complexity Approach
Initialization
MS
Update & Feedback wk = v1

k → BS ∀k = 1, · · · ,K
BS
Compute & Store αk(S), βk(S), γk(S) ∀k,S (eq. 3.32)
At each time slot
MS
Compute & Feedback ‖hk‖ → BS ∀k = 1, · · · ,K

ρk =
∣∣∣hHk wk

∣∣∣→ BS

BS
User selection
Step 0 Set SR∗

LB = 0 and S∗ = ∅
For all S ∈ G with ‖hk‖ ρk > µth, repeat

Step 1 Compute

IUBk
(S) = ρ2

kαk(S)+
(
1−ρ2

k

)
βk(S)+2ρk

√
1−ρ2

kγk(S)

Step 2 Compute SINRLB
k (S) =

P
M

‖hk‖2ρ2k
P
M

‖hk‖2IUBk
(S)+σ2

Step 3 Compute SRLB =
∑

k∈S log
[
1 + SINRLB

k (S)
]

Step 4 If SRLB > SR∗
LB , SRLB → SR∗

LB and S→ S∗

Beamforming
Construct beamforming matrix W (S)

Beamforming Vectors

As a low complexity approach, we consider a system where each user has a
preferred beamforming vector known both by the base station and mobile.
As shown in [66], for single-user MIMO communications, given a certain user
k with correlation matrix Rk the average rate is maximized by matching the
beamforming vector to the principal eigenvector of its correlation matrix,
wk = v1

k. Hence, we design each user’s beamforming vector according to
this strategy. This is equivalent to a system where each user has a trivial -
yet practical - codebook with a single codevector (eigen-codebook), which is
updated at a very low rate when the transmit correlation changes in time.
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3.6.4 Bound on the Multiuser Interference

Before deriving the bound on the multiuser interference, we state the follow-
ing result.

Lemma 3.1 Let Uk ∈ CM×(M−1) be an orthonormal basis spanning the
null space of wk. Then, ∥∥∥hHk Uk

∥∥∥2

= 1− ρ2
k (3.28)

Proof. Define the orthonormal basis Zk of CM×M obtained by stacking the
column vectors of Uk and wk: Zk = [Ukwk]. Since ZkZ

H
k = I and hk has

unit power ∥∥∥hHk Zk

∥∥∥2

= h
H

k ZkZ
H
k hk = h

H

k hk = 1. (3.29)

Then, by definition of Zk we can separate the power of hk as follows∥∥∥hHk Zk

∥∥∥2

=
∥∥∥hHk [Ukwk]

∥∥∥2

=
∥∥∥hHk Uk

∥∥∥2

+
∣∣∣hHk wk

∣∣∣2= 1. (3.30)

Setting
∣∣∣hHk wk

∣∣∣2 =ρ2
k and solving the above equation for

∥∥∥hHk Uk

∥∥∥2

we obtain

the desired result.

Define the matrix Ψk(S) =
∑

i∈S,i�=k wiw
H
i and the operator λmax {·},

which returns the largest eigenvalue. We obtain the following result:

Theorem 3.1 Given an arbitrary set of unit-norm beamforming vectors
{wi, i ∈ S}, the interference experienced by the k-th user can be bounded as
follows

Ik(S) ≤ ρ2
k wH

k Ψk(S)wk

+ (1− ρ2
k)λmax

{
UH
k Ψk(S)Uk

}
+ 2ρk

√
1− ρ2

k

∥∥UH
k Ψk(S)wk

∥∥ (3.31)

Proof. See Appendix 3.A.

Note that, in the proposed algorithm, when computing the interference
bound from (3.31) for each user k and index set S, the following values can
be prestored at the BS⎧⎨⎩

αk(S) = wH
k Ψk(S)wk

βk(S) = λmax
{
UH
k Ψk(S)Uk

}
γk(S) =

∥∥UH
k Ψk(S)wk

∥∥ (3.32)
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hence not contributing to increase complexity during runtime. As shown in
Table 3.5, the initialization procedure is performed before data transmission
starts. Afterwards, the quantities αk(S), βk(S), γk(S) and wk can be updated
either when a new user enters the system or periodically, in order to account
for variations in the users’ long-term statistics. Thus, the upper bound on
the multiuser interference involves low computational complexity and can be
expressed as

IUBk
(S)=ρ2

kαk(S)+
(
1−ρ2

k

)
βk(S)+2ρk

√
1−ρ2

kγk(S) (3.33)

Consider the following particular cases to have a more intuitive idea of this
bound: (a) ρk → 1, then IUBk

(S) → ρ2
kαk(S). In this case, the interfer-

ence is due to non-orthogonalities between wk and the remaining beam-
forming vectors; (b) as the beamforming vectors become orthogonal, i.e.∣∣wH

i wj

∣∣ → 0 ∀i �= j ∈ S, then αk(S) → 0, βk(S) → 1, γk(S) → 0 and

hence IUBk
(S)→ 1− ρ2

k. Particularly, when perfect orthogonality exists, we
can state the following

Corollary 3.1 Given an orthonormal set of M beamforming vectors in
CM , the interference experienced by user k ∈ S is given by

Ik(S) = 1− ρ2
k. (3.34)

Proof. Direct consequence of Lemma 3.1 when the interfering beamforming
vectors are basis vectors of the null space of wk.

Hence, the derived interference bound becomes tighter as the orthogonal-
ity between beamforming vectors increases.

3.6.5 Numerical Results

At the transmitter side, we consider a uniform linear antenna array (ULA)
with antenna spacing d = 0.4λ, where λ is the wavelength (here for a 2GHz
system). We assume that the channel evolves according to a specular model
where the channel impulse response is a superposition of a finite number of
paths. The path gains are assumed to be zero-mean, unit variance complex
Gaussian distributed. Each of these paths have a Gaussian distributed angle
of incidence with respect to the transmitter broadside. We evaluate our
scheme for M = 2 antennas and SNR = 10 dB.
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Figure 3.4: Sum rate as a function of the number of users for M = 2 transmit
antennas, and σθ = 0.1π.

Figure 3.4 and Figure 3.5 show a performance comparison in terms of
sum rate for several approaches, as a function of the number of users and the
angle spread, respectively. Since the proposed scheme is based on TxMF, we
give as a reference the performance of TxMF with perfect CSIT. In order to
evaluate the proposed user selection metric based on reduced feedback, we
also compare with a scheme that while having the same beamforming strategy
(transmission along the principal eigenvector of Rk), uses full CSIT for user
scheduling. Our method shows a clear gain over random beamforming [2] for
angle spread less than 45 degrees making it a practical approach for cellular
outdoor systems.

3.6.6 Discussion

We presented a low complexity beamforming/scheduling algorithm for spa-
tially correlated MIMO channels, exploiting statistical channel knowledge
combined with limited instantaneous feedback. The proposed scheme ex-
hibits performance close to that of full CSIT when the multipath angular
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Figure 3.5: Sum rate as a function of angle spread for M = 2 transmit
antennas, antenna spacing d = 0.4λ and K = 100 users.

spread at the transmitter is small enough, making this approach suitable to
wireless systems with elevated base station such as outdoor cellular networks.

3.7 Conclusions

In this chapter, the problem of joint linear beamforming and scheduling for
MIMO broadcast channels has been presented. In such systems, transmis-
sion techniques and user selection algorithms with reasonable complexity
are desired. In order to illustrate this fact, low-complexity solutions have
been proposed both in scenarios with full and partial CSIT. In the follow-
ing chapters, we focus on the optimization of different elements present in
such communication systems. While assuming simple scheduling algorithms,
similar to the ones here presented, we would like to identify what type of feed-
back and beamforming techniques are most appropriate in limited feedback
scenarios, for the purpose of sum-rate maximization.
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APPENDIX

3.A Computation of Multiuser Interference

Bounds

Using the definition of Ψk(S), the interference over the normalized channel
for user k and index set S, denoted as Ik(S), can be expressed as

Ik(S) =
∑

i∈S,i�=k

∣∣∣hHk wi

∣∣∣2 =
∑

i∈S,i�=k
h
H

k wiw
H
i hk = h

H

k Ψk(S)hk. (3.35)

The normalized channel hk can be expressed as a linear combination of or-
thonormal basis vectors. Using Lemma 3.1, all possible unit-norm hk vectors

with
∣∣∣hHk wk

∣∣∣ = ρk can be written as follows

hk = ρke
jαkwk +

√
1−ρ2

kUkBkek (3.36)

where Bk is a diagonal matrix with entries ejβi, i = 1, . . . ,M − 1 and ek is
an arbitrary unit-norm vector in C(M−1)×1. The complex phases βi and αk
are unknown and lie in [0, 2π]. Substituting (3.36) into (3.35) we get

Ik(S) = ρ2
k wH

k Ψk(S)wk

(a) + (1−ρ2
k) eHk BH

k UH
k Ψk(S)UkBkek

(b) +ρk
√

1−ρ2
k [e−jαkwH

k Ψk(S)UkBkek

+eHk BH
k UH

k Ψk(S)wke
jαk ].

(3.37)

Since the first term in (3.37) is perfectly known, the upper bound on Ik(S)
is found by joint maximization of the summands (a) and (b) with respect
to αk, Bk and ek. We use a simpler optimization method, which consists of
bounding separately each term.
(a) Defining Ak(S) = UH

k Ψk(S)Uk for clarity of exposition, the second term
can be bounded as follows

max
Bk,ek

(
1−ρ2

k

)
eHk BH

k Ak(S)Bkek =
(
1−ρ2

k

)
λmax{Ak(S)}

s.t. ‖ek‖ = 1 (3.38)
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where the operator λmax {·} returns the largest eigenvalue. The maximum
in (3.38) is obtained when the vector Bkek equals the principal eigenvector
of the matrix Ak(S).
(b) Defining qk = BH

k UH
k Ψk(S)wke

jαk and noting that the matrix Ψk(S) is
Hermitian by construction, the bound on the third term in (3.37) can be
written as follows

max
qk,ek

ρk

√
1−ρ2

k

[
qHk ek + eHk qk

]
= max

qk

2ρk

√
1−ρ2

k ‖qk‖

s.t. ‖ek‖ = 1 (3.39)

The equality follows from the fact that the left hand side is maximized for
ek =

qk‖qk‖ , which satisfies the unit-norm constraint. The solution is given

by

max
qk

2ρk

√
1−ρ2

k ‖qk‖ = max
Bk ,αk

2ρk

√
1−ρ2

k

∥∥BH
k UH

k Ψk(S)wke
jαk
∥∥

= 2ρk
√

1− ρ2
k

∥∥UH
k Ψk(S)wk

∥∥ . (3.40)

Finally, incorporating into (3.37) the bounds obtained in (3.38) and (3.40)
we obtain the desired bound.



Chapter 4

A Design Framework for Scalar
Feedback

In this chapter, joint linear beamforming and scheduling is performed in a
system where limited feedback is present at the transmitter side. The feed-
back conveyed by each user to the base station consists of channel direction
information (CDI) based on a predetermined codebook and a scalar metric
with channel quality information (CQI) used to perform user scheduling. In
this chapter, we present a design framework for scalar feedback in MIMO
broadcast channels with limited feedback. An approximation on the sum rate
is provided for the proposed family of metrics, which is validated through
simulations. For a given number of active users and average SNR condi-
tions, the base station is able to update certain transmission parameters in
order to maximize the sum-rate function. On the other hand, the proposed
sum-rate function provides a means of simple comparison between transmis-
sion schemes and scalar feedback techniques. Particularly, the sum-rate of
SDMA and TDMA is compared in the following extreme regimes: large num-
ber of users, high SNR and low SNR. Simulations are provided to illustrate
the performance of various scalar feedback techniques based on the proposed
design framework. In addition, the effect of scalar feedback quantization is
studied, introducing the tradeoff between multiuser diversity and multiplexing
gain that arises in systems with a sum rate feedback constraint.
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4.1 Introduction

The challenge of designing high performance schemes for MIMO broadcast
channels based on joint linear beamforming and multiuser scheduling has
been a focus of interest over the past years. In limited feedback scenarios,
the linear beamformers, scheduling algorithms and feedback strategies need
to be jointly design in order to provide high system sum rates. In this
chapter, we consider limited feedback scenarios in which each user conveys
channel quality information (CQI) to the base station for the purpose of user
scheduling along with channel direction information (CDI).

In [2], an SDMA extension of opportunistic beamforming [63] using partial
CSIT in the form of individual SINR is proposed, achieving optimum capacity
scaling for large number of users. A simple scheme for joint scheduling and
beamforming with limited feedback is proposed in [28], [60]. The receivers
compute and feed back a scalar metric that can be interpreted as an upper
bound on the SINR. Assuming certain orthogonality constraints between
beamforming vectors, a lower bound on the instantaneous or average SINR
can be computed as scalar feedback, as shown in [25] and [27] respectively.
The total amount of feedback overhead in the system can be reduced by
appropriately setting minimum desired SINR thresholds while controlling
each user’s quality of service (QoS). Design of feedback thresholds for general
scheduling metrics have been proposed in [67].

In this chapter we present a design framework for scalar feedback in
MIMO broadcast channels, which generalizes previously proposed techniques.
A family of metrics is presented based on individual SINRs, which are com-
puted at the receivers and fed back to the base station as channel quality
information. The framework here presented can be applied to any system
in which codebooks are employed for channel direction quantization. More-
over, additional orthogonality constraints between beamforming vectors may
be considered with the purpose of simplifying the task of user scheduling and
controlling the amount of multiuser interference.

An approximation on the ergodic sum rate is provided for the proposed
family of metrics. The resulting sum-rate function fits well the simulated
sum rate as shown through simulations, even in cells with reduced number of
active users. This function, as we show, can be a powerful design tool and at
the same time it greatly simplifies system analysis. On the one hand, we can
envisage a cellular system in which, given certain average SNR conditions
and number of active users, the base station sets the different parameters
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so as to maximize the sum-rate function. On the other hand, as shown in
the analysis, the sum-rate function provides a means of simple comparison
between different transmission schemes and scalar feedback techniques in ex-
treme regimes, without the need of extreme value theory. Particularly, we
compare the sum-rate of SDMA and TDMA approaches in scenarios with
large number of users, high SNR and low SNR regimes. Simulations are
provided to illustrate the performance of different scalar feedback techniques
based on the proposed design framework. Furthermore, the effect of quan-
tizing the scalar metrics is studied in a system with finite sum rate feedback,
identifying the existing tradeoff between multiuser diversity and multiplexing
gain.

4.2 System Model

We consider a multiple antenna broadcast channel consisting of M antennas
at the transmitter and K ≥ M single-antenna receivers. The system model
is equivalent to the one presented in Section 3.2, with some particularities.
The received signal yk of the k-th user is mathematically described as

yk = hHk x + nk, k = 1, . . . , K (4.1)

where x ∈ CM×1 is the transmitted signal, hk ∈ CM×1 is an i.i.d. Rayleigh
flat fading channel vector, and nk is additive white Gaussian noise at receiver
k with zero mean and variance σ2. We assume that each of the receivers has
perfect and instantaneous knowledge of its own channel hk. Let S denote the
set of users selected for transmission at a given time slot, with cardinality
|S| = Mo, 1 ≤ Mo ≤ M . Let wk be the unit-norm beamforming vector
for user k. Assuming equal power allocation to the Mo scheduled users, the
received signal at the k-th mobile is given by

yk =

√
P

Mo

∑
i∈S

hHk wisi + nk, k = 1, . . . , K. (4.2)

Hence, the SINR of user k is

SINRk =
|hHk wk|2∑

i∈S,i�=k
|hHk wi|2 +

Moσ
2

P

. (4.3)
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We focus on the ergodic sum rate (SR) which, assuming Gaussian inputs, is
equal to

SR = E

{∑
k∈S

log [1 + SINRk]

}
. (4.4)

4.3 Linear Beamforming with Limited Feed-

back

Joint linear beamforming and scheduling is performed in a system where
limited feedback is present at the transmitter side. The feedback conveyed
by each user to the base station consists of channel direction information
based on a predetermined codebook and a scalar metric with channel quality
information used to perform user scheduling.

In such systems, the design of appropriate scalar metrics in scenarios
with realistic number of users and average SNR values remains a challenge.
These metrics must contain information of the users’ channel gains as well
as channel quantization errors, as discussed in Section 3.6. If the users have
additional knowledge of the beamforming technique used at the transmit-
ter side, an estimate on the multiuser interference at the receiver can be
computed. This information can be encapsulated together with the channel
gain, quantization error and average noise power into a scalar metric ξ, which
consists of an estimate on the SINR. In our work, we consider such scalar
feedback strategies, as discussed in detail in next section. User selection is
carried out based on these metrics and the users’ spatial properties, obtained
from channel quantizations.

As simple transmission technique we consider transmit matched filter-
ing (TxMF), which consists of using as normalized beamforming vectors the
quantized channel directions of users scheduled for transmission. The nor-
malized channel vector of user k to be quantized is hk = hk/ ‖hk‖, which
corresponds to the channel direction. A B-bit quantization codebook Vk is
considered, containing 2B unit norm vectors in CM×M , which is assumed to
be known to both the receiver and the transmitter. Similarly to [48], [49], we
assume that each receiver quantizes its channel to the vector that maximizes
the inner product

wk = arg max
w∈Vk

|hHk w|2 = arg max
w∈Vk

cos2(∠(hk,w)) (4.5)
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Each user sends the corresponding quantization index back to the transmitter
through an error-free and zero-delay feedback channel using B bits. Note that
this model is equivalent to the finite rate feedback model proposed by [48],
[51].

The optimal vector quantizer is difficult to find and the solution to this
problem is not yet known. In this chapter, we focus on scalar feedback
feedback design rather than on the design of quantization codebooks. This
issue is treated in the next chapter. Therefore, we adopt a simple geometrical
framework presented in [49]. The resulting quantization error is defined as

sin2 θk = sin2(∠(h̄k,wk)) = 1− ∣∣h̄Hk wk

∣∣2 [49], [50], where wk is the quantized
channel direction of user k. Note that, when using the quantized channel as

beamforming vector, then ρ2
k =
∣∣h̄Hk wk

∣∣2 as described in Section 3.6, and thus
sin2 θk = 1− ρ2

k. Using this framework, the cumulative distribution function
(cdf) of the quantization error is given by [49], [50]

Fsin2 θk
(x) =

{
δ1−MxM−1, 0 ≤ x ≤ δ
1, x > δ

(4.6)

where δ = 2−B/(M−1).

Let the orthogonality factor ε denote the maximum degree of non or-
thogonality between two unit-norm vectors. The columns of the normalized
beamforming matrix W(S) are constrained to be ε-orthogonal and thus

∣∣wH
i wj

∣∣ ≤ ε ∀ i, j ∈ S, i �= j. (4.7)

An outline of the proposed scheduling algorithm is shown in Table 4.1. In
case Mo users with ε-orthogonality can not be found, the algorithm stops and
distributes the power equally among the scheduled users, setting Mo = |S|.
Note that this greedy algorithm is equivalent to the one proposed in [15], [16],
[68]. The first user is selected from the set Q0 = {1, . . . , K} as the one having
the highest channel quality, i.e., k1 = arg maxk∈Q0 ξk. For i = 1, . . . ,Mo − 1,
the (i + 1)-th user is selected as ki+1 = arg maxk∈Qi ξk among the user set
Qi =

{
1 ≤ k ≤ K : |wH

k wkj
| ≤ ε, 1 ≤ j ≤ i

}
.

The number of active beams for transmission Mo and orthogonality factor
ε are system parameters fixed by the base station that can be adapted in order
to maximize the system sum rate.
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Table 4.1: Outline of Scheduling Algorithm with Variable Number of Active
Beams

MS

Compute & Feedback ξk

quantization index i ∈ {1, . . . , 2B}
BS

Initialize Set S = ∅
Loop For i : 1 . . .Mo repeat

Set ξimax = 0

Loop For k : 1 . . .K, k /∈ S repeat

If ξk > ξimax and
∣∣wH

k wj

∣∣ ≤ ε ∀ j ∈ S

ξk → ξimax and ki = k

Select ki → S

4.4 Scalar Feedback Design

In this section, we present design guidelines for scalar metrics based on signal-
to-interference-plus-noise ratios, which are computed at the receivers and fed
back to the base station as channel quality information. Complemented with
channel quantizations as CDI, user scheduling at the base station of a MIMO
broadcast channel is performed. The design framework for scalar feedback
here presented can be applied to any system in which codebooks are employed
for channel quantization, known both to the base station and mobile users.

These metrics must contain information of different nature in order to
exploit the multiuser diversity of the MIMO broadcast channel. Moreover,
additional information on the orthogonality constraints between beamform-
ing vectors can be taken into account, thus providing a QoS estimate at the
receiver side. The total amount of feedback overhead can be reduced by ap-
propriately setting minimum desired SINR thresholds. Hence, in a practical
system each user may send feedback to the base station only if a minimal
QoS can be guaranteed.
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Besides signal and noise power, the following information may be encap-
sulated by each user in such scalar metrics

• Channel power gain: ‖hk‖2

• Quantization error: sin2 θk

• Orthogonality factor: ε

• Number of active beams: Mo

As shown in [22], channel power gain and quantization error information are
necessary in order to exploit the available multiuser diversity. The quanti-
zation error is a function of the number of codebook bits, as shown in the
previous section. By increasing the codebook size, the multiplexing gain of
the system can be increased (better resolution) and at the same time the
multiuser diversity gets increased, due to lower quantization error. The or-
thogonality factor ε can be used to bound the amount of expected multiuser
interference, which in turn can be used to compute a lower bound on the
SINR. In our work, we assume that the number of active beams (non-zero
power) is a parameter appropriately set by the base station to maximize the
system sum-rate.

Multiuser Interference

For user k and index set S, the multiuser interference can be expressed
as Ik(S) =

∑
i∈S,i�=k

P
Mo
|hHk vi|2 = P

Mo
‖hk‖2 Ik(S), where Ik(S) denotes the

interference over the normalized channel hk. Let Uk ∈ CM×(M−1) be an
orthonormal basis spanning the null space of vHk and define the matrix
ΨkS =

∑
i∈S,i�=k viv

H
i and the operator λmax {·}, which returns the largest

eigenvalue. Define IUBk
as the upper bound on Ik and θk = ∠(hk,wk). As

shown in Theorem 3.1 in the previous chapter for systems with arbitrary or-
thogonality between beamforming vectors, the multiuser interference of user
k and set S can be bounded as follows

IUBk
(S) = αk(S) cos2 θk + βk(S) sin2 θk + 2γk(S) sin θk cos θk (4.8)

where αk(S), βk(S) and γk(S) are given in (3.32).
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Family of Metrics

In the proposed design framework, any scalar feedback metric can be de-
scribed as follows

ξ =
‖hk‖2 cos2 θk

‖hk‖2 (α cos2 θk + β sin2 θk + 2γ sin θk cos θk) + Moσ2

P

. (4.9)

The numerator in the expression above reflects the effective received power
in a system with channel quantization. On the other hand, the denominator
accounts for the noise power and provides a measure of the interference expe-
rienced by the user, for instance an upper or lower bound, by exploiting the
structure of the beamforming matrix. By choosing different values for the
parameters α, β, γ and Mo, the meaning of the proposed metric is modified,
yielding different SINR measures. In next section, a sum-rate function is de-
rived based on this metric structure, for arbitrary values of these parameters.
When setting α = αk(S), β = βk(S) and γ = γk(S) as in (3.32), the metric ξ
becomes a lower bound for the SINR described in (4.3). In Section 3.6, these
values were computed at the base station, where the beamforming vectors for
the scheduled users are perfectly known. However, in the current scenario,
α, β and γ are computed at the receiver side, and thus the beamforming vec-
tors assigned to interfering users are not known. Instead, these values can be
bounded by exploiting the fact that the beamforming vectors are constrained
to form an ε-orthogonal set. Note that, even though ε-orthogonality beam-
formers are imposed at the transmitter, we may choose not to include this
information in the scalar feedback metric. In addition, even though Mo is in
principle a parameter that may be modified by the base station, a simplified
case with Mo = M may be considered for feedback design.

In the remainder of this section we present several scalar metrics comply-
ing with this structure.

Metric I

Let ujk be the j-th column vector of the matrix Uk. The vector ujk is
isotropically distributed over an M − 1 dimensional hyperplane orthogonal
to wk, under the assumption that wk is isotropically distributed over the unit
norm hypersphere. Given a fixed unit-norm vector wi in CM , the random

variable
∣∣wH

i ujk
∣∣2 follows a beta distribution with parameters (1,M−2) [69].

The mean value of this random variable is 1
M−1

, and thus we have that
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E

[
Mo∑

i=1,i�=k
|vHi ujk|2

]
= Mo−1

M−1
. Using this result in (3.32) and the fact that

non-orthogonality between pairs of beamforming vectors is upper bounded
by ε, we propose the following values for this metric

α = (Mo−1)2

M−1
ε2

β = (Mo−1)
M−1

[1 + (Mo − 2)ε]

γ = (Mo−1)2

M−1
ε

and

1 ≤Mo ≤M.

Note that averaging the inverse of the resulting metric yields an upper bound
on the average of the inverse SINR. Hence, the average value of this metric
tends to be a lower bound on the average SINR.

Metric II

As a particular case, we consider ε = 0 in the metric computation and
thus

α = 0
β = 1
γ = 0

and

Mo = M.

This metric can be interpreted as an upper bound on the SINR when exactly
Mo = M beams are used for transmission and equal power allocation is per-
formed. Note that this metric was proposed in [28], [60].

Metric III

Another option consists of computing a lower bound on the instantaneous
SINR [25]. As opposed to Metric I, no averaging over the distribution of∣∣wH

k uik
∣∣ is performed and thus this lower bound is less tight in average. The
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metric parameters are given by

α = (Mo − 1)ε2

β =

{
0, if Mo = 1
1 + (Mo − 2)ε, otherwise

γ = (Mo − 1)ε

and
1 ≤ Mo ≤M.

Taking into account ε in the SINR computation may mask the contribution
of the channel power gains in the SINR expression, hence reducing the ben-
efits of multiuser diversity. However, this approach offers the advantage of
avoiding outage events in the communication link.

Metric IV

A straightforward improvement of Metric II can be done by setting a
variable number of active beams 1 ≤ Mo ≤ M , keeping the same values for
α, β and γ.

Note that, for a given scenario and feedback metric, there is an optimal
pair of system parameters ε and Mo that maximizes the sum rate. Increasing
the value of ε relaxes the ε-orthogonality constraint and thus more users are
taken into account for scheduling, increasing the multiuser diversity benefit.
However, as ε increases, so does the multiuser interference. On the other
hand, increasing the number of active beams Mo exploits the spatial multi-
plexing gain, at the expense of increasing the interference. Hence, for a given
average SNR and number of active users K in the cell, the base station must
appropriately set ε and Mo in order to balance the multiuser diversity and
multiplexing gains and to maximize the system sum rate. In practice, this
may be carried out by storing lookup tables at the base station, so that ε
and Mo can be quickly adapted whenever the average SNR or the number of
active users changes. If the system parameters need to be updated, the base
station broadcasts the new values to the users, which are used to compute
the feedback metrics.

In Figure 4.1, an approximated lower bound on the system sum rate is
plotted as a function of the alignment cos θk, computed as SR ≈ Mo log(1 +
ξIk), where ξIk denotes the feedback Metric I of user k. This approximation
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assumes that the Mo scheduled users have the same ξIk value and thus the
same estimated lower bound on the achievable rate. The system under con-
sideration is assumed to have M = 4 antennas, ε = 0.1 and an average SNR
of 10 dB. The sum rate is evaluated for different number of active beams
to observe the impact of appropriately choosing Mo. Note that the case of
Mo = 1 corresponds to TDMA, whereas Mo > 1 corresponds to SDMA. The
system with Mo = 1 exhibits better performance for low and intermediate
values of cos θk, i.e. TDMA provides higher rates than SDMA in most cases.
Only for large values of cos θk, Mo > 1 provides higher rates, which in prac-
tice occurs for large number of quantization bits B or large number of users
K. Since the amount of bits B is generally low due to bandwidth limitations,
SDMA will be chosen over TDMA when Mo > 1 users with small quantiza-
tion errors can be found, with higher probability as the number of users in
the cell increases. As the parameter ε increases, the crossing points of the
curves in Figure 4.1 shift to the right and thus the range for which TDMA
performs better also increases. This is due to the fact that the bound in ξIk
becomes looser for increasing ε values. As shown in this example, for ε > 0
there exist M possible modes of transmission, i.e. Mo = 1, . . . ,M . However,
for the case of ε = 0 and varying Mo as considered in Metric IV, it can be
proven that the modes of transmission exhibiting higher rates are reduced to
2, namely Mo = 1,M .

4.5 Sum-Rate Function

In this section we derive a function to approximate the ergodic sum rate
that a system with linear beamforming and limited feedback can provide,
given knowledge of each user’s SINR metric. A general and simple solution
is derived based on the generic metric representation of ξ, given in (4.9).
Note that the different metrics described in the previous section follow as
particular cases of ξ by setting accordingly the values of α, β, γ and Mo.
The sum-rate function we provide is a tool that enables simple analysis and
comparison of SDMA and TDMA approaches. Moreover, as shown in the
simulations, it approximates well the system number even when the number
of users in the cell is small. In our analysis we are interested in the actual
sum rate that can be achieved. Hence, the metric takes on the meaning of
either an upper or lower SINR bound as needed in order to compare SDMA
and TDMA in the extreme regimes under study.
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Figure 4.1: Approximated lower bound on the sum rate using Metric I versus
the alignment (cos θk) for M = 4 antennas, variable number of active beams
Mo, orthogonality factor ε = 0.1 and SNR = 10 dB.

First, an approximation on the cdf of ξ is derived, using mathematical
tools from [70].

Proposition 4.1 In the low-resolution regime (small B), the cdf of ξ can
be approximated as follows

Fξ(s) ≈ 1− e
−Moσ2s
P (1−αs)

δM−1 (1 +m)M−1
(4.10)

where m =
2γs

�
γs+
√
γ2s2+(1−αs)βs

�
+(1−αs)βs

(1−αs)2 .

Proof. See Appendix 4.A.

Note that the above cdf is a generalization for arbitrary ε and Mo of the
cdf derived in [28]. Also, the result provided in [2] follows as a particular
case by selecting ε = 0, Mo = M and B = 0.
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Let the ordered variate si:K denote the i-th largest amongK i.i.d. random
variables. From known results of order statistics [71], we have that the cdf of
s1 = max

1≤i≤K
si:K is Fs1 = (Fξ(s))

K . According to the proposed user selection

algorithm, the SINR of the first selected user is the maximum SINR over
K i.i.d. random variables. However, at the i-th selection step (i-th beam)
the search space gets reduced since the ε-orthogonality condition needs to
be satisfied. Hence, the i-th user is selected over Ki i.i.d. random variables
yielding a cdf for the maximum SINR given by Fsi

= (Fξ(s))
Ki. Since ξ is

upper bounded by 1
α
, its mean value is given by

E(si) =

∫ 1/α

0

1− (Fξ(s))
Kids. (4.11)

An approximation of Ki can be calculated through the probability that a
random vector in CM×1 is ε-orthogonal to a set with i− 1 vectors in CM×1,
which is equal to Iε2(i − 1,M − i + 1) [15], Ix(a, b) being the regularized
incomplete beta function. By using the law of large numbers [68], we can
find the following approximation:

Ki ≈ KIε2(i− 1,M − i+ 1). (4.12)

The average sum rate in a system with Mo active beams can be bounded as
follows by using Jensen’s inequality

SR =
∑
i∈S

E [log2 (1 + si)] ≤
∑
i∈S

log2 [1 + E (si)] . (4.13)

Using (4.13) and solving the integral in (4.11) for the cdf of ξ described in
(4.10), we obtain the following theorem after some approximations.

Theorem 4.1 Given ε-orthogonal transmission in a system with Mo ac-
tive beams, the sum rate is approximated as follows

RMo ≈
Mo∑
i=1

log2

[
1 +

1
α

Ki∑
n=1

BnKi,nPn

]
(4.14)

where
Bn = (−1)n−1

δn(M−1)

Ki,n =
(
Ki

n

)
Pn = 1 + Cn

α
e

Cn
α Ei

(−Cn
α

) (4.15)
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and C = Moσ2

P
+ (M − 1)β. The exponential integral function is defined as

Ei(x) = − ∫∞
−x

e−t

t
dt.

Proof. See Appendix 4.B.

Note that the term Bn reflects the influence of the codebook design, Ki,n

together with the summation upper limit Ki inside the logarithm capture
the amount of multiuser diversity exploited by the system and Pn accounts
for the dependency of the sum rate on the power.

Note that, as a particular case of the equation above, a simpler expression
can be derived for Mo = 1, given by

R1 ≈ log2

[
1 +

K∑
n=1

BnK1,n
P

σ2n

]
(4.16)

Another case of interest is the case in which α = 0. As α approaches zero,
we have

lim
α→0

1

α

[
1 +

Cn

α
e

Cn
α Ei

(
−Cn
α

)]
=

1

Cn
(4.17)

and thus the sum-rate function in this case becomes

lim
α→0

RMo =

Mo∑
i=1

log2

[
1 +

Ki∑
n=1

BnKi,n
1

Cn

]
. (4.18)

In Figure 4.2, the sum-rate function in (4.14) is plotted as a function of
the number of active beams Mo and orthogonality factor ε, using the values
for α, β and γ as described in Metric I. In this simulation, a system with
K = 35 users has been considered, an average SNR of 10 dB and a simple
codebook with B = 1 bit. Note that, in this particular scenario, SDMA
can not guarantee better rates than TDMA regardless of the value of ε. In
this context, the number of users is low, hence there is low probability of
obtaining large values of cos θk. Thus, TDMA transmission is favored, which
is consistent with the results obtained in the previous section.

In order to validate the obtained sum-rate function, we consider a simple
scenario withM = 2 antennas and a system in which Mo = 2 if 2 ε-orthogonal
users can be found in a given time slot andMo = 1 otherwise. The probability
of not finding 2 ε-orthogonal users is given by p = [1− ε2]K−1

. Hence, the
approximated rate in this simplified scenario is given by

R ≈ pR1 + (1− p)R2 (4.19)
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where R1 and R2 (RMo with Mo = 2) are as described in (4.14) and (4.16)
respectively. Figure 4.3 shows a comparison of analytical and simulated lower
bounds on the sum rate in such a system, with M = 2 antennas, K = 15
users and SNR = 10 dB. The values for α, β and γ used are those of Metric
III, given in (4.10). Each user has a simple codebook designed as described
in the previous section with B = 1 bit, different from user to user. Note that
the jitter in the analytical curve is due to the rounding effect of Ki.
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Figure 4.2: Sum-rate function using Metric I versus orthogonality factor ε
and number of active beams Mo, for K = 35 users, SNR = 10 dB and B = 1
bit.

4.6 Study of Extreme Regimes

In this section we analyze several extreme regimes, namely scenarios with
large number of users, high SNR and low SNR regime. The results intuitively
clarify the cases in which SDMA is better than TDMA and the role of ε in
the comparison of both techniques. Previous works in the literature focus
on the study of the asymptotic scaling with P or K by using results from
extreme value theory, as shown in [2], [28]. Here, we base our study on
simpler mathematical tools. The ratios between the sum rates provided by
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Figure 4.3: Comparison of analytical and simulated lower bounds on the sum
rate using Metric III, for M = 2 antennas, K = 15 users, SNR = 10 dB and
B = 1 bit.

SDMA and TDMA are computed in different limiting cases, by using the
sum-rate functions derived in the previous section.

4.6.1 Large Number of Users

In this subsection we provide asymptotical results showing that SDMA can
provide higher rates than TDMA in near-orthogonal MIMO systems as the
number of users increases, which is consistent with the work presented in [13].
First, note that the number of available users at the i-th step can be bounded
as Ki ≥ Kε2(M−1) as shown in [15]. For finite SNR, we can easily obtain from
(4.14) and (4.16) the following result

Theorem 4.2 Given an arbitrary ε, SDMA outperforms TDMA asymp-
totically with the number of users

lim
K→∞

RMo

R1
= Mo. (4.20)
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Proof. As shown in Figure 4.3, it can be seen from (4.14) that RMo , as
function of ε, is lower bounded by RMo |ε=1. Thus, here we focus on a lower
bound on the SINR, as described by Metric III, in order to provide a lower
bound on the actual sum rate. The value ε = 1 results in a pessimistic
SINR lower bound. Setting ε = 1, we obtain that in each selection step
Ki = K − i+ 1, i = 1, . . . ,Mo and thus

RMo ≥
Mo∑
i=1

log2

[
1 +

1

ᾱ

K−i+1∑
n=1

BnK1,nPn

]
(4.21)

where Pn = 1 + C̄n
ᾱ
e

C̄n
ᾱ Ei

(
− C̄n

ᾱ

)
, C̄ = C|ε=1 and ᾱ = α|ε=1. Therefore, we

get the following lower bound on the ratio between RMo and R1

lim
K→∞

RMo

R1
≥ lim

K→∞
RMo |ε=1

R1

(a)
= lim

K→∞

∑Mo

i=1log2

[(
K−i+1

(K−i+1)/2

)
1
ᾱ
B(K−i+1)/2P(K−i+1)/2

]
log2

[(
K
K/2

)
BK/2

P
σ2K/2

]
(b)
= lim

K→∞

∑Mo

i=1 log2

(
K−i+1

(K−i+1)/2

)
log2

(
K
K/2

) (c)
= Mo

(4.22)

where (a) follows from selecting the highest exponent terms of K in the
numerator and denominator and (b) from applying the logarithm property
log(xy) = log(x) + log(y), keeping the relevant terms for the computation

of the limit; (c) follows by realizing that lim
K→∞

log2

(
K−a

(K−a)/2

)
log2

(
K

K/2

) = 1 for any finite

integer a.
Similarly to the lower bound obtained on

RMo

R1
, it can be shown that

limK→∞
RMo

R1
≤ Mo by assuming an upper bound on the SINR as metric

with 1 ≤Mo ≤ M , which corresponds to the case of using Metric IV. Setting
Ki = K−i+1, i = 1 . . .Mo and using the sum-rate function for the particular
case of α = 0, given in (4.18), yields the desired result.

4.6.2 High SNR Regime

This scenario corresponds to the interference-limited region, in which the
multiuser interference limits the system performance rather than the average
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Figure 4.4: Simulated lower bound on the sum rate using Metric III as a
function of the orthogonality factor ε for large K.

SNR. The number of users K is considered to be finite in the analysis of this
regime. For the sake of clarity, in the remainder of this chapter we consider
that the noise power σ2 is normalized, and thus P takes on the meaning of
average SNR.

Theorem 4.3 Given an arbitrary ε, TDMA outperforms SDMA in the
high SNR regime

lim
P→∞

RMo

R1
= 0. (4.23)

Proof. The bounded behavior of SDMA as function of the power P is intu-
itively reflected in the proposed rate function. It suffices to realize that the
power dependent part of RMo can be upper bounded as follows

Pn ≤ 1. (4.24)

In order to provide a proof for the theorem, we focus here on Metric IV,
which yields an upper bound on the SDMA sum rate with variable number
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of active beams. Since in this case we have that α = 0, the sum rate is
described by (4.18). The power dependent part is bounded by the following
constant

lim
P→∞

1

C
= lim

P→∞
P

Mo + (M − 1)βP
=

1

(M − 1)β
. (4.25)

Hence, when transmitting Mo > 1 active beams, the sum rate is bounded
regardless of the transmitted power. Thus we have that

lim
P→∞

RMo

R1
≤ lim

P→∞

Mo∑
i=1

log2

[
1 +

Ki∑
n=1

BnKi,n
1

Cn

]

log2

[
1 +

K∑
n=1

BnK1,n
P

n

] = 0 (4.26)

where the inequality follows from the fact that an upper bound on the SDMA
sum rate is used, based on Metric IV with α = 0. The equality comes from
the fact that when taking the limit, the numerator is not a function of P as
shown in (4.25). Since both RMo and R1 are greater than or equal to zero,
we obtain the desired result.

Note that the above result is consistent with the work in [51], in which
the interference-limited behavior of MIMO broadcast channels is studied in
a system where limited feedback is available in the form of channel direction
information.

4.6.3 Low SNR Regime

This scenario corresponds to the noise-limited region. In this regime, the
choice of ε has an impact on the optimal choice of transmission technique,
i.e. SDMA or TDMA. In Figure 4.4 we show the evolution of the optimal
value of ε for varying SNR in a cell with large number of users, K = 1000,
M = 2 antennas and a codebook of B = 1 bit. The simulated system
adapts the optimal number of active beams as a function of ε so that the
lower bound on the sum-rate, computed on the basis of Metric III. Fixing
ε = 0 implies that the system forces a TDMA solution, since there is zero
probability of finding two quantized random channels perfectly orthogonal,
assuming different quantization codebooks for each user. A shift to the right
in the position of the maximum implies that the number of ε-orthogonal
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users found at the second step (K2) also increases, hence using 2 beams for
transmission and thus exploiting the benefits of SDMA rather than TDMA.
Therefore, Figure 4.4 shows that as the SNR decreases, a system based on
near-orthogonal transmission tends to select SDMA over TDMA.

However, if the system parameter ε is set independently of the average
SNR value (or equivalently the power P for normalized noise power), we ob-
tain the following theorem for finite number of users.

Theorem 4.4 Given an arbitrary ε, set independently of SNR, TDMA
provides the same or better performance than SDMA in the low SNR regime.

lim
P→0

RMo

R1
≤ 1. (4.27)

Proof. In order to proof the theorem, we first proof the following asymptotic
relation between SDMA and TDMA in 2 extreme cases

0 ≤ lim
P→0

RMo

R1
≤ 1

Mo
, if ε = 0 (4.28)

0 ≤ lim
P→0

RMo

R1
≤ 1, if ε = 1 (4.29)

First, we note that the relation lim
P→0

RMo

R1
≥ 0 follows from the fact that both

RMo and R1 are greater than zero for positive P . In order to proof the upper

bound on lim
P→0

RMo

R1
for ε = {0, 1}, we consider an upper bound on the sum

rate, provided by using Metric IV. Since in this case α = 0, we use the
sum-rate function given in (4.18). We obtain the following result

lim
P→0

RMo

R1

≤ lim
P→0

∑Mo

i=1 log2

[
1 +
∑Ki

n=1 BnKi,n
1
Cn

]
log2

[
1 +
∑K

n=1 BnK1,n
P
n

]
(a)
= lim

P→0

(
Mo∑
i=1

∑Ki

n=1
BnKi,n

n
( 1
C

)′

1 +
∑Ki

n=1 BnKi,n
1
Cn

)(
1 +
∑K

n=1 BnK1,n
P
n∑K

n=1
BnK1,n

n

)
(4.30)

(b)
=

1

Mo

∑Mo

i=1

∑Ki

n=1
BnKi,n

n∑K
n=1

BnK1,n

n
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where (a) follows from applying L’Hôpital’s rule, with ( 1
C

)′ given by

(
1

C
)′ =

∂ 1
C

∂P
=

Mo

[Mo + (M − 1)βP ]2
(4.31)

and (b) follows from lim
P→0

( 1
C

)′ = 1
Mo

. For the case ε = 0, we have that

K1 = K, and Ki = 0 for i ≥ 2. Hence, it can be seen from (4.30) that
the ratio becomes 1

Mo
, thus yielding (4.28). For the case ε = 1, we get

Ki = K−i+1, i = 1, . . . ,Mo. For simplicity, we provide a looser upper bound
by considering Ki = K, i = 1, . . . ,Mo, which yields the result described in
(4.29). Since intermediate values of ε independent of the SNR will yield

values for (4.30) in the range
(

1
Mo
, 1
)
, we obtain the desired result.

4.7 Multiuser Diversity - Multiplexing Trade-

off

In this section, we consider a slightly different setting that applies to more
realistic scenarios. We explore the effect of quantizing the scalar feedback
studied in this chapter, in a scenario where the total amount of feedback bits
for CDI and CQI is limited. In MIMO point-to-point systems, it has been
shown in [6] that there exists a tradeoff between spatial multiplexing gain and
diversity gain, defined in (1.1) and (1.2), respectively. This tradeoff is due to
the fact that there is a certain number of degrees of freedom in the MIMO
channel that need to be shared in order to achieve diversity or increase the
transmission rate. In MIMO broadcast channels with user scheduling, there
is in addition multiuser diversity gain

m = lim
K→∞

R(P,K)

r log logK
. (4.32)

The multiuser diversity differs from single-user diversity in the sense that
the latter refers to the ability for the multiple antennas to receive the same
information across different paths, while in multiuser systems, different infor-
mation is transmitted and received by different users. The multiuser diversity
gain increases with the number of active users in the cell, while the available
multiplexing gain remains min(M,K), regardless of the value of K. Hence,
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with full CSIT both multiuser diversity and multiplexing gain can be at-
tained since they scale with different magnitudes, K and SNR respectively.
The tradeoff appears when we consider a system with limited feedback rate,
in which each mobile is allowed to feed back a finite number of bits.

In point-to-point MIMO systems, the effect of limited feedback on the
system rate is less severe than in MIMO broadcast channels. It has been
shown in [72] that even a few feedback bits can provide performance close to
that with full CSIT, achieving full multiplexing gain. However, as it has been
recently shown in [51], the level of CSIT critically affects the multiplexing
gain of the MIMO broadcast channel. In order to achieve full multiplexing
gain, the feedback load per user must increase approximately linearly with
the number of transmit antennas and the number of feedback bits per mobile
must increase linearly with the SNR (in dB). Hence, appropriate feedback
load scaling in terms of channel directional information is needed to achieve
full multiplexing gain. On the other hand, CDI can not exploit multiuser
diversity gain in a multiuser context with K ≥ M . In this situation, channel
quality information at the transmitter becomes necessary in order to perform
efficient user selection. However, since the available feedback rate is finite,
the amount of bits used for CSIT quantization has to be shared for both CDI
and CQI quantization. While CDI quantization incurs in loss of multiplexing
gain, CQI quantization leads to a degradation of the multiuser diversity
benefit, an thus a tradeoff arises between multiuser diversity and multiplexing
gain in MIMO broadcast channels with limited feedback. The problem of
feedback splitting for channel directional information and channel quality
information is treated in this section, and useful feedback design guidelines
are provided.

4.7.1 Finite Sum Rate Feedback Model

In the context considered in this section, each receiver k is constrained to have
a limited total number of feedback bits Btot. From this total amount of bits,
B1 bits are used to quantize the CDI h̄ = h/ ‖h‖ based on a predetermined
codebook, and B2 bits are used for scalar quantization of real-valued CQI.
This model is depicted in Figure 4.5.

Channel directional information can be used to achieve full multiplexing
gain when the feedback load B1 scales appropriately [51]. In a multiuser con-
text with K > M , CDI does not provide any information on users’ channel
gains, thus not being sufficient for efficient user selection failing to exploit
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Figure 4.5: Finite sum rate feedback model.

multiuser diversity gain. Hence, additional instantaneous low-rate channel
gain information is required as an indicator of the channel quality. The goal
is to reveal the interplay between K, average SNR and feedback load B1

and B2, in order to exploit in the best possible way the degrees of freedom
available in a multiuser MIMO downlink, i.e., the spatial multiplexing and
multiuser diversity gain. The sum feedback rate constraint per user (Btot)
results to a tradeoff between multiuser diversity and multiplexing gain, and
we focus on characterizing it by identifying the optimal feedback rate allo-
cation (split) in order to exploit both gains. Plainly speaking, we intend to
determine how many feedback bits are CDI and CQI worth.

Channel Direction Quantization

We consider a quantization codebook Vk containing 2B1 unit norm vec-
tors in CM×1, which is assumed to be known to both the k-th receiver and
the transmitter. In the most general case, the mobile terminals can have
different codebooks, generated through random unitary rotation of a com-
mon, general codebook Vg known at both ends of the link. Based on the
channel realization, the receiver selects its ‘best’ vector from the codebook,
i.e. the codeword that optimizes a certain cost function. Here, we assume
that each receiver quantizes its channel as described in (4.5). Each user sends
the corresponding quantization index n back to the transmitter through an
error-free, and zero-delay feedback channel using B1 bits.

Channel Quality Quantization

As channel quality indicator, we consider instantaneous scalar feedback,
denoted as ξk, which can take on various forms as described in this chapter
and is evidently a certain function of the current channel realization hk (i.e.,
ξk = f(hk)). We assume that ξk are i.i.d. random variables with pdf fξ(ξ).
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Let ξ and Q(ξ) denote the input and the output values of quantizer
Q(·). Let X = {q0 < q1 < . . . < q2B2} be the input decision levels and let

Y =
{
ξq0 < ξq1 < . . . < ξq

2B2−1

}
be the output representative levels (recon-

struction values) of an 2B2-level quantizer Q(·) defined as:

Q(ξ) = ξqi if qi ≤ ξ < qi+1 0 ≤ i ≤ 2B2 − 1 (4.33)

with q0 = 0 and q2B2 =∞. A partition region (quantization level) is defined
as Qi = [qi, qi+1) , 0 ≤ i ≤ 2B2 − 1. Each user sends the corresponding
quantization level index i back to the transmitter using B2 bits. In order to
minimize the outage probability, we assume the following conservative but
reliable quantization rule ξqi = qi.

4.7.2 Problem Formulation

Our objective is to dynamically allocate bits to CDI and CQI feedback (as
shown in Figure 4.5) given a total amount of feedback bits Btot, so that the
capacity of the multiuser MIMO downlink C(B1, B2) is maximized. In the
described finite sum rate feedback model, the optimal feedback rate allocation
that maximizes the capacity can be formulated in the following constrained
optimization problem:

max
B1,B2

C(B1, B2)

s.t. B1 +B2 = Btot

}
(4.34)

Let W be the event that a user k is selected for transmission among K
users. Using the analysis of [73], we calculate the probability of the above
event conditioned on the fact that ξ falls into the quantization level Qj

Pr (W|ξ ∈ Qj) =
K∑
m=0

1

m+ 1
·
(
K − 1
m

)
· P1 · P2 (4.35)

where

P1 = Pr {m users other than user k ∈ Qj} = (Pr (ξ ∈ Qj))
m (4.36)

and

P2 = Pr {(K −m− 1) users other than user k ∈ Qn, n < j}
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=

(
Pr

(
ξ ∈

⋃
n<j

Qn

))K−m−1

(4.37)

We assume here that if more than one user lie in Qj , a random user is
scheduled for transmission. Using that (Pr (ξ ∈ Qj)) = Fξ(qj+1) − Fξ(qj),
and after some manipulations, one can show that

Pr (W|ξ ∈ Qj) =
[Fξ(qj+1)]

K − [Fξ(qj)]
K

K (Fξ(qj+1)− Fξ(qj)) (4.38)

where Fξ(·) is the cdf of the CQI.
In a system with joint downlink scheduling and beamforming with limited

feedback, beamforming is performed based on quantized channel directions.
Let us now assume that the quality indicator ξ is a function of each user’s
SINR. In that case, the effect of CDI quantization will be reflected on the
distribution of ξ. Hence, the CQI contains information both on channel gain
and CDI quantization error. For instance, the value ξ can be a lower/upper
bound on the achievable SINR or even the achievable SINR value itself.
Suppose now that the metric ξ is a lower bound on the SINR, as described
by Metric III. Then, the rate of the selected user k, Rk is given by

Rk ≥
2B2−1∑
j=0

∫
ξ∈Qj

Pr (W|ξ ∈ Qj) log2(1 + ξ)fξ(ξ)dξ (4.39)

=
2B2−1∑
j=0

∫
Qj

log2(1 + ξ) · [Fξ(qj+1)]
K − [Fξ(qj)]

K

K (Fξ(qj+1)− Fξ(qj)) · fξ(ξ)dξ (4.40)

Let S be a set of scheduled users with cardinality |S| = M . The system
capacity C(B1, B2) can be lower bounded by

C(B1, B2) =
∑
k∈S

Rk ≥ (4.41)

∑
k∈S

2B2−1∑
j=0

∫
Qj

log2(1 + ξ)
[Fξ(qj+1)]

K − [Fξ(qj)]
K

K (Fξ(qj+1)− Fξ(qj)) fξ(ξ)dξ (4.42)

where B1 is contained both in Fξ(ξ) and fξ(ξ).
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From the above analysis, it can be seen that the optimization problem
in (4.34) has no closed-form solution. Additionally, the solution depends
on the quantization levels qi, 0 ≤ i ≤ 2B2 − 1 to be considered, thus differ-
ent CQI quantization strategies will yield different solutions. To circumvent
the complexity of numerical brute force optimization and the non-linearity
of this optimization problem, numerical algorithms relying on dynamic pro-
gramming and providing a global optimum can be used.

4.7.3 Simplified Approach: Decoupled Feedback Opti-
mization

A particular case is studied here based on zero-forcing beamforming, in or-
der to illustrate the importance of the multiuser diversity vs. multiplexing
tradeoff. Instead of determining jointly the optimal feedback bit split, an
approach of reduced complexity consists of decomposing the problem in a
two-step procedure: we first find the optimal number of CDI bits required
to guarantee full multiplexing gain, implying that the feedback load that is
allocated to CQI is B2 = (Btot − B1), and optimizing the 2B2 quantization
levels by using (4.42).

We apply the finite sum rate feedback model in a scheme that performs
zero-forcing beamforming on the channel quantizations available at the trans-
mitter as a multiuser transmission strategy. We assume here that all users
feed back a quantized version of Metric II as CQI, and that Mo = M users are
scheduled in every time slot. Once M ε-orthogonal users have been selected,
the zero-forcing beamforming is applied based on the channel quantizations
of the users selected for transmission.

Based on the asymptotic growth of Metric II for large K given in [55],
we derive the scaling of CDI feedback load, which in turn determines the
remaining CQI feedback bits. We define the power gap (per user) between the
SINR of the above scheme, SINRI , and that of zero-forcing with perfect CSI,
SINRZF as the ratio ζ = SINRI

SINRZF
. Note that this power gap is translated

to a rate gap. In order to achieve full multiplexing gain for finite K, the
number of CDI bits B1 per receiver k should scale according to:

B1 = (M − 1) log2 (P/M)− (1− ζ) log2K − log2 κi−1 (4.43)

where κi−1 = Ki/K is a constant capturing the multiuser diversity reduction
at each step i of the user selection algorithm (the number of users Ki from
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which ξk is chosen is reduced at each step), due to the ε-orthogonality con-
straint between scheduled users. As ζ < 1, having more users in the cell, a
smaller number of feedback bits B1 per user is required in order to achieve
full multiplexing gain. For a system with M = 4 antennas, K = 30 users
and SNR = 10 dB, when a 3-dB SINR gap is considered, each user needs to
feed back at least B1 = 9 bits.

Scaling of CDI feedback bits at high SNR regime

The high SNR regime corresponds to the interference-limited region, where
the role of CDI is more critical due to the effect of quantization error [51].
As P →∞, the CQI becomes ξk = cot2 φk, and based on asymptotic results
of [55], we can show that for fixed K, the feedback load should scale as

B1 = (M − 1) log2 P − log2K. (4.44)

For instance, for a system with M = 4 antennas, SNR = 20 dB and K =
60 users, B1 = 14 bits are required to guarantee full multiplexing gain. As
it was intuitively expected, the feedback load B1 at high SNR is larger than
that of (4.43). Thus, it is more beneficial to use more feedback bits on the
quantization of channel direction (B1) at high SNR, and assign less bits for
CQI (B2).

4.8 Numerical Results

Figure 4.6 shows a performance comparison in terms of sum rate versus
orthogonality factor ε for various levels of CSIT. The simulated system per-
forms TxMF, has M = 2 antennas and a simple codebook of B = 1 bits.
The number of active users is K = 10 and the average SNR = 20 dB. The
upper curve corresponds to the sum rate obtained with TxMF, perfect CSIT
and exhaustive user search. Hence, its average rate is not a function of the
orthogonality factor. The lower curve corresponds to the sum rate that the
system can guarantee when the CSIT consists of quantized channel direc-
tions and Metric III as scalar feedback (equivalent to Metric I for M = 2).
Thus, this curve corresponds to a lower bound on the actual sum rate that
the system can achieve. Finally, the third curve corresponds to the sum rate
of a system with second step of full CSIT feedback, which means that given
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Figure 4.6: Comparison of simulated lower bound on the sum rate using
Metric III, and actual sum rates obtained with second step of feedback and
full CSIT. M = 2 antennas, K = 10 users, SNR = 20 dB and B = 1 bit.

a set of users selected for transmission by using Metric III, the BS requests
full channel information from those users to perform transmit matched fil-
tering. We can see that the bound becomes looser as ε increases, since the
bound on the SINR becomes more pessimistic. In the simulated system with
K = 10 users, the maximum average sum rate occurs when the system sets
orthogonality ε = 0. This means that the system forces that at each time
slot only one beam will be active, since there is zero probability of find-
ing two quantized random channels perfectly orthogonal, assuming different
quantization codebooks for each user. Thus, in the simulated scenario with
reduced number of users, TDMA (one active beam per time slot) is the op-
timal transmission technique while in systems with large number of users
SDMA is optimal as shown in previous section.

In Figures 4.7 and 4.8, we compare the actual sum rate achieved by
systems based on TxMF and different scalar feedback: metrics I, II, III
and IV, for M = 3 antennas and B = 9 bits. For comparison, the perfor-
mances of random beamforming (RBF) [2] and TxMF with perfect CSIT and
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Figure 4.7: Sum rate achieved by different feedback approaches as a function
of the number of users, for B = 9 bits, M = 3 transmit antennas and average
SNR = 10 dB.

exhaustive-search user selection are provided. The systems using metrics I,II
and IV are assumed to appropriately set Mo and ε both for transmission
and metric computation, maximizing the sum rate for each K and SNR pair.
On the other hand, the scheme with Metric II uses optimal ε values in each
scenario.

Figure 4.7 shows a performance comparison in terms of sum rate versus
number of users for SNR = 10 dB, in a cell with realistic number of active
users. The scheme based on Metric I provides slightly better performance
than the other schemes. The scheme based on Metric III exhibits worse scal-
ing with the number of users, thus exploiting less effectively the multiuser
diversity. Note that all schemes exhibit slightly worse scaling than RBF and
the perfect CSIT solution. This is due to the fact that a simple transmis-
sion technique has been used, TxMF, since beamforming design is not the
main focus of this chapter. In order to restore the optimal scaling with K,
ZFBF can be performed at the transmitter based on the available channel
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Figure 4.8: Sum rate achieved by different feedback approaches versus aver-
age SNR, for B = 9 bits, M = 3 transmit antennas and K = 10 users.

quantizations, as discussed in [28].

Figure 4.8 depicts the performances of different schemes in the low-mid
SNR region, in a setting with K = 10 users. As the average SNR in the
system increases, the sum rate of schemes using metrics I and III for feedback
converges to the same value. They exhibit linear increase in the high SNR
region as expected, which corresponds to a TDMA solution. The scheme
that uses Metric IV for scheduling also benefits from a variable number of
active beams, although providing worse performance than the systems using
metrics I and III. Since in the simulated system the number of codebook bits
B is not increased proportionally to the average SNR, as discussed in [51], the
scheme using Metric II (Mo = M) exhibits an interference-limited behavior,
flattening out at high SNR.

4.8.1 Effect of Scalar Feedback Quantization

In the reminder of this section, we provide simulation results for the simplified
approach described in Section 4.7, considering scalar feedback quantization
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Figure 4.9: Sum rate vs. number of users for M = 2 and SNR = 10 dB.

and ZFBF at the transmitter side. We evaluate through simulations the sum
rate performance in a system with M = 2 transmit antennas and ε = 0.4.
The total number of available feedback bits is Btot = 7 bits. CQI quantization
is performed through Lloyd’s algorithm. Once both the input quantization
levels qi and output representative levels ξqi are found, the quantizer sets
ξqi = qi, 0 ≤ i ≤ 2B2 − 1 in order to avoid outage events as discussed in
Section 4.7.1.

Figure 4.9 and 4.10 show the sum rate as a function of the number of
users for SNR = 10 dB and SNR = 20 dB respectively for different CDI and
CQI feedback bit split. As expected, it is more beneficial to allocate more
bits on channel direction quantization in a system with low number of active
users. On the other hand, as the number of users increases, it becomes more
beneficial to allocate bits on CQI quantization instead. The black curve
B1 = 1 bit corresponds to the random unitary beamforming for M = 2
transmit antennas proposed in [2]. In a system with optimal quantization,
i.e. matched to the pdf of the maximum CQI value among K users, the
amount of necessary quantization levels is reduced as the number of users
in the cell increases. Thus, less amount of feedback bits is needed for CQI
quantization in order to capture the multiuser diversity.
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Figure 4.10: Sum rate vs. number of users for M = 2 and SNR = 20 dB.

In Figure 4.11, the envelope of the curves in the two previous figures is
shown, which corresponds to a system that chooses the best B1/B2 balance
for each average SNR and K pair. In this figure, we compare how this best
pair of (B1, B2) changes as the system average SNR increases. Both curves
are divided in different regions, according to the optimal (B1, B2) pair in
each region. It can be seen that the optimal threshold for switching from
B1 → B1 − 1 bits (and thus B2 → B2 + 1) is shifted to the right for higher
average SNR values (upper curve). This means that as the average SNR
increases, more bits should be allocated on channel direction information.
Summarizing, given a pair of average SNR and K values, there exists an
optimal compromise of B1 and B2, given that Btot = B1 + B2.

4.9 Conclusions

A design framework for scalar feedback in MIMO broadcast channels with
limited feedback has been presented. In order to perform user scheduling,
these metrics may contain information such as channel power gain, quantiza-
tion error, orthogonality factor between beamforming vectors and/or number
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Figure 4.11: Sum rate vs. number of users in a system with optimal B1/B2

balancing for different SNR values.

of active beams. An approximation on the sum-rate has been provided for the
proposed family of metrics, which has been validated through simulations.

As it has been shown, the proposed sum-rate function is a powerful design
tool and enables simple analysis. A sum-rate comparison between SDMA and
TDMA has been provided in several extreme regimes. Particularly, SDMA
outperforms TDMA as the number of users becomes large. TDMA provides
better rates than SDMA in the high SNR regime (interference-limited region).
Moreover, the importance of optimizing the orthogonality factor ε in the low
SNR regime has been highlighted. Several metrics have been presented based
on the proposed design framework, illustrating their performances through
numerical simulations. The system sum-rate can be drastically improved by
considering a variable number of active beams adapted to each scenario. In
addition, scalar metrics based on SINR lower bounds can provide benefits
from a point of view of QoS and feedback reduction.

We have also formulated the problem of optimal feedback balancing in
order to exploit spatial multiplexing gain and multiuser diversity gain under
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a sum feedback rate constraint. A low complexity approach has been intro-
duced to illustrate the performance improvement of systems with optimally
balanced feedback. The scaling of CDI feedback load in order to achieve full
multiplexing gain is also provided, revealing an interesting interplay between
the number of users, the average SNR and the number of feedback bits.
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APPENDIX

4.A Proof of Proposition 4.1

Define the following changes of variables

ψ := sin2 θk x := 1
δ
φ(1− ψ)

φ := ‖hk‖2 y := 1
δ
φψ.

(4.45)

Then, the metric in (4.9) can be expressed as

ξ =
x

αx+ βy + 2γ
√
xy + λ

(4.46)

where λ = δMoσ2

P
Note that ξ ≤ 1

α
, with equality for P → ∞. The Jacobian

of the transformation x = f(φ, ψ), y = g(φ, ψ) described in (4.45) is given
by

J(φ, ψ) =

∣∣∣∣∣ ∂x
∂φ

∂x
∂ψ

∂y
∂φ

∂y
∂ψ

∣∣∣∣∣ = φ

δ2
. (4.47)

Expressing φ and ψ as a function of x and y, we have φ = δ(x + y) and

ψ = y
x+y

. Substituting in the Jacobian, we get J(x, y) = (x+y)
δ

. Since φ and
ψ are independent random variables for i.i.d. channels, the joint pdf of x and

y is obtained from fxy(x, y) = 1
J(x,y)

fφ [δ(x+ y)] fψ

[
y

x+y

]
. The pdf of φ is

fφ(φ) =
φM−1

Γ(M)
e−φ (4.48)

where Γ(M) = (M − 1)! is the complete gamma function. The pdf fψ is
obtained from the cdf of ψ given in (4.6). Hence, we get the joint density

fxy(x, y) =
δ

Γ(M − 1)
e−δ(x+y)yM−2. (4.49)

The cdf of the proposed SINR metric is found by solving the integral

Fξ(s) =

∫∫
x,y∈Ds

fxy(x, y) dx dy. (4.50)
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The bounded region Ds in the xy-plane represents the region where the
inequality x

αx+βy+2γ
√
xy+λ

≤ s holds. Isolating x on the left side of the in-

equality, Ds can be equivalently described as x ≤ g(y), with g(y) given by

g(y) =
(2γ2s2+βs(1−αs))y+2γs

√
(γ2s2+βs(1−αs))y2+λs(1−αs)y

(1−αs)2
+ϕ(s) (4.51)

where ϕ(s) = λs
1−αs . Since using g(y) in the integration limits yields difficult

integrals, we use the following linear approximation

g(y) ≈ m(s)y + ϕ(s) (4.52)

where the slope m(s) corresponds to the oblique asymptote of g(y)

m(s)= lim
y→∞

∂g(y)

∂y
=

2γs(γs+
√
γ2s2 + βs(1− αs)) + βs(1− αs)

(1− αs)2 . (4.53)

Note that, since 0 ≤ s ≤ 1
α
, then m(s) ≥ 0 ∀s. In addition, since the domain

of ψ is Dψ = [0, δ], we also obtain the inequalities y
x+y
≥ 0, y

x+y
≤ δ and thus

x ≥ 1−δ
δ
y. Hence, Fξ(s) is obtained by integrating fxy(x, y) over the first

quadrant of the xy-plane, in the region defined by x ≤ g(y) and x ≥ 1−δ
δ
y.

Depending on the slopes of these linear boundaries, the integral in (4.50) is
carried out over different regions

Fξ(s) ≈

⎧⎪⎨⎪⎩
∫∞
0

∫ my+ϕ
1−δ

δ
y
fxy(x, y) dx dy, m ≥ 1−δ

δ∫ yc

0

∫ my+ϕ
1−δ

δ
y
fxy(x, y) dx dy, 0 ≤ m < 1−δ

δ
.

(4.54)

The upper integration limit yc along the y axis in the region 0 ≤ m < 1−δ
δ

corresponds to the value of y in which the linear boundaries intersect

yc=
λs(1−αs)δ

(1−αs)2(1−δ)−βs(1−αs)δ−2γs(γs+
√
βs(1−αs) + γ2s2)δ

. (4.55)

Expressing the regions of the domain of Fξ(s) as function of sc, defined as
the crossing point between m(s) and 1−δ

δ
, and substituting (4.49) into (4.54),

the cdf of ξ is found from the following integrals

Fξ(s) ≈

⎧⎪⎨⎪⎩
δ

Γ(M−1)

∫∞
0
e−δyyM−2

∫ my+ϕ
1−δ

δ
y
e−δx dx dy, sc≤s< 1

α

δ
Γ(M−1)

∫ yc

0
e−δyyM−2

∫ my+ϕ
1−δ

δ
y
e−δx dx dy, 0≤s<sc

(4.56)
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where sc is given by

sc =
α(1− δ)2 + β(1− δ)δ − 2

√
γ2(1− δ)3δ

α2(1− δ)2 + 2αβ(1− δ)δ + δ(β2δ − 4γ2(1− δ)) . (4.57)

Solving the integrals in (4.56), the resulting cdf becomes

Fξ (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− e

−Moσ2s
P (1−αs)

δM−1(1+m)M−1 , sc ≤ s < 1
α

1− e
−Moσ2s
P (1−αs)

δM−1(1+m)M−1 + Φ(s), 0 ≤ s < sc

(4.58)

where Φ(s)= 1
Γ(M−1)

[
e−Moσ2s/P (1−αs)

δM−1(1+m)M−1 Γ(M−1, δ(s+1)yc)−Γ(M−1,yc)
]

and Γ(a, x) =∫∞
x
ta−1e−tdt is the (upper) incomplete gamma function.

Note that this is a generalization of previous results in the literature. In
the particular case of B = 0, then δ = 1 and thus sc becomes 0, yielding the
cdf derived in [2] for random beamforming. If the metric refers to an upper
bound on the SINR, with ε = 0, then sc = 1−δ

δ
. If in addition Mo = M is

considered as in Metric II, the cdf of (4.58) becomes the one provided in [28].

In order to obtain a tractable expression for Fξ(s), we assume that sc is
small so that Fξ(s) can be approximated as described in (4.10). Note that
a small sc value corresponds to a low value of B and thus the obtained cdf
approximates better the low resolution regime.

4.B Proof of Theorem 4.1

Given Mo beams active for transmission, using (4.13) we approximate the
rate as

SR ≈
Mo∑
i=1

log2 [1 + E (si)] . (4.59)

From (4.11), E (si) is computed as follows

E(si) =

∫ 1/α

0

1−
⎡⎣1− e

−Moσ2s
P (1−αs)

δM−1 (1 +m)M−1

⎤⎦Ki

ds. (4.60)
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Expanding the binomial in the integral, we get

E(si) =
Mo∑
i=1

(−1)n−1

δn(M−1)

(
Ki

n

)∫ 1/α

0

⎡⎣ e
−Moσ2s
P (1−αs)

δM−1 (1 +m)M−1

⎤⎦n ds. (4.61)

A closed-form solution for the integral in the above equation can not be
found, and thus we use the Bernouilli inequality to obtain an approximation

∫ 1/α

0

⎡⎣ e
−Moσ2s
P (1−αs)

δM−1 (1 +m)M−1

⎤⎦n ds ≥ ∫ 1/α

0

e

�
−Moσ2s
P (1−αs)

+(M−1)m
�
n
. (4.62)

Note that the integral above is also difficult to solve, since m is a nonlinear
function of s, as shown in Proposition 4.1. In order to provide good sum
rates, ε will take in general small values. Under this assumption, the following
approximation can be made

m ≈ βs

1− αs. (4.63)

Let C = Moσ2

P
+(M −1)β, then the integral in (4.61) is approximated by the

following integral∫ 1/α

0

e
−Cns
1−αs =

1

α

[
1 +

Cn

α
e

Cn
α Ei

(
−Cn
α

)]
(4.64)

where Ei(x) is the exponential integral function, defined asEi(x) = − ∫∞
−x

e−t

t
dt.

By substituting the approximated value of the integral found above into
(4.61), and using the definitions of Bn, Ki,n and Pn given in Theorem 4.1,
we obtain the desired approximation for the sum rate.



Chapter 5

Optimization of Channel
Quantization Codebooks

The design of channel quantization codebooks for MIMO broadcast channels
with limited feedback is addressed. Rather than separating CQI and CDI
feedback, we consider a simple scenario in which each user quantizes di-
rectly its vector channel. Our goal consists of finding simple quantization
codebooks which, in scenarios with spatial or temporal correlation, provide
performance gains over classical quantization techniques. In addition, as we
show, our optimized codebooks outperform existing techniques that rely on
separate CDI and CQI feedback, in systems with a sum-rate feedback con-
straint. A design criterion that effectively exploits the spatial correlations in
the cell is proposed, based on minimizing the average sum-rate distortion in
a system with joint linear beamforming and multiuser scheduling. Moreover,
we show how to apply Predictive Vector Quantization (PVQ) to quantize
time-correlated broadcast channels. PVQ exploits the temporal correlation
to reduce the quantization error, and thus to improve the sum rate of the
system. In this chapter we show how the corresponding codebooks can be de-
signed, and we present a prediction strategy. Numerical results are provided,
which illustrate the benefits of effectively designing quantization codebooks in
MIMO broadcast channels with spatial or temporal correlations.

139
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5.1 Introduction

MIMO systems can significantly increase the spectral efficiency by exploit-
ing the spatial degrees of freedom created by multiple antennas [74]. As
discussed in previous chapters, due to the complexity and need for accurate
CSIT, linear beamforming techniques relying on limited feedback are a good
alternative to DPC, the capacity achieving technique. In this chapter, we
consider a limited feedback framework different from the one discussed in
Chapter 3. Rather than separating CQI and CDI feedback, we consider a
simpler system in which each user quantizes directly its vector channel. Our
goal is to find simple quantization codebooks which, in scenarios with spatial
or temporal correlation, provide performance gains over classical quantiza-
tion techniques.

Codebook designs for MIMO broadcast channels with limited feedback
follow in simple design criteria, that aim at simplifying codebook generation
and system analysis. Random beamforming has been proposed in [2] as an
SDMA extension of opportunistic beamforming [63], in which feedback from
the users to the base station is conveyed in the form of a beamforming vector
index and an individual SINR value. An extension of RBF is proposed in [3],
coined as opportunistic SDMA with limited feedback (LF-OSDMA), in which
the transmitter has a codebook containing an arbitrary number of unitary
bases. In that approach, the users quantize the channel direction (channel
shape) to the closest codeword in the codebook, feeding back the quantiza-
tion index and the expected SINR. Multiuser scheduling is performed based
on the available feedback, using the unitary basis in the codebook that max-
imizes the system sum rate as a beamforming matrix. Other schemes for
MIMO broadcast channels, like the approach described in [51], propose to
use simple Random Vector Quantization (RVQ) [75] for quantizing the user
vector channels. A simple geometrical framework for codebook design is pro-
posed in [49], which divides the unit sphere in quantization cells with equal
surface area. This framework is also used for channel direction quantization
in [28], where feedback to the base station consists of a quantization index
along with a channel quality indicator for user selection. These codebook
designs take neither spatial nor temporal correlations present in the system
into account. Taking them into account could yield better quantization code-
books and in turn better sum-rate performance.

The gains of adaptive cell sectorization have been studied in [76] in the
context of CDMA networks and single antenna communications, with the
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aim of minimizing the total transmit power in the uplink of a system with
non-uniform user distribution over the cell. This situation is analogous to a
system with multiple transmit antennas in which beamforming is performed,
adapting its beams to uneven user distributions. In a scenario with limited
feedback available, adaptation of quantization codebooks can be performed
instead, in order to improve the system performance. In [77], an approach
for exploiting long term channel state information in the downlink of mul-
tiuser MIMO systems is proposed. A flat-fading multipath channel model
is assumed, with no line of sight (NLOS) between the base station and user
terminals. Each user can be reached through a finite number of multipath
components with a certain mean angle of departure (AoD) from the antenna
broadside and a certain angle spread. The mean of the angles of departure
are fixed and thus no user mobility is considered.

In this chapter, we highlight the importance of cell statistics for codebook
design in MIMO broadcast channels with limited feedback. Firstly, the im-
portance of exploiting spatial correlations is addressed. The average sum-rate
distortion in a system with joint linear beamforming and multiuser schedul-
ing is minimized, exploiting the information on the macroscopic nature of the
underlying channel. In this first part, a non-geometrical stochastic channel
model is considered, in which each user can be reached in different spatial
directions and with different angle spread. Based on this model, comparisons
with limited feedback approaches relying on random codebooks are provided
in order to illustrate the importance of matching the codebook design to the
cell statistics.

Secondly, we address the problem of exploiting the temporal correlations
in the system. We present a scheme that uses Predictive Vector Quantization
(PVQ) [78] to exploit the correlation between successive channel realizations
in order to improve the quantization, and thus to improve the sum rate of
the system. Further, our scheme does not make any assumptions on the
scheduling function and on the transmission strategy, thus providing a high
flexibility.

Numerical results illustrate the benefits of effectively designing quantiza-
tion codebooks in MIMO broadcast channels with spatial or temporal corre-
lations. The proposed optimized codebooks outperform existing techniques
that rely on separate CDI and CQI feedback, in a system with a sum-rate
feedback constraint.
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5.2 System Description

We consider a multiple antenna broadcast channel consisting of M antennas
at the transmitter and K ≥ M single-antenna receivers in a single cell sce-
nario. The system model is equivalent to the one described in (3.1). Let S

denote an arbitrary set of users with cardinality |S| = M . Given a set of M
users scheduled for transmission, the signal received at the k-th user terminal
is given by

yk = hHk wksk +
∑

i∈S,i�=k
hHk wisi + nk (5.1)

where hk ∈ CM×1, wk ∈ CM×1, sk and nk are the channel vector, beamform-
ing vector, transmitted signal and additive white Gaussian noise at receiver
k, respectively. The first term in the above equation is the useful signal, while
the second term corresponds to the interference. We assume that the vari-
ance of the transmitted signal sk is normalized to one and nk is independent
and identically distributed (i.i.d.) circularly symmetric complex Gaussian
random variable with zero mean and variance σ2. We assume that the re-
ceivers have achieved perfect CSI through the use of pilots. The users then
quantize the channel to an element of a common codebook V, and feed back
the corresponding index to the base station. The base station then decides,
based on the received feedback, which set of users to serve, and forms the
appropriate beamforming vector. The data is transmitted in a block-wise
fashion. We assume a data-rate limited feedback link that can send back
B bits at the beginning of each block. Further, the feedback is assumed to
be instantaneous and error-free.

5.2.1 Linear Beamforming

Let W denote the beamforming matrix obtained by concatenating the beam-
forming vectors. The matrix W is computed on the basis of the matrix Ĥ,
whose rows are the conjugate transpose quantized user channels ĥHk , k ∈ S.
Different linear beamforming techniques may be considered, as discussed in
Section 3.3.

Commonly applied low-complexity linear beamforming techniques are
TxMF and ZFBF [15] (or channel inversion). TxMF uses the normalized

columns of ĤH as beamforming vectors. ZFBF uses the normalized columns
of the pseudo-inverse of Ĥ.
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5.2.2 User Selection

Since the base station has no access to perfect channel state information, the
following SINR estimate is computed for the user set S and k-th user

ŜINRk =
|ĥHk wk|2∑

i∈S,i�=k
|ĥHk wi|2 + σ2

. (5.2)

Let G be the set of all possible user subsets of cardinality M with disjoint
indices in {1, . . . , K}. The set of users scheduled for transmission at each
time slot corresponds to the one that maximizes the estimated sum rate over
all possible user sets

Ŝ∗ = arg max
S∈G

∑
k∈S

log2(1 + ŜINRk) (5.3)

5.3 Exploiting Spatial Correlations

5.3.1 Channel Model

In this section we present the model considered both for the user vector
channels and the cell statistics. A non-geometrical stochastic channel is as-
sumed, in which the channel physical parameters are described by probability
density functions assuming an underlying geometry. It is mainly based on
the work in [79], extended to multiuser scenarios. We consider an outdoor
environment with NLOS between transmitter and receivers, in which local
scatterers, randomly distributed around each mobile user, produce a clus-
tering effect. The multipath components (MPC) arrive in clusters in both
space and time. For the sake of simplicity, we consider flat fading and hence
all paths are assumed to arrive at zero delay. Furthermore, we assume that
each user sees MPCs incoming from surrounding scatterers that are grouped
into one cluster.

Each user is reached with a different mean angle of departure (AoD) θk.
The AoDs associated to the multipath components are distributed around the
mean according to a certain power angular spectrum (PAS), which depends
on the spatial distribution of scatterers. In practice, we only consider the
azimuth directions (angle of propagation with respect to the antenna array
broadside) since the elevation angle spread is generally small compared to
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Table 5.1: Parameters of Broadcast Channel Model
M : number of transmit antennas at the BS

K : number of active users in the cell

L : number of multipath components per user channel

PAS : power angular spectrum around mean AoD

σθ : angular spread, second order moment of PAS

λ : wavelength

d : antenna spacing at the BS

AoD Range : effective range of mean AoDs in the cell

the azimuthal angle. Different probability density functions are considered
in the literature, such as Gaussian, uniform or Laplacian [80]. A summary
of the model parameters is given in Table 5.1.

User Vector Channels

The signals from the base station arrive at each user terminal (UT) through
a finite number of L paths, which have different angles of departure with
respect to the antenna array broadside but arrive at the receiver with the
same delay. The AoD for the k-th user and l-th path can be expressed as
θkl = θk + ∆θkl, where θk is the mean AoD for user k and ∆θkl is the angle
offset for the l-th multipath component. The multipath components have
complex Gaussian distributed gains γkl with zero mean and unit variance.
The channel of user k is given by

hk =
1√
L

L∑
l=1

γkla(θkl) (5.4)

where a(θkl) are the steering vectors. An omnidirectional uniform linear
array is considered (ULA) although the proposed technique can benefit from
any array configuration. The steering vectors a(θkl) of a ULA are given by

a(θkl) =
[
1, e−j2π

d sin θkl
λ , . . . , e−j2π

(M−1)d sin θkl
λ

]T
. (5.5)
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The distribution of the angles around the mean AoD is assumed to have a
double-sided Laplacian pdf, given by

f(∆θkl) =
1√
2σθ

exp(−|
√

2∆θkl/σθ|) (5.6)

where σθ is the angular standard deviation, σθ =
√
E[|∆θkl|2]. Under the

assumption of using a ULA at the base station, the cross-correlation coef-
ficients of each user’s vector channel can be computed in closed form given
the PAS, as shown in [81].

Spatial Cell Statistics

Most papers based on the above mentioned stochastic models assume that
mean AoDs are uniformly distributed between 0 and 2π. In indoor scenarios,
the relative cluster AoD is indeed uniformly distributed over [0, 2π], as it
has been seen from channel measurements [81], since the location of cluster
centers is uniformly distributed over the cell. However, as noted in [81],
this is not realistic in outdoor scenarios where the base station is elevated
and the mobile stations are often surrounded by local scatterers. In these
cases, the mean AoD is very dependent on the macroscopic characteristics
of each particular scenario: topology, user distribution, mobility pattern,
distribution of scatterers, etc. Hence, the mean angles of departure for each
user, θk, do not need to be uniformly distributed over the interval [0, 2π]. In
our model, they are considered to be uniformly distributed over an arbitrary

range of angles
⋃
i

[θmini
, θmaxi

]. A graphical representation of the broadcast

channel model is depicted in Figure 5.1.

5.3.2 Codebook Design

A design criterion and an optimization procedure is proposed for generating
channel quantization codebooks for a given scenario, with the purpose of
exploiting the spatial correlation in MIMO broadcast channels.

As discussed in Chapter 3, most techniques relying on limited quantized
channel state information consider separate feedback bits (and thus separate
quantization) for CDI and CQI. Since the amount of feedback is limited, a
tradeoff arises between the amount of bits used for CDI quantization, which
has an impact on the multiplexing gain, and the amount of bits used for CQI
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Figure 5.1: Broadcast channel model with mobile stations (MS) surrounded
by local scatterers grouped in clusters, located in different mean angles of
departure (AoD) with respect to uniform linear array (ULA) broadside.

quantization, which has an impact on the multiuser diversity gain achieved
from user selection. In this chapter, we consider joint quantization of CDI
and CQI information. Channel quantization is done directly over the user
vector channels rather than quantizing the norm and channel direction sepa-
rately, thus providing better granularity. Hence, since the proposed channel
quantization is adapted to the cell statistics, including the average SNR con-
ditions and the number of active users, the tradeoff between multiplexing
gain and multiuser diversity is implicitly optimized.

The proposed approach consists of designing a channel quantization code-
book valid for all users in the cell by minimizing the average sum-rate distor-
tion of the scheduled users. Since scheduling and beamforming are performed
jointly at each time slot, the distortion measure needs to account for both
jointly. Hence, different linear beamforming techniques will result in differ-
ent optimized codebooks. This criterion yields quantization codebooks that
are statistically matched to the users that maximize the estimated sum rate,
selected according to equation (5.3). The quantization codebook is opti-
mized during an initial training period, after which the codebook is fixed
and broadcasted to the users.

Given a codebook V with 2B codewords, the optimized design is found
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by solving the following optimization problem

min
V
E[d(H, Ĥ)] (5.7)

where d(H, Ĥ) is the distortion measure between the input matrix of con-

catenated user channels H = [h1, . . . ,hK ] and the matrix Ĥ =
[
ĥ1, . . . , ĥK

]
of concatenated quantized user channels. The vector quantizer maps each of
the columns of H to the codeword in V with the smallest Euclidean distance
as described by

ĥk = arg min
v∈V
‖hk − v‖2 . (5.8)

5.3.3 Distortion Measure

The proposed distortion measure is the sum-rate distortion for the scheduled
users given an arbitrary linear beamforming technique. Thus, the distortion
measure can be described as

d(H, Ĥ) = SR(H)− SR(Ĥ). (5.9)

The first term in the equation above corresponds to the maximum sum rate
that can be achieved with the chosen linear beamforming technique and
perfect channel state information, given by

SR(H) = max
S∈G

∑
k∈S

log2(1 + SINRk). (5.10)

The beamforming vectors and user selection obtained in the case of perfect
channel state information are in general different than the ones obtained on
the basis of quantized channel information for a given time slot. The second
term in (5.9) corresponds to the actual sum rate achieved by the system. The
beamforming vectors are computed on the basis of the quantized channels
and the users scheduled for transmission are selected as described in (5.3).
Hence, the achieved sum rate is given by

SR(Ĥ) =
∑
k∈�S∗

log2(1 + SINRk). (5.11)

Note that, as opposed to the estimated SINR values employed for user selec-
tion, the above equation computes the effective SINR experienced by each of
the users in the scheduled set Ŝ∗.
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5.3.4 Optimization Procedure

A simple optimization procedure is performed to find the quantization code-
book V in (5.7). For a given scenario, a large number Nc of random code-
books, with the same distribution as the channel, is generated. The selected
codebook corresponds to the one that minimizes the long term sample aver-
age distortion.

An alternative procedure consists of using the generalized Lloyd algorithm
to iteratively find the optimizing codebook and partition cells. The proposed
algorithm avoids convergence to local minima exhibited by Lloyd’s algorithm
and provides good performances for large Nc, as we show later on.

5.3.5 Practical Considerations

The proposed technique for codebook design is expected to perform better
in scenarios with strong spatial correlations. Different linear beamforming
techniques will achieve different performances, since quantization errors affect
them differently. For instance, while the performance of ZF beamforming is
very sensitive to channel quantization errors, optimized unitary beamforming
proves to be very robust, as it will be shown in Chapter 6.

Since the statistics of the best M users govern the design, the quantiza-
tion codebooks may favor certain spatial locations or directions that provide
good sum rates, favoring the users in those particular locations. In a system
with low mobility and slow variations, this situation may lead to a fairness
issue. This behavior may be accentuated when incorporating shadowing and
pathloss to the channel model. Its effect can be attenuated by performing
proportional fair scheduling (PFS) [82], which would yield an average distor-
tion function based on a weighted sum rate, penalizing the users that have
already been scheduled.

Instead of simply generating the quantization codebooks during a train-
ing period, the base station may slowly adapt the codebook to changes in the
environment: temperature, changes in traffic and mobility patterns, changes
of scatterers, etc. Each time a user enters the system or in case there is a
codebook update, the base station would send the updated codebook to the
users, which in general changes from cell to cell.
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In addition, similarly to the work presented in [83] for single user MIMO
communications, the amount of feedback can be reduced by exploiting tem-
poral correlations in the system. In the following section, we present an
algorithm to exploit temporal correlations in MIMO broadcast channels.

5.4 Exploiting Temporal Correlations

In this section we present a scheme that uses PVQ to exploit the correlation
between successive channel realizations in order to improve the quantization,
and thus to improve the sum rate of the system. Further, our scheme does not
make any assumptions on the scheduling function and on the transmission
strategy, thus providing a high flexibility.

5.4.1 Channel Model

Although the proposed methods work for more general channel models, we
assume stationarity (in the time domain) and a separable channel correlation
in space and time

Rm = E(hk[n]hHk [n−m]) = Rρm (5.12)

where R is the spatial correlation matrix, and ρm is the time-correlation
function. In this section, we mainly concentrate on the time-correlation.

The performance of the vector quantization (VQ) step can be improved
by taking the time correlation of the channel into account. Vector quantizers
with memory allow to quantize the actual channel more efficiently, i.e., the
quantization error of VQ with memory is smaller than the quantization error
of VQ without memory for the same amount of feedback. Even though there
exists a large number of VQs with memory [84], we focus here solely on the
so-called PVQ since its simplicity makes it a good candidate for practical
systems. It allows to exploit the correlation of the channel by considering
a variable number of previous channels, without resulting in an exponential
increase of the storage requirements for the codebooks as is the case for
finite-state vector quantizers.

5.4.2 Predictive Vector Quantization

We provide here an overview of PVQ and its application to channel quanti-
zation of broadcast channels. In the remainder of this section, we omit the
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user index for the sake of clarity.
PVQ starts by estimating the current channel h[n] based on the m pre-

viously quantized channels ĥ[n− i], i = 1 . . .m, at both the base station and
the users, resulting in

h̃[n] = P (ĥ[n− 1], ĥ[n− 2], . . . , ĥ[n−m]) (5.13)

where P (·) denotes the prediction function. The users, who have full CSI
knowledge, then calculate the true error e[n] between the estimated channel
h̃[n] and the true channel h[n]

e[n] = h[n]− h̃[n]. (5.14)

The error is quantized by finding the entry in the quantization codebook V

with the smallest Euclidean distance to the true error

eQ[n] = arg min
v∈V
‖e[n]− v‖2. (5.15)

The quantized error eQ[n] is fed back to the base station, which computes
the quantized channel at time instant n as

ĥ[n] = h̃[n] + eQ[n]. (5.16)

Note that the prediction function P (·) is common to both the base station
and the users. Hence, both ends compute the same h̃[n], which is based on

the previously quantized channels, ĥ[n− i], i = 1 . . .m, also available at the
base station and user ends.

The challenge of PVQ is to design the codebook and the prediction func-
tion.

5.4.3 Codebook Design

A popular approach to design a codebook for PVQ is the open-loop ap-
proach [84]. It does not have an iterative nature, and it relies on the assump-
tion that the quantized channels are a good approximation of the real chan-
nels. The codebook design assumes that the prediction function is known,
and it uses regular VQ without memory on a training set T, where the differ-
ent elements of the training set T are the ideal prediction errors calculated
as

eideal[n] = h[n]− P (h[n− 1],h[n− 2], . . . ,h[n−m]). (5.17)
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The application of a memoryless VQ is possible since the prediction step in
(5.17) removes, in the ideal case, the time correlation between the channels
at different time instances.

Note that the ideal prediction error eideal[n] differs from the true error
e[n] in (5.14). The true error is calculated as a function of the previously
quantized channels, and thus depends on the quantization codebook. Using
the ideal prediction error to design the codebooks removes this dependence,
hence the name open-loop approach. Iterative designs, i.e., closed-loop ap-
proaches [78], only provide a minor gain.

The most common algorithm to design codebooks is the generalized Lloyd
algorithm (GLA) [85]. It is a descent algorithm [84], i.e., it reduces the
average distortion of the codebook with every iteration. However, the GLA is
not guaranteed to find the global optimal codebook for non-convex distortion
functions [86], since it may get trapped in a local minimum.

A more robust approach to find good codebooks is a Monte-Carlo based
codebook design, such as the one proposed in the previous section for spa-
tially correlated channels. As it has been shown, the optimal design aims
at finding a codebook that maximizes the overall sum rate of the system.
However, this design objective is computationally complex, and it depends
on all the components of the system, e.g., the number of users, the selected
beamforming strategy, the selection function. In this section, in order to
reduce the computational complexity, we focus instead on codebooks which
minimize the average Euclidean distance between the ideal prediction error
and the quantized prediction error

V∗ = arg min
V
E(‖eideal[n]− eideal,Q[n]‖2) (5.18)

with

eideal,Q[n] = arg min
v∈V
‖eideal[n]− v‖2. (5.19)

5.4.4 Prediction Function

The other crucial part in designing the PVQ is the prediction function. A
common technique for PVQ is vector linear prediction [87].

Based on the previous m known channel vectors we want to predict the
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vector h[n] using the coefficient matrices Aj as follows

h̃[n] = −
m∑
j=1

Ajh[n− j]. (5.20)

The goal is to minimize the average mean square prediction error. Using the
orthogonality principle, the coefficient matrices can be derived from

R0j = −
m∑
µ=1

AµRµj j = 1, . . . , m (5.21)

where Rij is the channel correlation matrix

Rij = E(h[n− i]h[n − j]H). (5.22)

Stacking (5.21) in matrix form as⎡⎢⎢⎢⎣
R11 R12 . . . R1m

R21 R22 . . . R2m
...

...
. . .

...
Rm1 Rm2 . . . Rmm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

AH
1

AH
2
...

AH
m

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
R10

R20
...

Rm0

⎤⎥⎥⎥⎦ (5.23)

the coefficient matrices Aj can now be found through simple matrix inversion.
For the channel model defined in (5.12), we have that Rij = Rj−i =

Rρj−i. In that case, (5.23) becomes⎡⎢⎢⎢⎣
ρ0 ρ−1 . . . ρ−m
ρ1 ρ0 . . . ρ−m+1
...

...
. . .

...
ρm ρm−1 . . . ρ0

⎤⎥⎥⎥⎦⊗R

⎡⎢⎢⎢⎣
AH

1

AH
2
...

AH
m

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
ρ−1

ρ−2
...

ρ−m

⎤⎥⎥⎥⎦⊗R. (5.24)

If R is assumed diagonal, it is clear that this equation can be solved for every
channel entry separately.
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Figure 5.2: Sum rate for different number of users in a spatially correlated
channel, M = 2 transmit antennas and SNR = 10 dB.

5.5 Numerical Results

We compare the performance of linear beamforming with quantized CSI feed-
back to LF-OSDMA, which generalizes RBF to CDI codebooks of size larger
than log2M . The linear beamforming strategies that we use are ZFBF and
TxMF. We assume single-antenna users and a base station withM = 2 anten-
nas. The data rate on the feedback link is limited to B = 3 bits/transmission.
In order to make a fair comparison between the schemes, the SINR feedback
of the LF-OSDMA algorithm is also quantized. Thus, the LF-OSDMA al-
gorithm has to share the available 3 bits between the CDI, i.e., the index
of the preferred beamforming vector, and the CQI, i.e., the SINR of the
preferred beamforming vector. We simulate the performance of all possible
CDI/CQI bit allocations, and finally select the allocation that results in the
highest sum rate. This is equivalent to choosing the configuration that maxi-
mizes the multiuser diversity - multiplexing tradeoff, as discussed in 4.7. The
codebook to quantize the scalar CQI is designed with the generalized Lloyd
algorithm [84], using the mean square error as distortion function.
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Figure 5.3: Sum rate for different SNR values in a spatially correlated chan-
nel, M = 2 transmit antennas and K = 10 users.

5.5.1 Spatially Correlated Channels

First, we study the benefits of codebook design in a system with spatial cor-
relation and no temporal correlation. Following the channel model described
in 5.3.1, a 2-GHz system is considered with an antenna spacing at the base
station of d = 0.4λ ≈ 15 cm. Each user channel is modeled with L = 10
multipath components. The mean AoD of the different users is uniformly
distributed over the interval [−30◦, 30◦], and the angular spread is fixed to
σθ = 30◦.

Figure 5.2 depicts the performance for different numbers of users with a
fixed SNR of 10 dB. We see that ZF and TxMF with quantized CSI outper-
form LF-OSDMA with quantized SINR feedback.

The same result can be seen in Figure 5.3 for different SNR values and
K = 10 users. We see how the sum rate of the different schemes saturates
at high SNR, where the performance is limited by the quantization error.
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Figure 5.4: Sum rate for different number of users in a temporally correlated
channel, M = 2 transmit antennas and SNR = 10 dB.

5.5.2 Temporally Correlated Channels

We focus here our attention on exploitation of temporal correlations. In this
case, the users are assumed to be distributed in the cell in such way that the
different channel vectors are spatially i.i.d., and thus R = IM . The channel
is modeled through (5.12) with ρm = J0(2πfDTfm) where J0 is the Bessel
function of zeroth-order, fD the Doppler spread, and Tf the frame length
(Jakes’ model [88]). The algorithm predicts the channel based on the last
m = 3 channels.

Figure 5.4 depicts the sum rate of PVQ with ZFBF, and of LF-OSDMA.
We assume each user has an average SNR = 10 dB, and simulate different
fDTf products. The initial channels are assumed to be known perfectly,
which can be approximated by starting the algorithm with a high-resolution
memoryless VQ. We see in Figure 5.4 how the performance of PVQ with
ZF improves for lower fDTf values, i.e., for scenarios with a higher time
correlation between the channels.
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5.6 Conclusions

The problem of designing channel quantization codebooks for MIMO broad-
cast channels with limited feedback has been addressed, in systems where
joint linear beamforming and multiuser scheduling is performed. Rather than
considering a framework with separate CQI and CDI feedback, as studied in
the previous chapter, a simpler framework is considered in which each user
directly quantizes its channel vector, or the prediction error in temporally
correlated channels. The tradeoff between multiuser diversity and multiplex-
ing gain introduced in the previous chapter is implicitly optimized in the
proposed approaches, at the expense of feedback overhead during the initial
training period in which the codebooks are optimized. The numerical results
provided have shown the benefits of using quantization codebooks optimized
according to the cell statistics.

When designing codebooks adapted to the spatial correlation present in
the system, the proposed technique performs well in scenarios with reduced
angular spread and effective range of mean angles of departure. This makes
the proposed approach particularly interesting in outdoor systems with non
uniform user distribution. In addition, we depicted through numerical simu-
lations the benefits of using PVQ for time-correlated channels. PVQ uses a
simple prediction step to remove the correlation between the channel to be
quantized and the previous channels. This allows to improve the performance
of the quantization step, as shown in our simulations.



Chapter 6

Linear Beamforming Design

In this chapter, the problem of linear beamforming design in MIMO broadcast
channels is addressed. An iterative optimization method for unitary beam-
forming is proposed, based on successive optimization of Givens rotations.
Under the assumption of perfect CSIT and for practical average SNR values,
the proposed technique provides higher sum rates than ZF beamforming while
performing close to MMSE beamforming. Moreover, it is shown to achieve
linear sum-rate growth with the number of transmit antennas. Interestingly,
the proposed unitary beamforming approach proves to be very robust to chan-
nel estimation errors, providing better sum rates than ZF beamforming and
even MMSE beamforming as the variance of the estimation error increases.
When combined with simple vector quantization techniques for CSI feedback
in systems with multiuser scheduling, the proposed technique proves to be well
suited for limited feedback scenarios with practical number of users, exhibiting
performance gains over existing techniques.

157
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6.1 Introduction

Unitary beamforming (UBF) techniques have recently become a focus of in-
terest in MIMO broadcast channels, especially in scenarios where the amount
of feedback available at the base station is limited. Particularly, RBF [2] has
been proposed as a simple technique that achieves optimal capacity scaling in
MIMO broadcast channels. In [3], LF-OSDMA is proposed as a transmission
technique in which the transmitter has a codebook containing an arbitrary
number of unitary bases. In this approach, the users quantize the channel
shape (channel direction) to the closest codeword in the codebook, feeding
back the quantization index and expected SINR. Multiuser scheduling is per-
formed based on the available feedback, using as beamforming matrix the uni-
tary basis in the codebook that maximizes the system sum rate. An extension
to scenarios with a sum feedback rate constraint is provided in [57], coined as
orthogonal SDMA with threshold feedback (TF-OSDMA). Codebook-based
unitary precoding is a solid candidate for MIMO downlink transmission in
future mobile communication standards, currently under study in 3GPP [89],
[90], [91]. Similarly to the work reported in [3], feedback from the mobile
users in the form of a quantization index and channel quality indicator are
used for user scheduling and beamforming design. Simple codebooks con-
taining unitary bases have been considered so far, generated either randomly
or from phase rotations of a DFT matrix. An advantage of DFT matrices is
that multiplication with vectors can be done efficiently in reduced time. In
addition, unitary beamforming yields smooth switching between single user
point-to-point MIMO operation and multiuser SDMA.

In order to obtain good sum rates, the precoding matrices, quantiza-
tion codebooks and feedback strategies need to be jointly designed. When
constraining the precoding matrices to be unitary, the performance of sub-
optimal schemes should be evaluated by comparison with optimal unitary
beamforming in order to measure the degree of suboptimality introduced.
Conversely, limited feedback schemes relying on unitary beamforming should
be designed with low complexity and reduced feedback, while approaching the
performance of the optimal unitary beamforming solution. However, optimal
unitary beamforming in MIMO broadcast channels - in the sense of system
sum-rate maximization - is not yet known. Thus, most limited feedback
schemes with unitary beamforming use low complexity as main design crite-
rion, evaluating their performances through simulations. Multiuser MIMO
schemes based on full channel knowledge at the transmitter and unitary
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beamforming have been proposed in [21], exhibiting performance gains over
ZF beamforming approaches particularly at low SNR. However, the beam-
forming matrices in [21] are generated by following low-complexity design
criteria with the aim of simplifying the scheduling algorithms in scenarios
where the number of users is larger than the number of transmit antennas.

In this chapter, an iterative optimization method for unitary beamforming
in MIMO broadcast channels is proposed, based on successive optimization of
Givens rotations. Initially, we consider a system with perfect CSIT side. As
we show, the proposed technique provides higher sum rates than ZF beam-
forming while performing close to MMSE beamforming for practical average
SNR values. However, as the average SNR becomes large, the slope of the
sum-rate versus SNR curve converges to that of a system with TDMA that
selects the best user, thus incurring a loss of multiplexing gain. Moreover, it
is shown to achieve linear sum-rate growth with the number of transmit an-
tennas. The main advantage of the proposed unitary beamforming approach
is its robustness to channel estimation errors. As shown through numeri-
cal simulations, it provides better sum rates than ZF beamforming and even
MMSE beamforming as the variance of the estimation error increases. Hence,
the proposed beamforming technique can be seen as an interesting alterna-
tive to other existing linear beamforming schemes, such as ZF and MMSE.
In the last part of this chapter, the proposed technique is investigated in
MIMO broadcast channels with multiuser scheduling and limited feedback,
evaluating the performance of unitary beamforming approaches with limited
feedback, namely RBF and LF-OSDMA. A simple vector quantization tech-
nique is used, based on random vector quantization (RVQ) with pruning.
Our results highlight the importance of linear beamforming optimization in
MIMO broadcast channels with limited feedback.

6.2 System Model

In this section, the system models for the different scenarios under study are
presented. Initially, we introduce the general model for a system in which the
user terminals have multiple receive antennas, followed by the single antenna
case. A simple model for the imperfect CSIT case is also introduced, which
will be used later on for testing the proposed linear beamforming algorithm
in more realistic scenarios.
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6.2.1 Multi-antenna Receivers

We consider a multiple antenna broadcast channel consisting of a transmitter
equipped with M antennas and K multi-antenna receivers. The k-th receiver
has Nk antennas, and the system satisfies

∑K
k=1Nk ≥ M . Given a set S of

users scheduled for transmission with
∑

k∈SNk = M , the signal received at
the k-th mobile is given by

yk =

√
P

M
HH
k Wksk +

√
P

M

∑
i∈S,i�=k

HH
k Wisi + nk (6.1)

where Hk ∈ CM×Nk , Wk ∈ CM×Nk , sk ∈ CM×1, nk ∈ CM×1 and P are
the channel matrix, beamforming matrix, transmitted signal vector, additive
Gaussian noise vector at receiver k and transmit power, respectively. The
first term in the above equation is the useful signal, while the second term
corresponds to the interference. We assume that the channels are i.i.d. block
Rayleigh flat fading, the covariance of the transmitted signal sk is INk

and
nk is circularly symmetric complex Gaussian with zero mean and covariance
σ2INk

. A unitary beamforming matrix W ∈ CM×M is considered at the
transmitter, obtained by concatenating horizontally (along the row dimen-
sion) the beamforming matrices of the scheduled users Wk, ∀k ∈ S. The
average transmitted power is equal to P . In order to design the beamform-
ing matrix, perfect knowledge of the user channels will be assumed at the
transmitter unless stated otherwise.

6.2.2 Single-antenna Receivers

In the particular case of interest Nk = 1 ∀k, given a set of M users scheduled
for transmission, the signal model in (6.1) can be simplified as follows

yk =

√
P

M
hHk wksk +

√
P

M

M∑
i=1,i�=k

hHk wisi + nk (6.2)

where hk ∈ CM×1, wk ∈ CM×1, sk and nk are the channel vector, beam-
forming vector, transmitted signal and additive Gaussian noise of user k.
This signal model is equivalent to the one described in Section 3.2, with
equal power allocation per transmit beam. The unitary beamforming matrix
contains the beamforming vectors of the users scheduled for transmission
W = [w1 w2 . . .wM ] ∈ CM×M .
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6.2.3 Imperfect CSIT Model

The robustness of the proposed approach to channel estimation errors is
studied through numerical simulations. When imperfect knowledge of the
user channel vectors is available at the transmitter side, the estimation error
is modeled as an additive spatially white complex Gaussian noise. Hence,
the channel estimate of user k is given by

Ĥk = Hk + H̃k (6.3)

where H̃k has a distribution CN(0, σ2
eI). Imperfect CSIT can be the result

of a combination of channel estimation noise, quantization errors, prediction
errors, etc.

6.3 Problem Formulation

6.3.1 Multi-antenna Receivers

In the general case of an arbitrary number of receive antennas per user, the
optimization criterion considered in our problem is sum capacity maximiza-
tion, constrained to using linear unitary beamforming at the transmitter.
Hence, the optimization problem can be formulated as follows

max
W

∑
k∈S

Ck(Hk,Wk)

s.t. WHW = IM

(6.4)

where Ck corresponds to the mutual information between vectors sk and yk,
given by Ck = I(sk,yk) = H(yk)−H(yk|sk), H being the differential entropy.
Gaussian inputs and perfect CSIR are assumed. Following the steps in [5]
for the derivation of the capacity of the MIMO channel, due to independence
between the signal vectors sk transmitted to different users, and between the
signal and noise vectors, Ck can be expressed as follows

Ck = H(yk)−H(xk) (6.5)

where xk is the interference plus noise vector, given by

xk =

√
P

M

∑
i∈S,i�=k

HH
k Wisi + nk. (6.6)
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The differential entropy of xk is given by

H(xk) = log2 |πeRxk
| (6.7)

where Rxk
is the covariance matrix of xk, given by

Rxk
=

P

M

∑
i∈S,i�=k

HH
k WiW

H
i Hk + σ2INk

. (6.8)

As defined in the previous section, the matrix W is the concatenation of the
Wk matrices. Since W is constrained to be unitary, we have that

W =
∑
k∈S

WkW
H
k = IM (6.9)

and thus (6.8) becomes

Rxk
=

P

M
HH
k

(
IM −WkW

H
k

)
Hk + σ2INk

. (6.10)

The differential entropy of yk is given by

H(yk) = log2 |πeRyk
| (6.11)

where Ryk
, using again the result in (6.8), is given by

Ryk
=

P

M
HH
k Hk + σ2INk

. (6.12)

Given two arbitrary squared matrices A, B, we recall the folowing properties
of the determinant: det(A−1) = 1

det(A)
and det(AB) = det(A)det(B). Using

these properties and the results obtained in (6.10) and (6.12), the expression
for Ck in (6.5) becomes

Ck = log2

∣∣∣∣∣INk
+
P

M
HH
k WkW

H
k Hk

[
P

M
HH
k

(
IM −WkW

H
k

)
Hk + σ2INk

]−1
∣∣∣∣∣ .

(6.13)
Hence, Ck is a function of Hk and the beamforming vectors for the k-th user,
Wk. Thus, due to the use of unitary beamforming, a user k is able to compute
Ck without knowledge of the beamforming vectors intended to other users.
In multiuser scenarios with limited feedback, this value can be used as scalar



6.3 Problem Formulation 163

feedback to exploit multiuser diversity through user scheduling at the base
station. This expression can be considered an extension to multiple-antenna
receivers of Metric II, presented in Chapter 4. In this work, single-antenna
users feed back an estimated SINR value rather than a rate value, which is
achieved when using unitary beamforming. However, scalar feedback design
for multi-antenna receivers is beyond the scope of this thesis.

Note also that PWk
= WkW

H
k is a projection matrix whose range is the

subspace spanned by the columns of Wk, and P⊥
Wk

= IM −WkW
H
k is the

complementary projection. Thus, maximizing the contribution of the numer-
ator to the determinant in (6.13) by appropriately setting Wk is equivalent to
minimizing the contribution of the denominator to the determinant. Define
the singular value decomposition Hk = UkΛkV

H
k . If Ck was to be maxi-

mized without any constraints on the structure of Wk, the solution would
be given by setting Wk = Vk(1 : Nk), i.e., by matching the beamforming
vectors to the Nk input singular vectors associated with the Nk largest sin-
gular values. However, in our case, the concatenated beamforming matrices
Wk form a unitary matrix, which complicates the optimization problem pre-
sented in (6.4). Note also that, in the particular case of Nk = M , we have
that WkW

H
k = IM and Ck simply becomes the capacity of the MIMO chan-

nel without CSIT, and thus the design of a unitary beamforming matrix has
no impact on the system performance.

In the remainder of this chapter, we focus our interest on single-antenna
receivers. Besides being a case of particular interest in current cellular net-
works, a simple algorithm can be proposed to optimize the design of the
corresponding linear beamforming matrix.

6.3.2 Single-antenna Receivers

In this case, the optimization criterion considered in our problem is sum
rate maximization, constrained to using linear unitary beamforming at the
transmitter. Hence, the optimization problem can be formulated as follows

max
W

M∑
k=1

log2 (1 + SINRk)

s.t. WHW = IM

(6.14)

where log2 (1 + SINRk) corresponds to Ck for the particular case of Nk = 1.
This optimization problem is rather difficult to solve using this formula-
tion, since the problem is nonconvex and the constraints are nonlinear. The
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problem can be reformulated by exploiting the particularities of the SINRk

expression when unitary beamforming is used. Let ρk be the alignment
between the k-th user instantaneous normalized channel vector hk = hk

‖hk‖
(channel direction) and the corresponding beamforming vector wk, defined

as ρk =
∣∣∣hHk wk

∣∣∣. Using these definitions and particularizing the result ob-

tained in (6.13) to the case of Nk = 1, we get

SINRk =
‖hk‖2 ρ2

k

‖hk‖2 (1− ρ2
k) + Mσ2

P

(6.15)

which is equivalent to the SINR scheduling metric described in (3.11). De-
fine the vector ρ = [ρ1 ρ2 . . . ρM ]. Note that, when subtituting the SINRk

expression shown in (6.15) into equation (6.14), the k-th term in the sum of
logarithms becomes only a function of the variable ρk. The difficulty now
lies in determining the feasible set of solutions for ρ, i.e. the set of values for
which a W matrix exists given that the user channels are known and fixed.
This can be done by incorporating the geometrical structure of the problem
into new constraints on ρ, which is also a difficult task. Instead, in next
section, we propose a simple method to iteratively improve ρ, while ensuring
its feasibility by algorithm construction.

Another way to simplify the constrained optimization problem in equation
(6.14) is to transform it into an unconstrained problem. Define the initial
matrix W0 as an arbitrary unitary matrix. Let Rmn be the Givens rotation
matrix in the (wm,wn)-plane, which performs an orthogonal rotation of the
m-th and n-th columns of a unitary matrix while keeping the others fixed,
thus preserving unitarity. Assume without loss of generality n > m. The
Givens rotation matrix in the (wm,wn)-plane is given by

Rmn(α, δ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cosα · · · sinαejδ· · · 0
...

...
. . .

...
...

0 · · · − sinαe−jδ· · · cosα · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.16)

where the non trivial entries appear at the intersections of m-th and n-th
rows and columns. Hence, any unitary matrix W can be expressed using the
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Table 6.1: Outline of the Unitary Beamforming Optimization Procedure
Initialization

• Initialize the UBF matrix W0

i-th iteration step, i = 1, . . . , NPR

• Select an index pair {m,n} from G

• Find optimal rotation parameters for the (wm,wn)-plane
{α∗, δ∗} = arg min

α,δ
Fmn(α, δ)

• Update UBF matrix Wi = Wi−1Rmn(α
∗, δ∗)

following parameterization

W = W0
M∏
m=1

M∏
n=m+1

Rmn (6.17)

up to a global ejθ factor. Note that such global factor has no importance
for transmission purposes. Each rotation matrix Rmn in (6.17) is function
of 2 rotation parameters, α and δ. Hence, by imposing this structure, the
optimization problem in equation (6.14) becomes unconstrained and it boils
down to finding the optimal 2

(
M
2

)
rotation parameters of the correspond-

ing
(
M
2

)
rotation matrices. Since the resulting ρk values, k = 1, . . . ,M , are

complicated non-linear functions of the rotation parameters, we propose an
iterative algorithm to compute the optimal rotation matrix for a given plane,
iterating along different planes until convergence is reached. Hence, the al-
gorithm we propose is based on a divide-and-conquer type of approach. The
matrix W is divided into smaller instances that are solved recursively in or-
der to provide a solution to the optimization problem in (6.14). However,
convergence to a global optimum can not be ensured for an arbitrary channel.

6.4 Algorithm Description

The proposed unitary beamformer is designed on the basis of the available
user channels hk, k = 1, . . . ,M and balances the amount of power and inter-
ference received by each user. Given an initial unitary beamforming matrix
W0 available at the transmitter, we propose an iterative algorithm which
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consists of rotating the beamforming matrix by performing successive opti-
mization of Givens rotations until convergence is reached. At the i-th it-
eration, a refined unitary beamforming matrix is computed by rotating the
matrix Wi−1 - computed at the previous iteration - in the plane defined by
the complex vectors (wm,wn), performing right multiplication with the rota-
tion matrix defined in equation (6.16). For each plane rotation, the optimal
α∗ and δ∗ rotation parameters are found. Let G be the set of all possible
index pairs among the complete index set {1, . . . ,M}, in which each {m,n}
index pair satisfies n > m. Define NPR as the total number of plane rotations
performed by the proposed approach. An outline of the proposed algorithm
is provided in Table 6.1.

It can be seen from the structure of the matrix in (6.16) that rotation in
the (wm,wn)-plane does not change the directions of the remaining beam-

forming vectors. Equivalently, since SINRk is only function of ρk =
∣∣∣hHk wk

∣∣∣,
a rotation in the (wm,wn)-plane only modifies SINRm and SINRn. Hence,
the optimal rotation parameters are found by solving the following optimiza-
tion problem

{α∗, δ∗}=arg max
α,δ

{
log2

(
1+

‖hm‖2 ρ2
m(α, δ)

‖hm‖2(1−ρ2
m(α, δ))+Mσ2

P

)

+ log2

(
1+

‖hn‖2 ρ2
n(α, δ)

‖hn‖2 (1− ρ2
n(α, δ)) + Mσ2

P

)}
(6.18)

where ρm(α, δ), ρn(α, δ) are the modified alignments between channels and
beamfoming vectors after rotation, given by

ρm(α, δ) =
∣∣∣hHm (wm cosα−wn sinαe−jδ

)∣∣∣ (6.19)

ρn(α, δ) =
∣∣∣hHn (wm sinαejδ + wn cosα

)∣∣∣ .
Defining the following variables

rmm =
∣∣∣hHmwm

∣∣∣ rmn =
∣∣∣hHmwn

∣∣∣
rnm =

∣∣∣hHn wm

∣∣∣ rnn =
∣∣∣hHn wn

∣∣∣
∆mn = ∠h

H

mwm −∠h
H

mwn ∆nm = ∠h
H

n wn − ∠h
H

n wm

(6.20)
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we have that

ρ2
m(α, δ)=r2

mm cos2 α+r2
mnsin

2 α−rmmrmncos(∆mn+δ)sin 2α

ρ2
n(α, δ)=r2

nm sin2 α+r2
nncos2 α+rnmrnncos(δ−∆nm)sin 2α. (6.21)

Define the parameter βk = Mσ2

P‖hk‖2 , k = m,n. Since the logarithm is a mono-

tonically increasing function, the optimization problem in equation (6.18)
can be transformed into

{α∗, δ∗} = arg min
α,δ

Fmn(α, δ) (6.22)

where the function Fmn is defined as follows

Fmn(α, δ) =
(
1− ρ2

m(α, δ) + βm
) (

1− ρ2
n(α, δ) + βn

)
. (6.23)

The solution is found by equating the gradient of Fmn to zero

∂Fmn(α, δ)

∂α
= 0 (6.24)

∂Fmn(α, δ)

∂δ
= 0 (6.25)

In order to solve the above equations, we introduce the change of variable
t = tanα to solve equation (6.24) and s = tan δ/2 to solve equation (6.25).
After some algebraic manipulations the problem is reduced to finding the
roots of polynomials of the form

Pα(t) = f4t
4 + f3t

3 + f2t
2 + f1t+ f0 (6.26)

Pδ(s) = g4s
4 + g3s

3 + g2s
2 + g1s + g0 (6.27)

where fi, gi, i = 0, . . . , 4 are real coefficients involving simple arithmetic and
trigonometric operations, defined in Appendix 6.A. The roots of these 4-th
degree polynomials can be found by solving the respective quartic equations,
for which closed form solutions exist [92]. Once the real roots are found,
we invert the changes of variable introduced. The roots of Pα correspond
to the extremes of the function Fmn(α, δ) for fixed δ, while those of Pδ are
the extremes of Fmn(α, δ) for fixed α. Since up to 4 real roots may be
found, the function Fmn(α, δ) needs to be evaluated in the obtained roots in
order to find the minimizing value α∗. An equivalent operation is performed
for obtaining δ∗. Since computing α∗ requires a constant value for δ and
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computing δ∗ requires a constant value for α, the optimal values are found
iteratively. Hence, α∗ is computed initially by considering a certain initial
value for δ (e.g. δ = 0) and the resulting α∗ is kept constant for computation
of δ∗. This operation is iterated IR times until convergence, which in practice
occurs after 1 or 2 iterations.

Hence, although the unconstrained optimization problem in (6.18) is non-
convex, it can be solved by finding the roots of the polynomials Pα and Pδ,
selecting among these roots the maximizing values α∗ and δ∗.

6.4.1 Practical Considerations

Although closed form solutions exist for quartic equations, fast converging
algorithms can be applied involving much lower complexity. Since only real
roots are sought, the quotient-difference (QD) algorithm can be used to iden-
tify the roots followed by a fast converging algorithm like Newton-Raphson
(NR) [93]. The initial unitary beamforming matrix W0 can be generated ran-
domly, although more complex initializations may yield faster convergence.
For instance, W0 can be constrained to have one of its vectors well aligned
with the user channel that has the largest channel norm, as proposed in Sec-
tion 3.5 as a suboptimal beamforming approach. In practice, this can be
implemented by storing a number of unitary matrices (codebook), selecting
the most appropriate one for initialization at each slot. For simplicity, in
the remainder of the chapter, we consider that the proposed algorithm is
initialized by choosing W0 randomly unless stated otherwise. Note that the
proposed algorithm provides computational flexibility, since the number of
plane rotations NPR can be modified. In the most general case, all possible
combinations of plane rotations should be performed, i.e.

(
M
2

)
combinations.

Moreover, the order in which these plane rotations are performed has an im-
pact on the convergence. Hence, the total number of plane rotations can be
expressed as NPR = IT

(
M
2

)
, where IT is a natural number.

6.5 Convergence

When optimizing the rotation along the (wm,wn)-plane, the sum of the
rates provided by the m-th and n-th beamforming vectors is maximized
with respect to the rotation parameters. Thus, defining SRmn = log2(1 +
SINRm) + log2(1 + SINRn), at each plane rotation optimization we have
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Figure 6.1: Sum rate as a function of the number of plane rotations (algo-
rithm iterations) for different number of transmit antennas, K = M users
and average SNR = 10 dB.

that SRmn(α
∗, δ∗) ≥ SRm,n(α, δ). In addition, as discussed in the previous

section, the SINR values associated to the remaining beamforming vectors
do not change. Hence, at each iteration the resulting sum rate does not
decrease, i.e. SR(Wi) ≥ SR(Wi−1). On the other hand, since the transmit-
ted power is finite, the sum rate - which is the objective function that the
algorithm tries to maximize - is bounded from above. Thus, local conver-
gence is guaranteed in the proposed optimization problem. In practice, given
arbitrary channel realizations, simulations have shown that the proposed al-
gorithm always converges to the same beamforming matrix regardless of the
algorithm initialization. Thus, experiments seem to indicate that the pro-
posed algorithm converges to a global optimum. The convergence behavior
of the proposed iterative algorithm is exemplified in Figure 6.1 for different
number of transmit antennas. In this simulation, Givens rotations are per-
formed in all possible (wm,wn)-planes, and a large number of plane rotations
NPR →∞ is considered.

In order to better illustrate the convergence speed of the proposed algo-
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rithm for different number of transmit antennas, we study a simple case in
the remainder of this section for which the optimal solution is known. Let
H be the concatenation of the user channels H = [h1 . . .hM ]H . Consider a
simple channel model in which the concatenated channel can be factorized
as H = ΛVH , where Λ is a diagonal matrix with real entries ordered in
descending order and V is a unitary matrix. This is equivalent to a point-
to-point MIMO channel H in which, given its singular value decomposition
H = UΛVH , the receiver filters the received signal with the matrix UH . If
perfect channel state information is available at the transmitter and equal
power allocation per beam is assumed, the optimal linear beamformer is
known to be W = V, yielding M virtual parallel channels [4], [5]. In or-
der to evaluate the convergence of the proposed algorithm to the optimal
solution, we compute the following Frobenius distance at each iteration

d(W,V) =
∥∥WHV − I

∥∥
F
. (6.28)

Figure 6.2 shows the convergence behavior of the proposed algorithm for dif-
ferent number of transmit antennas. In this scenario, the proposed algorithm
converges iteratively to the optimal solution. Note that for each value of M
there are 2 differentiated regions with different convergence speed. The 1-st
part converges faster, which corresponds to the 1-st

(
M
2

)
iterations while the

2-nd part converges slower. This is due to the fact that the order in which
plane rotations are performed matters, becoming more important as the size
of the unitary beamforming matrix increases.

6.6 Complexity Analysis

In this section, the complexity of the proposed algorithm is studied in terms of
the number of real arithmetic operations (ops) performed. Assuming QD and
NR iterative root-finding algorithms are used, with IQD and INR iterations
respectively, the average complexity of the proposed algorithm is

CUBF = NPR {52M+15+IR[28IQD+32INR+7(rα+rδ)+69]}
where rα and rδ are the average number of real roots in Pα and Pδ , respec-
tively.

In order to compare UBF with commonly applied beamforming tech-
niques, we provide a complexity analysis of ZF and MMSE beamforming (re-
fer to Section 3.3 for an overview). In our complexity analysis, we consider
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Figure 6.2: Convergence of unitary beamforming matrix for different number
of transmit antennas.

that channel inversions are computed by using Lower-Upper (LU) matrix
factorizations. The resulting complexities are

CZF =
80

3
M3 − 4M2 − 11

3
M − 1 (6.29)

CMMSE =
104

3
M3 − 6M2 − 8

3
M − 1 (6.30)

which implies that computation of ZF and MMSE beamformers has O(M3)
complexity order.

Note that the complexity order of the proposed algorithm strongly de-
pends on the number of plane rotations NPR. If

(
M
2

)
Givens rotations are

performed, then the complexity order becomes O(M3), equivalent to the com-
plexity order of ZF and MMSE beamforming as discussed. However, thanks
to the flexibility of the proposed approach, the algorithmic complexity can
be reduced by considering a reduced number of plane rotations.



172 Chapter 6 Linear Beamforming Design

6.7 Performance Evaluation

In this section, we evaluate the performance of the proposed unitary beam-
forming approach and compare it to other existing approaches. The proposed
algorithm is initialized by choosing W0 randomly. Plane rotations are per-
formed in all possible combinations, resulting in NPR = IT

(
M
2

)
rotations,

with IT = 3. In the simulated scenarios, the algorithm approximately con-
verges for this choice. The MATLAB function roots is used to compute the
polynomial roots, which involves computing the eigenvalues of the compan-
ion matrix for each polynomial. In Subsections 6.7.1 and 6.7.2, a system with
K = M is studied, hence assuming a given set of M users has been scheduled
for transmission. While in 6.7.1 perfect CSIT is assumed to be available, a
system with imperfect CSIT is considered in 6.7.2. In the last subsection,
a system with multiuser scheduling is considered, comparing the proposed
approach to limited feedback techniques based on unitary beamforming.

6.7.1 Case K = M , Perfect CSIT

The performances of the proposed unitary beamforming technique, ZF beam-
forming and MMSE beamforming are compared in a system in which perfect
CSIT is available, given a set of K = M users scheduled for transmission. In
addition, the performance of a system that performs TDMA is also plotted
for reference, selecting the user with largest channel norm out of M available
users.

Figure 6.3 shows a performance comparison in terms of sum rate versus
number of transmit antennas M , for SNR = 10 dB. As expected, the MMSE
solution provides linear sum-rate growth with the number of transmit anten-
nas, while ZF beamforming flattens out [59]. The proposed algorithm also
provides linear growth with M , performing close to MMSE beamforming.

In Figure 6.4, we compare the sum rate as function of the average SNR
in a system with M = 8 transmit antennas. As the SNR increases, the
MMSE solution converges to ZF, removing all multi-user interference. The
proposed technique provides considerable gains over ZF in the regular SNR
range, performing close to the MMSE solution. On the other hand, the pro-
posed algorithm does not completely eliminate interference, since instead it
balances the useful power and undesired interference in the SINR expression.
Suboptimal techniques based on unitary beamforming have shown to become
interference limited at high SNR, thus providing zero multiplexing gain [2],
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Figure 6.3: Sum rate as a function of the number of antennas M for K = M
users and average SNR = 10 dB.

[3]. The multiplexing gain is defined as follows

m = lim
P→∞

∑M
k=1 E [log2 (1 + SINRk)]

log2(P )
. (6.31)

However, as it can be observed from Figure 6.4, the multiplexing gain of
the proposed scheme converges to the one of TDMA (same slope). A par-
ticular case of the proposed approach corresponds to the case in which one
of the unitary beamforming vectors is aligned with the channel vector that
has largest norm. In that case, at least one of the users does not see any
interference from the other users and hence at least m = 1 is achieved. Thus,
for the proposed approach we obtain

mUBF ≥ lim
P→∞

E

[
log2

(
1 + P

Mσ2 max
i∈1,...,M

‖hi‖2
)]

log2(P )
(6.32)

+

M∑
k=1,k �=i

E [log2 (1 + SINRk)]

log2(P )
≥ 1
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Figure 6.4: Sum rate as a function of the average SNR for M = 8 transmit
antennas and K = M users.

where the first term in the summation corresponds to aligning a unit-norm
beamforming vector along the channel direction of the user with largest chan-
nel gain and the second term corresponds to the remaining M−1 beamform-
ing vectors. The second inequality in the above equation follows from the
fact that if none of the M − 1 beamforming vectors in the second term is
aligned with the remaining M − 1 channels, they exhibit zero multiplexing
gain.

6.7.2 Case K = M , Imperfect CSIT

The impact of imperfect channel knowledge at the transmitter in a system
with K = M users is investigated. The beamforming matrices are computed
on the basis of noisy channel estimates, modeled as described in equation
(6.3), which produces a performance degradation in terms of system sum rate.
Figure 6.5 shows a sum-rate comparison between the proposed approach, ZF
beamforming, MMSE beamforming and TDMA as a function of the variance
of the channel estimation error, for M = 4, 8 antennas and average SNR of 10
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Figure 6.5: Sum rate as a function of the channel estimation error variance
for M = 4, 8 transmit antennas, K = M users and average SNR = 10 dB.

dB. The proposed unitary beamforming approach proves to be more robust to
CSIT errors than ZF or MMSE beamforming. Indeed, a small error variance
suffices for unitary beamforming to outperform MMSE beamforming, even
for large number of transmit antennas. However, TDMA provides higher
rates in scenarios with reduced number of transmit antennas and very low
quality of CSIT.

6.7.3 Case K ≥M , Limited Feedback

The proposed technique is evaluated in a MIMO broadcast channel where lim-
ited feedback is available from the user terminals to the base station. Most
existing techniques with joint linear beamforming and multiuser scheduling
designed for limited feedback scenarios are based on simple beamforming
designs. While the design of feedback measures is carefully taken into ac-
count, suboptimal beamforming techniques are often considered, such as the
well known RBF [2] and LF-OSDMA [3] techniques. In these techniques,
the base station has precise SINR information from the users, but on the
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other hand, random linear beamformers are used. In the remainder of this
section, we highlight the importance of beamforming design in limited feed-
back scenarios. By exploiting the robustness to channel estimation errors
exhibited by the proposed approach, we show that optimization of the linear
beamformers is crucial in MIMO broadcast channels with imperfect CSIT.

A scenario with K ≥ M is considered and thus the need for multiuser
scheduling arises. For simplicity, exhaustive user search is performed, i.e. the
base station evaluates the estimated sum rate of all possible user sets with
cardinality M and selects the one that provides higher estimated sum rate.
Thus, the user set scheduled for transmission is found as described in (5.3),
based on the SINR estimates computed at the base station.

In the proposed scheme, each user quantizes its channel vector based on
a quantization codebook V that is common to all users in the system. The
vector quantizer maps the user channel to the codeword in V with the small-
est Euclidean distance. A random vector quantization (RVQ) codebook is
considered, complemented with simple codeword pruning as described in [84,
pp. 359]. Pruning consists of starting with an initial training set of candi-
date codewords (randomly generated), and selectively eliminating (pruning)
training vectors until obtaining a final set of 2B vectors. The codebook is
generated recursively, adding a new codeword to the codebook at each step.
When a codeword is added, it must satisfy that the distortion measure - in
our case given by the Euclidean distance - between the newly added codeword
and the nearest neighbor in the codebook is greater than some threshold. In
our case, this threshold has been set empirically in order to provide good
performances.

The limited feedback approaches we consider for comparison are RBF and
LF-OSDMA. As discussed in the previous chapter, in LF-OSDMA a code-
book with N random unitary matrices is generated (each with M unit-norm
vectors), known both to the base station and mobile users. In the original LF-
OSDMA scheme proposed in [3], the users feed back a codeword index using
B = log2(MN) bits together with the expected SINR, which in the case of
unitary beamforming can be precisely determined without knowledge of the
beamforming vectors intended to other users. In the scenario under study,
the data rate on the feedback link is limited to B = 10 bits/transmission.
In order to make a fair comparison between the schemes, the SINR feedback
of the LF-OSDMA algorithm is also quantized. Thus, the LF-OSDMA algo-
rithm has to share the available B bits between the CDI, i.e., the index of the
preferred beamforming vector, and the CQI, i.e., the SINR of the preferred
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Figure 6.6: Sum rate as a function of the number of users in a system with
joint beamforming and user scheduling, M = 4 transmit antennas, SNR = 10
dB, and B = 10 feedback bits.

beamforming vector. This setting is equivalent to the finite sum rate feedback
model presented in Section 4.7, where a tradeoff between multiuser diversity
and multiplexing gain has been presented. In our simulations, we simulate
the performance of all possible CDI/CQI bit allocations, and finally select
the allocation that results in the highest sum rate. The codebook to quantize
the scalar CQI is designed with the generalized Lloyd algorithm [84], using
the mean square error as distortion function. In the case of RBF, the amount
of bits for CDI feedback is given by log2M , since only a single beamforming
matrix is generated at each time slot. The remaining bits are used for SINR
quantization, following the same quantization criterion as for LF-OSDMA.

Figure 6.6 depicts the performance for different numbers of users with
a fixed SNR of 10 dB, in a system with M = 4 transmit antennas and
B = 10 bits available for feedback. The performance of the proposed UBF
approach with perfect CSIT is also provided for comparison. The proposed
approach combined with simple RVQ and pruning outperforms RBF and
LF-OSDMA, especially in systems with reduced number of users, providing
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Figure 6.7: Sum rate as a function of the average SNR in a system with joint
beamforming and user scheduling, M = 4 transmit antennas, K = 10 users,
and B = 10 feedback bits.

sum-rate gains over 1.5 bps/Hz. Note that the performance of RBF, which
was shown to achieve the optimal capacity scaling in [2], is a pessimistic lower
bound on the performance of LF-OSDMA. As the number of users increases,
the simplicity of the quantization codebook used in the proposed unitary
beamforming approach does not allow to capture all multiuser diversity gain
and the sum rate curve flattens out. On the other hand, LF-OSDMA exhibits
optimal sum-rate growth in the simulated range, thanks to an optimal bit
allocation for CDI/CQI information.

In Figure 6.7, a sum-rate comparison as function of the average SNR
is shown in a system with M = 4 transmit antennas, K = 10 users and
B = 10 bits. As expected, the limited feedback approaches become interfer-
ence limited at high SNR. In the simulated scenario, the proposed technique
provides performance gains of up 2-bps/Hz over RBF and LF-OSDMA for
a given SNR. Note that the simulation parameters here used reflect realis-
tic scenarios of practical importance, often encountered in indoor wireless
systems.
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6.8 Conclusions

An iterative optimization method for unitary beamforming in MIMO broad-
cast channels has been proposed, based on successive optimization of Givens
rotations. In a scenario with perfect CSIT and for practical average SNR val-
ues, the proposed technique provides higher sum rates than ZF beamforming
and performs close to MMSE beamforming, achieving linear sum-rate growth
with the number of transmit antennas. The proposed unitary beamforming
approach exhibits robustness to channel estimation errors, providing bet-
ter sum rates than ZF beamforming and even MMSE beamforming as the
variance of the estimation error increases. In addition, the proposed tech-
nique has been evaluated in scenarios with multiuser scheduling and limited
feedback. As simulations have shown, our approach provides gains when
compared to other existing techniques based on unitary beamforming and
the same amount of feedback. A simple vector quantization technique has
been used, based on RVQ with pruning. Hence, our work highlights the im-
portance of linear beamforming optimization in limited feedback scenarios.
While the random beamforming technique introduced in [2] enables perfect
SINR knowledge of all users at the base station, the generation of the beam-
forming vectors is clearly suboptimal. Instead, as we have shown in this
chapter, the system performance can be improved by performing simpler
feedback design through direct channel vector quantization and optimization
of the linear beamformers.
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APPENDIX

6.A Computation of Polynomial Coefficients

This appendix describes a procedure to obtain the coefficients of the polyno-
mials Pα and Pδ of equations (6.26) and (6.27), respectively. Although the
procedure to obtain these coefficients can be described in different ways, here
we present it in a simple and sequential fashion for straightforward software
implementation. For each plane rotation, the auxiliary variables defined in
Table 6.2 are computed and used for the computation of the coefficients of
both Pα and Pδ. These auxiliary variables are functions of rmm, rmn, rnm,
rnn, ∆mn, ∆nm, which are given in equation (6.20), and the parameter βk.

Computation of the polynomial coefficients of Pα

The coefficients of Pα are functions of the rotation parameter δ. For
clarity of exposition, the following functions are defined

φ1(δ) = d1 cos(∆mn + δ)
φ2(δ) = −d2 cos(δ −∆nm)

(6.33)

The coefficients of the polynomial Pα are given by

f4 = −2φ1(δ)(e3 − e4)− 2φ2(δ)(e2 − e5)
f3 = −2φ1(δ)φ2(δ) + e1 − e6
f2 = −12 [φ1(δ)e4 + φ2(δ)e5]
f1 = 2φ1(δ)φ2(δ)− e1 − e6
f0 = 2φ1(δ)(e3 + e4) + 2φ2(δ)(e2 + e5)

(6.34)

Computation of the polynomial coefficients of Pδ

The coefficients of Pδ are functions of the rotation parameter α. The
following functions are defined

ϕ1(α) = e2 sin 2α + e5 sin 4α
2

ϕ2(α) = e3 sin 2α + e4 sin 4α
2

ϕ3(α) = 1−cos 4α
4

(6.35)
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Table 6.2: Auxiliary Variables for the Computation of Polynomial Coeffi-
cients

bmn = −(r2
mm + r2

mn) bnm = −(r2
nn + r2

nm)
cmn = −(r2

mm − r2
mn) cnm = −(r2

nn − r2
nm)

d1 = 2rmmrmn am = 1 + βm
d2 = 2rnmrnn an = 1 + βn
d3 = −2d1d2 cos(∆nm−∆mn) e1 = 2cmncnm
d4 = −d1d2

2
sin(∆nm −∆mn) e2 = am

2
+ bmn

4

d5 = 2d1 cos ∆mn e3 = an

2
+ bnm

4

d6 = d1 sin ∆mn e4 = cnm

4

d7 = 2d2 cos ∆nm e5 = cmn

4

d8 = −d2 sin ∆nm e6 = 4(cnme2+cmne3)

The coefficients of the polynomial Pδ are given by

g4 = −d8ϕ1(α) + d6ϕ2(α) + d4ϕ3(α)
g3 = d7ϕ1(α)− d5ϕ2(α) + d3ϕ3(α)
g2 = −6d4ϕ3(α)
g1 = d7ϕ1(α)− d5ϕ2(α)− d3ϕ3(α)
g0 = d8ϕ1(α)− d6ϕ2(α) + d4ϕ3(α)

(6.36)
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General Conclusion

In this thesis, we have focused on the performance optimization of MIMO
wireless systems with partial CSIT. On the one hand, the problem of ob-
taining and designing partial CSIT in single user and multiuser scenarios
has been investigated, providing insights into the most relevant sources of
information that are needed at the transmitter side. On the other hand, this
thesis has addressed the issue of how to efficiently exploit the available CSIT
in order to enhance the system performance.

In the first part of this thesis, point-to-point MIMO channels have been
considered, highlighting the importance of statistical CSIT for the design
of linear precoding techniques. As we have shown, the error rate of an ST
coded MIMO system can be significantly improved through a linear precoder
that exploits mean and covariance information. In order to provide a clear
intuition of how mean and covariance must be combined to achieve good
performances, different MIMO channel models have been considered.

The second part of this thesis has been devoted to sum-rate performance
optimization in MIMO broadcast channels with limited feedback. We have
mainly considered systems in which a base station communicates with a
set of single-antenna users by means of SDMA. With the aim of designing
practical low-complexity techniques, we have focused on systems with joint
linear beamforming and multiuser scheduling with limited feedback. In our
work, we have shown the importance of cross-layer design at PHY-MAC
level, optimizing the following elements of a multiuser MIMO downlink: lin-
ear beamforming techniques, scheduling algorithms, feedback strategies and
feedback quantization techniques.

In Chapter 3, the design challenges of MIMO systems with joint linear
beamforming and multiuser scheduling have been presented. In such systems,
transmission techniques and user selection algorithms with reasonable com-
plexity are desired. In order to illustrate this fact, low-complexity solutions
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have been proposed both in scenarios with full and partial CSIT. In the full
CSIT case, a multiuser scheduling algorithm for systems with orthonormal
beamforming vectors has been proposed. In a spatially correlated MIMO
setting with limited feedback, the importance of combining statistical and
instantaneous information has been highlighted through a low-complexity
approach. A bound on the multiuser interference of practical relevance has
been proposed, which can be used for designing multiuser scheduling metrics.

In Chapter 4, a design framework for scalar feedback design in MIMO
broadcast channels has been introduced. A scenario with separate feedback
for CDI and CQI has been considered. In such systems, the users need to
estimate the amount of multiuser interference, which is a difficult task since
the users can not cooperate. This information is embedded in the proposed
scalar feedback as channel quality information for the purpose of multiuser
scheduling, together with other measures of interest, such as the channel gain,
the quantization error, the orthogonality constraints between beamformers
and the number of active beams. A comparative study between SDMA and
TDMA has been provided in different asymptotic regimes, showing the cases
in which SDMA becomes more beneficial than TDMA in terms of sum-rate
performance and viceversa. Particularly, SDMA outperforms TDMA as the
number of users becomes large. TDMA provides better rates than SDMA in
the high SNR regime (interference-limited region). Moreover, the importance
of optimizing the orthogonality factor in the low SNR regime has been high-
lighted. In addition, a more realistic system has been considered in which
each user has a sum rate feedback constraint. In this scenario, the existing
tradeoff between multiuser diversity and multiplexing gain has been identi-
fied, arising from the fact that the available feedback bits need to be shared
for CDI and CQI quantization. The problem of optimizing the feedback
balance has been addressed, revealing an interesting interplay between the
number of users, the average SNR and the number of feedback bits. While
most bits should be allocated to CDI in systems with low number of users,
it becomes more beneficial to allocate bits to CQI for increasing number of
users. On the other hand, as the average SNR increases, more bits should
be allocated to channel direction information.

In Chapter 5, the problem of designing channel quantization codebooks
for MIMO broadcast channels with limited feedback has been addressed,
in systems where joint linear beamforming and multiuser scheduling is per-
formed. Rather than considering a framework with separate CQI and CDI
feedback, as studied in Chapter 4, a simpler framework is considered in which
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each user directly quantizes its channel vector or the prediction error. Code-
book generation techniques have been proposed, based on matching the chan-
nel quantization codebooks to the channel statistics - exploiting temporal and
spatial correlations - following a Monte-Carlo based approach. Our results
have shown the performance gains that can be achieved when using quanti-
zation codebooks optimized according to the cell statistics.

The design of linear beamforming techniques has been addressed in Chap-
ter 6. An iterative optimization method for unitary beamforming in MIMO
broadcast channels has been proposed, based on successive optimization of
Givens rotations. The proposed technique is shown to achieve linear sum-rate
growth with the number of transmit antennas if perfect CSIT is available.
In addition, it exhibits robustness to channel estimation errors, providing
better sum rates than ZF beamforming and even MMSE beamforming as
the variance of the estimation error increases. The proposed unitary beam-
forming approach has been evaluated in scenarios with multiuser scheduling
and limited feedback. As our simulations show, it outperforms other existing
techniques based on unitary beamforming and the same amount of feedback.
A simple vector quantization technique has been used, based on random
vector quantization with pruning. Our work highlights the importance of
linear beamforming optimization in limited feedback scenarios. Rather than
designing sophisticated feedback schemes and relying on simple linear beam-
forming techniques, the system performance can be improved by using simple
(traditional) channel quantization strategies combined with optimized linear
beamforming techniques robust to CSIT errors.

Throughout this dissertation, we have stressed the fact that joint op-
timization of different parts of MIMO wireless communication systems is
needed in order to provide good performances, while keeping the amount of
information on the feedback link low. In our designs, some aspects of interest
in such communication systems have been optimized, targetting mostly real-
istic scenarios with practical number of users, reasonable number of transmit
antennas and common average SNR conditions. Obtaining CSIT in current
wireless systems is expensive, since the available resources on the uplink are
limited. Thus, any source of CSIT, instantaneous or statistical, must be ex-
ploited at the transmitter side in order to enhance the system performance.
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Future Research

As a result of the work presented in this dissertation, we list in the fol-
lowing lines several areas that require further research and understanding.

The core of this dissertation has focused on sum-rate optimization in
MIMO broadcast channels. In general, fairness issues have not been taken
into account, being beyond the scope of the work here presented. Different
fairness mechanisms could be incorporated, in order to provide good per-
formances while satisfying certain QoS constraints. For instance, maximum
delay tolerance for real-time applications could be considered.

Further investigation is required in MIMO broadcast channels with multi-
antenna receivers. A simple way to extend the work presented in this thesis to
multi-antenna receivers is to consider as effective channel the concatenation
of the MIMO channel and a spatial linear receiver. However, we believe
that simple approaches achieving better performance can be designed, not
necessarily limiting the system to a single data stream per user. On the
other hand, treating each receive antenna independently - as proposed by
some authors in the literature - seems too simplistic. The challenge is to
design feedback measures with a feedback rate that does not grow linearly
with the number of receive antennas and that provides good performances.
The solution to this problem could be along the lines of the estimated user
capacity provided in Section 6.3.1.

Another important issue is to quantify the benefits provided by feedback
in real cellular networks. While the proposed techniques can increase the
data rates in the downlink, there is also an increase of complexity, and also
feedback, control and training overhead in the system. Hence, it is of great
importance to compare the performance gains and associated overhead in
real systems.

Extensions of the multiuser MIMO downlink problem with limited feed-
back to wideband systems and multicell scenarios are also problems of timely
relevance that require further research.
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[16] G. Dimić and N. D. Sidiropoulos, “On downlink beamforming with
greedy user selection: performance analysis and a simple new algo-
rithm,” IEEE Trans. on Signal Proc., vol. 53, no. 10, pp. 3857–3868,
Oct. 2005.

[17] R. Knopp and P. Humblet, “Information capacity and power control
in single cell multiuser communications,” in Proc. IEEE Int. Conf. on
Communications (ICC’95), Seattle, June 1995, pp. 331–335.

[18] R. de Francisco and D. T. M. Slock, “Bayesian approaches for combining
noisy mean and covariance channel information,” in Proc. IEEE Sig.
Proc. Adv. on Wir. Commun. (SPAWC’05), New York, USA, June 2005.



Bibliography 189

[19] R. de Francisco and D. T. M. Slock, “Spatial transmit prefiltering for
frequency-flat MIMO transmission with mean and covariance informa-
tion,” in Proc. of 39th IEEE Asilomar Conf. on Signals, Systems, and
Computers, Pacific Grove, CA, USA, Nov. 2005.

[20] G. Jongren, M. Skoglund, and B. Ottersten, “Combining beamform-
ing and orthogonal space-time block coding,” IEEE Trans. on Inform.
Theory, vol. 48, no. 3, pp. 611–627, Mar. 2002.

[21] R. de Francisco, M. Kountouris, D. T. M. Slock, and D. Gesbert, “Or-
thogonal linear beamforming in MIMO broadcast channels,” in Proc.
IEEE Wireless Commun. and Networking Conf. (WCNC’07), Hong
Kong, Mar. 2007.

[22] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock, and
T. Sälzer, “Low complexity scheduling and beamforming for multiuser
MIMO systems,” in Proc. IEEE Sig. Proc. Adv. on Wir. Commun.
(SPAWC’06), Cannes, France, July 2006.

[23] R. de Francisco and D. T. M. Slock, “A design framework for scalar
feedback in MIMO broadcast channels,” EURASIP Journal on Aplied
Signal Processing, Special Issue on MIMO Transmission with Limited
Feedback, vol. 2008, Article ID 574784, 12 pages, 2008.

[24] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock, and
T. Sälzer, “Exploiting multiuser diversity in MIMO broadcast chan-
nels with limited feedback,” submitted to IEEE Trans. Signal Proc.

[25] R. de Francisco, D. T. M. Slock, and Y-C. Liang, “Balance of multiuser
diversity and multiplexing gain in near-orthogonal MIMO systems with
limited feedback,” in Proc. IEEE Wireless Commun. and Networking
Conf. (WCNC’07), Hong Kong, Mar. 2007.

[26] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock, and
T. Sälzer, “Efficient metrics for scheduling in MIMO broadcast channels
with limited feedback,” in Proc. IEEE Int. Conf. Acoust., Speech and
Sig. Proc. (ICASSP’07), Honolulu, HI, USA, Apr. 2007.

[27] R. de Francisco and D. T. M. Slock, “On the design of scalar feedback
techniques for MIMO broadcast scheduling,” in Proc. IEEE Sig. Proc.
Adv. on Wir. Commun. (SPAWC’07), Helsinki, Finland, June 2007.



190 Bibliography

[28] T. Yoo, N. Jindal, and A. Goldsmith, “Finite-rate feedback MIMO
broadcast channels with a large number of users,” in Proc. of IEEE Int.
Symp. Inform. Theory (ISIT’06), Seattle, Washington, USA, July 2006,
pp. 1214–1218.

[29] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock, and
T. Sälzer, “Multiuser diversity - multiplexing tradeoff in MIMO broad-
cast channels with limited feedback,” in Proc. of 40th IEEE Asilomar
Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA
(invited paper), Oct. 2006.

[30] C. Simon, R. de Francisco, D. T. M. Slock, and G. Leus, “Feedback
compression for correlated broadcast channels,” in Proc. IEEE Symp.
on Commun. and Vehic. Tech. in the Benelux (SCVT’07), Delft, The
Netherlands, Nov. 2007.

[31] R. de Francisco and D. T. M. Slock, “An optimized unitary beamforming
technique for MIMO broadcast channels,” submitted to IEEE Trans.
Wireless Commun.

[32] R. de Francisco and D. T. M. Slock, “An iterative optimization method
for unitary beamforming in MIMO broadcast channels,” in Proc. of
45th Allerton Conf. on Commun., Control and Comput., Monticello,
IL, USA, Sept. 2007.

[33] R. de Francisco and D. T. M. Slock, “Linear precoding for MIMO
transmission with partial CSIT,” in Proc. IEEE Sig. Proc. Adv. on
Wir. Commun. (SPAWC’05), New York, USA, June 2005.

[34] R. de Francisco, D. T. M. Slock, D. Nussbaum, A. Kountouris, and
F. Marx, “Adaptive complexity equalization for the downlink in
WCDMA systems,” in Proc. IEEE Vehic. Tech. Conf. (VTC’06-Fall),
Montreal, Canada, Sept. 2006.

[35] D. Gesbert, “Robust linear MIMO receivers: A minimum error-rate
approach,” IEEE Trans. on Signal Proc., vol. 51, no. 11, pp. 2863–
2871, Nov. 2003.

[36] C. Brunner, J. Hammerschmidt, and J. Nosek, “Downlink eigenbeam-
forming in WCDMA,” in Proc. European Wireless (EW’00), Dresden,
Germany, Sept. 2000.



Bibliography 191

[37] H. Sampath and A. Paulraj, “Linear precoding for space-time coded
systems with known fading correlations,” IEEE Commun. Letters, vol.
6, no. 6, June 2002.

[38] S. A. Jafar and A. Goldsmith, “Transmitter optimization and optimality
of beamforming for multiple antenna systems,” IEEE Trans. on Wireless
Commun., vol. 3, no. 4, pp. 1165–1175, July 2004.

[39] M. Vu and A. Paulraj, “Optimal linear precoders for MIMO wireless
correlated channels with nonzero mean in space-time coded systems,”
IEEE Trans. on Signal Proc., vol. 54, no. 6, pp. 2318–2332, June 2006.

[40] A. Pascual-Iserte, M. Payaró, A. I. Pérez-Neira, and M. A. Lagunas,
“Impact of a line-of-sight component on the performance of a MIMO
system designed under statistical channel knowledge,” in Proc. IEEE
Sig. Proc. Adv. on Wir. Commun. (SPAWC’06), Cannes, France, July
2006.

[41] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications, Cambridge University Press, 2003.

[42] A. Medles and D. T. M. Slock, “Linear convolutive space-time precoding
for spatial multiplexing MIMO systems,” in Proc. of 39th Allerton Conf.
on Commun., Control and Comput., Monticello, IL, USA, Oct. 2001.

[43] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity
region of the Gaussian MIMO broadcast channel,” in Proc. 38th Conf.
Inform. Sciences and Systems (CISS’04), Princeton, NJ, USA, Mar.
2004.

[44] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing meth-
ods for downlink spatial multiplexing in multiuser MIMO channels,”
IEEE Trans. on Signal Proc., vol. 51, no. 2, pp. 506–522, Feb. 2005.

[45] A. Lapidoth and S. Shamai (Shitz), “Collapse of degrees of freedom in
MIMO broadcast with finite precision CSI,” in Proc. of 43rd Allerton
Conf. on Commun., Control and Comput., Monticello, Illinois, USA,
Sept. 2005.



192 Bibliography

[46] S. A. Jafar and A. Goldsmith, “Isotropic fading vector broadcast chan-
nels: The scalar upper bound and loss in degrees of freedom,” IEEE
Trans. on Inform. Theory, vol. 51, no. 3, pp. 848–857, Mar. 2005.

[47] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use
of side information in multiple-antenna data transmission over fading
channels,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1423–
1436, Oct. 1998.

[48] D. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian beamform-
ing for multiple-input multiple-output wireless systems,” IEEE Trans.
on Inform. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[49] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beam-
forming with finite rate feedback in multiple-antenna systems,” IEEE
Trans. on Inform. Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[50] S. Zhou, Z. Wang, and G. B. Giannakis, “Quantifying the power loss
when transmit beamforming relies on finite rate feedback,” IEEE Trans.
on Wireless Commun., vol. 4, no. 4, pp. 1948–1957, July 2005.

[51] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. on Inform. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

[52] P. Ding, D. Love, and M. Zoltowski, “Multiple antenna broadcast chan-
nels with shape feedback and limited feedback,” IEEE Trans. on Signal
Proc., vol. 55, no. 7, pp. 3417–3428, July 2007.

[53] K. Huang, J.G. Andrews, and R. W. Heath, Jr., “Orthogonal beam-
forming for SDMA downlink with limited feedback,” in Proc. IEEE Int.
Conf. Acoust., Speech and Sig. Proc. (ICASSP’07), Honolulu, HI, USA,
Apr. 2007.

[54] C. Swannack, G. Wornell, and E. Uysal-Biyikoglu, “MIMO broadcast
scheduling with quantized channel state information,” in Proc. of IEEE
Int. Symp. Inform. Theory (ISIT’06), Seattle, Washington, USA, July
2006, pp. 1788–1792.

[55] T.Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna broadcast chan-
nels with limited feedback and user selection,” IEEE J. Select. Areas
Commun., vol. 25, no. 7, pp. 1478–1491, Sept. 2007.



Bibliography 193

[56] M. Trivellato, F. Boccardi, and F. Tosato, “User selection schemes for
MIMO broadcast channels with limited feedback,” in Proc. IEEE Vehic.
Tech. Conf. (VTC’07-Spring), Dublin, Ireland, Apr. 2007.

[57] K. Huang, R. W. Heath, Jr., and J. G. Andrews, “Space division mul-
tiple access with a sum feedback rate constraint,” in Proc. IEEE Int.
Conf. Acoust., Speech and Sig. Proc. (ICASSP’07), Hawaii, USA, Apr.
2007.

[58] T. Haustein, C. von Helmolt, E. Jorswieck, V. Jungnickel, and V. Pohl,
“Performance of MIMO systems with channel inversion,” in Proc. IEEE
Vehic. Tech. Conf. (VTC’07-Spring), Birmingham, AL, US, May 2002,
vol. 1, pp. 35–39.

[59] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-
perturbation technique for near-capacity multiantenna multiuser comu-
nication - Part I,” IEEE Trans. on Commun., vol. 53, no. 1, pp. 195–202,
Jan. 2005.

[60] N. Jindal, “Finite rate feedback MIMO broadcast channels,” in Work-
shop on Inform. Theory and its Applications (ITA’06), UC San Diego,
USA (invited paper), Feb. 2006.

[61] G. H. Golub and C. F. van Loan, Matrix Computations, 2nd edition,
The John Hopkins University Press, Baltimore, 1989.
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