Research Article

A Design Framework for Scalar Feedback in MIMO Broadcast Channels

Ruben de Francisco and Dirk T. M. Slock

Eurecom Institute, BP 193, 06904 Sophia-Antipolis Cedex, France

Correspondence should be addressed to Ruben de Francisco, ruben.defrancisco@ieee.org

Received 15 June 2007; Revised 6 October 2007; Accepted 13 November 2007

Joint linear beamforming and scheduling are performed in a system where limited feedback is present at the transmitter side. The feedback conveyed by each user to the base station consists of channel direction information (CDI) based on a predetermined codebook and a scalar metric with channel quality information (CQI) used to perform user scheduling. In this paper, we present a design framework for scalar feedback in MIMO broadcast channels with limited feedback. An approximation on the sum rate is provided for the proposed family of metrics, which is validated through simulations. For a given number of active users and average SNR conditions, the base station is able to update certain transmission parameters in order to maximize the sum-rate function. On the other hand, the proposed sum-rate function provides a means of simple comparison between transmission schemes and scalar feedback techniques. Particularly, the sum rate of SDMA and time division multiple access (TDMA) is compared in the following extreme regimes: large number of users, high SNR, and low SNR. Simulations are provided to illustrate the performance of various scalar feedback techniques based on the proposed design framework.

Copyright © 2008 R. de Francisco and D. T. M. Slock. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can significantly increase the spectral efficiency by exploiting the spatial degrees of freedom created by multiple antennas. In point-to-point MIMO systems, the capacity increases linearly with the minimum of the number of transmit/receive antennas, irrespective of the availability of channel state information (CSI) [1, 2]. In the MIMO broadcast channel, it has recently been proven [3] that the sum capacity is achieved by dirty paper coding (DPC) [4]. However, the applicability of DPC is limited due to its computational complexity and the need for full channel state information at the transmitter (CSIT). Downlink techniques based on space division multiple access (SDMA) have been proposed [5], achieving the same asymptotic sum rate as that of DPC.

The capacity gain of multiuser MIMO systems is highly dependent on the available CSIT. While having full CSI at the receiver can be assumed, this assumption is not reasonable at the transmitter side. Several limited feedback approaches have been considered in point-to-point systems [6–8], where each user sends to the transmitter the index of a quantized version of its channel vector from a codebook. An extension for MIMO broadcast channels is made in [9], in which each mobile feeds back a finite number of bits regarding its channel realization at the beginning of each block based on a codebook.

Assuming certain orthogonality constraints between beamforming vectors, a lower bound on the instantaneous or average SINR can be computed as scalar feedback, as shown in
of the receivers has perfect and instantaneous knowledge of its own channel h_k, and that n_k is independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian with zero mean and variance $\sigma^2 = 1$. The transmitted signal is subject to an average transmit power constraint P, that is, $\mathbb{E}[\|x\|^2] = P$. Note that, since unit-variance noise is assumed, P takes on the meaning of average SNR. Let δ denote the set of users selected for transmission at a given time slot, with cardinality $|\delta| = M_{\delta}$, $1 \leq M_{\delta} \leq M$. Let v_k be the unit-norm beamforming vector for user k. Assuming equal power allocation to the M_{δ} scheduled users, the received signal at the kth mobile is given by

$$y_k = \frac{P}{M_{\delta}} \sum_{i \in \delta} h_k^H v_i s_i + n_k, \quad k = 1, \ldots, K.$$

Hence, the SINR of user k is

$$\text{SINR}_k = \frac{|h_k^H v_k|^2}{\sum_{i \in \delta, i \neq k} |h_k^H v_i|^2 + M_{\delta}/P}. \quad (3)$$

We focus on the ergodic sum rate (SR) which, assuming Gaussian inputs, is equal to

$$\text{SR} = \mathbb{E}\left[\sum_{k \in \delta} \log(1 + \text{SINR}_k)\right]. \quad (4)$$

Notation: We use bold upper and lower case letters for matrices and column vectors, respectively. $(\cdot)^H$ stands for Hermitian transpose. $\mathbb{E}(\cdot)$ denotes the expectation operator. The notation $\|x\|$ refers to the Euclidean norm of the vector x, and $\angle(x, y)$ refers to the angle between vectors x and y.

3. Linear Beamforming with Limited Feedback

Joint linear beamforming and scheduling are performed in a system where limited feedback is present at the transmitter side. The feedback conveyed by each user to the base station consists of channel direction information based on a predetermined codebook and a scalar metric with channel quality information used to perform user scheduling.

In such systems, the design of appropriate scalar metrics in scenarios with realistic number of users and average SNR values remains a challenge. These metrics must contain information of the users’ channel gains as well as channel quantization errors, as discussed in [18]. If the users have additional knowledge of the beamforming technique used at the transmitter side, an estimate on the multiuser interference at the receiver can be computed. This information can be encapsulated together with the channel gain, quantization error, and average noise power into a scalar metric ξ, which consists of an estimate on the SINR. In our work, we consider such scalar feedback strategies, as discussed in detail in the next section. User selection is carried out based on these metrics and the users’ spatial properties, obtained from channel quantizations.

As simple transmission technique we consider transmit matched filtering (TxFMF) which consists of using as normalized beamforming vectors the quantized channel directions.
of users scheduled for transmission. The normalized channel vector of user k to be quantized is $h_k = h_k / \|h_k\|$, which corresponds to the channel direction. A B-bit quantization codebook V_k is considered, containing $L = 2^B$ unit norm vectors in \mathbb{C}^M, which is assumed to be known to both the receiver and the transmitter. Similar to [7, 8], we assume that each receiver quantizes its channel to the vector that maximizes the inner product

$$v_k = \arg \max_{v \in V_k} |h_k^H v|^2 = \arg \max_{v \in V_k} \cos^2(\angle(h_k, v)). \quad (5)$$

Each user sends the corresponding quantization index back to the transmitter through an error-free and zero-delay feedback channel using B bits. Note that this model is equivalent to the finite rate feedback model proposed by [7, 9].

The optimal vector quantizer is difficult to find and the solution to this problem is not yet known. As codebook design goes beyond the scope of the paper, we adopt the geometrical framework presented in [8]. The resulting quantization error is defined as $\sin^2 \theta_k = \sin^2(\angle(h_k, v_k)) = 1 - |h_k h_k^H v_k|^2$ [8, 19], where v_k is the quantized channel direction of user k. Using this framework, the cumulative distribution function (cdf) of the quantization error is given by [8, 19],

$$F_{\sin^2 \theta_k}(x) = \begin{cases} \delta^{3-M} x^{M-1}, & 0 \leq x \leq \delta, \\ 1, & x > \delta, \end{cases} \quad (6)$$

where $\delta = 2^{-B/(M-1)}$.

Let the orthogonality factor ϵ denote the maximum degree of nonorthogonality between two unit-norm vectors. The columns of the normalized beamforming matrix $V(\delta)$ are constrained to be ϵ-orthogonal and thus

$$|v_k^H v_j| \leq \epsilon \quad \forall i, j \in \delta, \ i \neq j. \quad (7)$$

An outline of the proposed scheduling algorithm is shown in Algorithm 1. In case M_o users with ϵ-orthogonality cannot be found, the algorithm stops and distributes the power equally among the scheduled users, setting $M_o = |\delta|$. Note that this greedy algorithm is equivalent to the one proposed in [5, 20, 21]. The first user is selected from the set $Q^0 = \{1, \ldots, K\}$ as the one having the highest channel quality, that is, $k_1 = \arg \max_{k \in Q^0} \xi_k$. For $i = 1, \ldots, M_o - 1$, the $(i + 1)$th user is selected as $k_{i+1} = \arg \max_{k \in Q^i} \xi_k$ among the user set $Q^i = \{1 \leq k \leq K : |v_k^H h_k| \leq \epsilon, 1 \leq j \leq i\}$.

The number of active beams for transmission M_o and orthogonality factor ϵ is system parameters fixed by the base station (BS) that can be adapted in order to maximize the system sum rate.

Algorithm 1: Outline of scheduling algorithm.

<table>
<thead>
<tr>
<th>BS</th>
<th>Compute & Feedback ξ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize Set $\delta = \emptyset$</td>
<td></td>
</tr>
<tr>
<td>Loop For $i = 1, \ldots, M_o$, repeat</td>
<td></td>
</tr>
<tr>
<td>Set $\xi_{\text{max}} = 0$</td>
<td></td>
</tr>
<tr>
<td>Loop For $k = 1, \ldots, K, k \notin \delta$, repeat</td>
<td></td>
</tr>
<tr>
<td>If $\xi_k > \xi_{\text{max}}$ and $</td>
<td>v_k^H v_j</td>
</tr>
<tr>
<td>$\xi_{\text{max}} \leftarrow \xi_k$</td>
<td></td>
</tr>
<tr>
<td>Select $k_i \leftarrow \delta$</td>
<td></td>
</tr>
</tbody>
</table>

In this section, we present design guidelines for scalar metrics based on signal-to-interference-plus-noise ratios, which are computed at the receivers and fed back to the base station as channel quality information. Complemented with channel quantizations as CDI, user scheduling at the base station of a MIMO broadcast channel is performed. The design framework for scalar feedback here presented can be applied to any system in which codebooks are employed for channel quantization, known both to the base station and mobile users.

These metrics must contain information of different nature in order to exploit the multiuser diversity of the MIMO broadcast channel. Moreover, additional information on the orthogonality constraints between beamforming vectors can be taken into account, thus providing a QoS estimate at the receiver side. The total amount of feedback overhead can be reduced by appropriately setting minimum desired SINR thresholds. Hence, in a practical system each user may send feedback to the base station only if a minimal QoS can be guaranteed.

Besides signal and noise power, the following information may be encapsulated by each user in such scalar metrics:

1. Channel power gain: $\|h_k\|^2$,
2. Quantization error: $\sin^2 \theta_k$,
3. Orthogonality factor: ϵ,
4. Number of active beams: M_o.

As shown in [18], channel power gain and quantization error information are necessary in order to exploit the available multiuser diversity. The quantization error is a function of the number of codebook bits, as shown in the previous section. By increasing the codebook size, the multiplexing gain of the system can be increased (better resolution) and at the same time the multiuser diversity gets increased, due to lower quantization error. The orthogonality factor ϵ can be used to bound the amount of expected multiuser interference, which in turn can be used to compute a lower bound on the SINR. In our work, we assume that the number of active beams (nonzero power) is a parameter appropriately set by the base station to maximize the system sum rate.

Multiuser interference

For user k and index set δ, the multiuser interference can be expressed as $I_k(\delta) = \sum_{i \in \delta, i \neq k} (P/M_o) |h_i^H v_i|^2 = (P/M_o) \|h_k\|^2 I_k(\delta)$, where $I_k(\delta)$ denotes the interference over the normalized channel h_k. Let $U_k \in \mathbb{C}^{M \times (M-1)}$ be an orthonormal basis spanning the null space of v_k^H and define the matrix $V_k = \sum_{i \in \delta, i \neq k} v_i^H$ and the operator $\lambda_{\text{max}}(\cdot)$,
which returns the largest eigenvalue. Define I_{UBk} as the upper bound on ℓ_k and $\theta_k = \angle(h_k, v_k)$. As proven in [18] for systems with arbitrary orthogonality between beamforming vectors, the multiuser interference of user k can be bounded as follows:

$$I_{UBk} = a_k \cos^2 \theta_k + b_k \sin^2 \theta_k + 2y_k \sin \theta_k \cos \theta_k,$$

where

$$a_k = \psi_k^H \Psi_k v_k,$$
$$b_k = \lambda_{max}\{\psi_k^H \Psi_k \psi_k\},$$
$$y_k = ||\psi_k^H \Psi_k v_k||.$$

Family of metrics

In the proposed design framework, any scalar feedback metric can be described as follows:

$$\xi = \frac{||h_k||^2 \cos^2 \theta_k}{||h_k||^2 (a \cos^2 \theta_k + b \sin^2 \theta_k + 2y \sin \theta_k \cos \theta_k) + M_o/P}.$$

(10)

The numerator in the expression above reflects the effective received power in a system with channel quantization. On the other hand, the denominator accounts for the noise power and provides a measure of the interference experienced by the user, for instance, an upper or lower bound, by exploiting the structure of the beamforming matrix. By choosing different values for the parameters a, b, y, and M_o, the meaning of the proposed metric is modified, yielding different SINR measures. In next section, a sum-rate function is derived based on this metric structure, for arbitrary values of α. Note that averaging the inverse of the resulting metric yields an upper bound on the average of the inverse SINR. Hence, the average value of this metric tends to be a lower bound on the average SINR.

Metric 1. Let u_{jk} be the jth column vector of the matrix U_k. The vector u_{jk} is isotropically distributed over an $M - 1$ dimensional hyperplane orthogonal to v_k, under the assumption that v_k is isotropically distributed over the unit norm hypersphere. Given a fixed unit-norm vector v_k in \mathbb{C}^M, the random variable $|v_k^H u_{jk}|^2$ follows a beta distribution with parameters $(1, M - 2)$ [22]. The mean value of this random variable is $1/(M - 1)$, and thus we have that $\mathbb{E}[\sum_{j=1}^{M_o} |v_k^H u_{jk}|^2] = (M_o - 1)/(M - 1)$. Using this result in (9) and the fact that nonorthogonality between pairs of beamforming vectors is upper bounded by ϵ, we propose in [18] the following values for this metric:

$$\alpha = \frac{(M_o - 1)^2}{M - 1} \epsilon^2,$$
$$\beta = \frac{(M_o - 1)}{M - 1} [1 + (M_o - 2) \epsilon],$$
$$\gamma = \frac{(M_o - 1)^2}{M - 1} \epsilon, \quad 1 \leq M_o \leq M.$$

(11)

Note that averaging the inverse of the resulting metric yields an upper bound on the average of the inverse SINR. Hence, the average value of this metric tends to be a lower bound on the average SINR.

Metric 2. As a particular case, we consider $\epsilon = 0$ in the metric computation and assume a fixed number of active beams

$$\alpha = 0, \quad \beta = 1, \quad \gamma = 0, \quad M_o = M.$$

(12)

This metric can be interpreted as an upper bound on the SINR when exactly $M_o = M$ beams are used for transmission and equal power allocation is performed. Note that this metric was proposed in parallel in [12–14].

Metric 3. Another option consists of computing a lower bound on the instantaneous SINR [15]. As opposed to Metric 1, no averaging over the distribution of $|v_k^H u_{jk}|$ is performed and thus this lower bound is less tight in average. The metric parameters are given by

$$\alpha = (M_o - 1) \epsilon^2,$$
$$\beta = \begin{cases} 0, & \text{if } M_o = 1, \\ 1 + (M_o - 2) \epsilon, & \text{otherwise}, \end{cases}$$
$$\gamma = (M_o - 1) \epsilon, \quad 1 \leq M_o \leq M.$$

(13)

Taking into account ϵ in the SINR computation may mask the contribution of the channel power gains in the SINR expression, hence reducing the benefits of multiuser diversity. However, this approach offers the advantage of avoiding outage events in the communication link.

Metric 4. A straightforward improvement of Metric 2 can be done by setting a variable number of active beams $1 \leq M_o \leq M$, keeping the same values for α, β, γ.

Note that, for a given scenario and feedback metric, there is an optimal pair of system parameters ϵ and M_o that maximizes the sum rate. Increasing the value of ϵ relaxes the ϵ-orthogonality constraint and thus more users are taken into account for scheduling, increasing the multiuser diversity benefit. However, as ϵ increases, so does the multiuser interference. On the other hand, increasing the number of active beams M_o exploits the spatial multiplexing gain, at the expense of increasing the interference. Hence, for a given average SNR and number of active users K in the cell, the base station must appropriately set ϵ and M_o in order to balance the multiuser diversity and multiplexing gains and to maximize the system sum rate. In practice, this may be carried out...
out by storing lookup tables at the base station, so that ϵ and M_o can be quickly adapted whenever the average SNR or the number of active users changes. If the system parameters need to be updated, the base station broadcasts the new values to the users, which are used to compute the feedback metrics.

In Figure 1, an approximated lower bound on the system sum rate is plotted as a function of the alignment $\cos \theta_k$, computed as $SR \approx M_o \log (1 + \xi_k^M)$, where ξ_k^M denotes the feedback Metric 1 of user k. This approximation assumes that the M_o scheduled users have the same ξ_k^M value and thus the same estimated lower bound on the achievable rate. The system under consideration is assumed to have $M = 4$ antennas, $\epsilon = 0.1$, and average SNR $= 10$ dB. The sum rate is evaluated for different number of active beams to observe the impact of appropriately choosing M_o. Note that the case of $M_o = 1$ corresponds to TDMA, whereas $M_o > 1$ corresponds to SDMA. The system with $M_o = 1$ exhibits better performance for low and intermediate values of $\cos \theta_k$, that is, TDMA provides higher rates than SDMA in most cases. Only for large values of $\cos \theta_k$, $M_o > 1$ provides higher rates, which in practice occurs for large number of quantization bits B or large number of users K. Since the amount of bits B is generally low due to bandwidth limitations, SDMA will be chosen over TDMA when $M_o > 1$ users with small quantization errors can be found, with higher probability as the number of users in the cell increases. As the parameter ϵ increases, the crossing points of the curves in Figure 1 shift to the right and thus the range for which TDMA performs better also increases. This is due to the fact that the bound in ξ_k^M becomes looser for increasing ϵ values. As shown in this example, for $\epsilon > 0$ there exist M possible modes of transmission, that is, $M_o = 1, \ldots, M$. However, for the case of $\epsilon = 0$ and varying M_o as considered in Metric 4, it can be proven that the modes of transmission exhibiting higher rates are reduced to 2, namely, $M_o = 1, M$.

5. SUM-RATE FUNCTION

In this section, we derive a function to approximate the ergodic sum rate that a system with linear beamforming and limited feedback can provide, given knowledge of each user’s SINR metric. A general and simple solution is derived based on the generic metric representation of ξ, given in (10). Note that the different metrics described in the previous section follow as particular cases of ξ by setting accordingly the values of α, β, γ, and M_o. The sum-rate function we provide is a tool that enables simple analysis and comparison of SDMA and TDMA approaches. Moreover, as shown in the simulations, it approximates well the system number even when the number of users in the cell is small. In our analysis, we are interested in the actual sum rate that can be achieved. Hence, the metric takes on the meaning of either an upper or lower SINR bound as needed in order to compare SDMA and TDMA in the extreme regimes under study.

First, an approximation on the cdf of ξ is derived using mathematical tools from [23].

Proposition 1. In the low-resolution regime (small B), the cdf of ξ can be approximated as follows:

$$F_{\xi}(s) \approx 1 - \frac{e^{-M_o s/(1-\alpha)}}{\delta M^{-1}(1+m)^{M-1}},$$

where $m = (2ys[ys + (1-\alpha)\beta s] + (1-\alpha)\beta s)/(1-\alpha)^2$.

Proof. See Appendix A.

Note that the above cdf is a generalization for arbitrary ϵ and M_o of the cdf derived in [13]. Also, the result provided in [10] follows as a particular case by selecting $\epsilon = 0, M_o = M$, and $B = 0$.

Let the ordered variate s_{iK} denote the ith largest among K i.i.d. random variables. From known results of order statistics [24], we have that the cdf of $s_1 = \max_{1 \leq i \leq K} s_{iK}$ is $F_{s_1} = (F_\xi(s))^K$. According to the proposed user selection algorithm, the SINR of the first-selected user is the maximum SINR over K i.i.d. random variables. However, at the ith selection step (ith beam) the search space gets reduced since the ϵ-orthogonality condition needs to be satisfied. Hence, the ith user is selected over K_i i.i.d. random variables yielding a cdf for the maximum SINR given by $F_{s_i} = (F_\xi(s))^{K_i}$. Since ξ is upper bounded by $1/\alpha$, its mean value is given by

$$E(s_i) = \int_0^{1/\alpha} 1 - (F_\xi(s))^{K_i} ds.$$ (15)

An approximation of K_i can be calculated through the probability that a random vector in $C^{M \times 1}$ is ϵ-orthogonal to a set with $i-1$ vectors in $C^{M \times 1}$, which is equal to $L_{\epsilon}(i-1, M-i+1)$ [5], $L_{\epsilon}(a, b)$ being the regularized incomplete beta function. By using the law of large numbers [21], we can find the following approximation:

$$K_i \approx KL_{\epsilon}(i-1, M-i+1).$$ (16)
The average sum rate in a system with \(M_o \) active beams can be bounded as follows by using Jensen’s inequality:

\[
SR = \sum_{i \in A} \mathbb{E} \left[\log_2 (1 + s_i) \right] \leq \sum_{i \in A} \log_2 \left[1 + \mathbb{E} (s_i) \right].
\]

(17)

Using (17) and solving the integral in (15) for the cdf of \(\xi \) described in (14), we obtain the following theorem after some approximations.

Theorem 1. Given \(\epsilon \)-orthogonal transmission in a system with \(M_o \) active beams, the sum rate is approximated as follows:

\[
R_{M_o} \approx \sum_{i=1}^{M_o} \log_2 \left[1 + \frac{1}{\alpha} \sum_{n=1}^{K_i} B_n K_{i,n} P_n \right],
\]

(18)

where

\[
B_n = \frac{(-1)^{n-1}}{\delta^{n(M-1)}},
\]

(19)

\[
K_{i,n} = \binom{K_i}{n},
\]

\[
P_n = 1 + \frac{Cn}{\alpha} e^{\alpha n} E_1 \left(-\frac{Cn}{\alpha} \right),
\]

and \(C = M_o/P + (M-1)\beta \). The exponential integral function is defined as \(E_1(x) = -\int_0^\infty (e^{-t}/t) dt \).

Proof. See Appendix B.

Note that the term \(B_n \) reflects the influence of the codebook design, \(K_{i,n} \) together with the summation upper limit \(K_i \) inside the logarithm capture the amount of multiuser diversity exploited by the system and \(P_n \) accounts for the dependency of the sum rate on the power.

Note that as a particular case of the equation above, a simpler expression can be derived for \(M_o = 1 \), given by

\[
R_1 \approx \log_2 \left[1 + \sum_{n=1}^{K} B_n K_{1,n} P_n \right].
\]

(20)

Another case of interest is the case in which \(\alpha = 0 \). As \(\alpha \) approaches zero, we have

\[
\lim_{\alpha \to 0} \frac{1}{\alpha} \left[1 + \frac{Cn}{\alpha} e^{\alpha n} E_1 \left(-\frac{Cn}{\alpha} \right) \right] = \frac{1}{Cn},
\]

(21)

and thus the sum-rate function in this case becomes

\[
\lim_{\alpha \to 0} R_{M_o} = \sum_{i=1}^{M_o} \log_2 \left[1 + \frac{K_i}{n} B_n K_{i,n} \frac{1}{Cn} \right].
\]

(22)

In Figure 2, the sum-rate function in (18) is plotted as a function of the number of active beams \(M_o \) and orthogonality factor \(\epsilon \), using the values for \(\alpha, \beta, \) and \(\gamma \) as described in Metric 1. In this simulation, a system with 35 users has been considered, an average SNR = 10 dB and a simple codebook with \(B = 1 \) bit. Note that in this particular scenario, SDMA cannot guarantee better rates than TDMA regardless of the value of \(\epsilon \). In this context, the number of users is low, hence there is low probability of obtaining large values of \(\cos \theta_k \). Thus, TDMA transmission is favored, which is consistent with the results obtained in the previous section.

In order to validate the obtained sum-rate function, we consider a simple scenario with \(M = 2 \) antennas and a system in which \(M_o = 2 \) if 2 \(\epsilon \)-orthogonal users can be found in a given time slot and \(M_o = 1 \) otherwise. The probability of not finding 2 \(\epsilon \)-orthogonal users is given by \(p = (1 - \epsilon^2)^{K-1} \). Hence, the approximated rate in this simplified scenario is given by

\[
R \approx pR_1 + (1-p)R_2,
\]

(23)

where \(R_1 \) and \(R_2 \) (\(R_{M_o} \) with \(M_o = 2 \)) are as described in (18) and (20), respectively. Figure 3 shows a comparison of analytical and simulated lower bounds on the sum rate in such a system, with \(M = 2 \) antennas, \(K = 15 \) users, and SNR = 10 dB. The values for \(\alpha, \beta, \) and \(\gamma \) used are those of Metric 3, given in (14). Each user has a simple codebook designed as described in the previous section with \(B = 1 \) bit,
different from user to user. Note that the jitter in the analytical curve is due to the rounding effect of K_i.

6. STUDY OF EXTREME REGIMES

In this section, we analyze several extreme regimes, namely, scenarios with large number of users, high SNR, and low SNR regime. The results intuitively clarify the cases in which SDMA is better than TDMA and the role of ϵ in the comparison of both techniques. Previous works in the literature focus on the study of the asymptotic scaling with α follows by realizing that $\lim_{K \to \infty} \frac{R_{Mo}}{R_1}$

$$\geq \lim_{K \to \infty} \frac{R_{Mo}}{R_1} \frac{\sum_{i=1}^{M_o} \log_2 \left(\frac{K - i + 1}{K - i + 1/2} \right) \mathcal{B}_K/(K/2) \mathcal{P}_n}{\log_2 \left(\frac{K}{K/2} \right)}$$

where (a) follows from selecting the highest exponent terms of K in the numerator and denominator and (b) from applying the logarithm property $\log(xy) = \log(x) + \log(y)$, keeping the relevant terms for the computation of the limit; (c) follows by realizing that $\lim_{K \to \infty} \frac{\log_2 \left(\frac{K - a}{K/2} \right)}{\log_2 \left(\frac{K}{K/2} \right)} = 1$ for any finite integer a.

Similar to the lower bound obtained on R_{Mo}/R_1, it can be shown that $\lim_{K \to \infty} \frac{R_{Mo}}{R_1} \geq M_o$, by assuming an upper bound on the SINR as metric with $1 \geq M_o \leq M$, which corresponds to the case of using Metric 4. Setting $K_i = K - i + 1$, $i = 1, \ldots, M_o$, and using the sum-rate function for the particular case of $\alpha = 0$, given in (22), yields the desired result.

6.2. High SNR regime

This scenario corresponds to the interference-limited region, in which the multiuser interference limits the system performance rather than the average SNR. The number of users K is considered to be finite in the analysis of this regime.

Theorem 3. Given an arbitrary ϵ, TDMA outperforms SDMA in the high SNR regime

$$\lim_{P \to \infty} \frac{R_{Mo}}{R_1} = 0.$$

Proof. The bounded behavior of SDMA as function of the power P is intuitively reflected in the proposed rate function. It suffices to realize that the power dependent part of R_{Mo} can be upper bounded as follows:

$$\mathcal{P}_n \leq 1.$$
In order to provide a proof for the theorem, we focus here on Metric 4, which yields an upper bound on the SDMA sum rate with variable number of active beams. Since in this case we have that \(\alpha = 0 \), the sum rate is described by (22). The power dependent part is bounded by the following constant:

\[
\lim_{P \to \infty} \frac{1}{C} = \lim_{P \to \infty} \frac{P}{M_0 + (M - 1)\beta P} = \frac{1}{(M - 1)\beta}.
\]

(29)

Hence, when transmitting \(M_0 > 1 \) active beams, the sum rate is bounded regardless of the transmitted power. Thus we have that

\[
\lim_{P \to \infty} \frac{R_{M_0}}{R_1} \leq \lim_{P \to \infty} \frac{\sum_{i=1}^{M_0} \log_2 \left[1 + \sum_{n=1}^{K_i} \mathcal{B}_n \mathcal{K}_{1,n} (P/n) / Cn \right]}{\log_2 \left[1 + \sum_{n=1}^{K} \mathcal{B}_n \mathcal{K}_{1,n} (P/n) \right]} = 0,
\]

(30)

where the inequality follows from the fact that an upper bound on the SDMA sum rate is used, based on Metric 4 with \(\alpha = 0 \). The equality comes from the fact that when taking the limit, the numerator is not a function of \(P \) as shown in (29). Since both \(R_{M_0} \) and \(R_1 \) are greater than or equal to zero, we obtain the desired result.

Note that the above result is consistent with the work in [9], in which the interference-limited behavior of MIMO broadcast channels is studied in a system where limited feedback is available in the form of channel direction information.

6.3. Low SNR regime

This scenario corresponds to the noise-limited region. In this regime, the choice of \(\epsilon \) has an impact on the optimal choice of transmission technique, that is, SDMA or TDMA. In Figure 4 we show the evolution of the optimal value of \(\epsilon \) for varying SNR in a cell with large number of users, \(K = 1000, M = 2 \) antennas and a codebook of \(B = 1 \) bit. The simulated system adapts the optimal number of active beams as a function of \(\epsilon \) so that the lower bound on the sum rate computed on the basis of Metric 3. Fixing \(\epsilon = 0 \) implies that the system forces a TDMA solution since there is zero probability of finding two quantized random channels perfectly orthogonal, assuming different quantization codebooks for each user. A shift to the right in the position of the maximum implies that the number of \(\epsilon \)-orthogonal users found at the second step (K2) also increases, hence using 2 beams for transmission and thus exploiting the benefits of SDMA rather than TDMA. Therefore, Figure 4 shows that as the SNR decreases, a system based on near-orthogonal transmission tends to select SDMA over TDMA.

However, if the system parameter \(\epsilon \) is set independently of the average SNR value (or equivalently the power \(P \) for normalized noise power), we obtain the following theorem for finite number of users.

Theorem 4. Given an arbitrary \(\epsilon \), set independently of SNR, TDMA provides the same or better performance than SDMA in the low SNR regime:

\[
\lim_{P \to 0} \frac{R_{M_0}}{R_1} \leq 1.
\]

(31)

Proof. In order to proof the theorem, we first prove the following asymptotic relation between SDMA and TDMA in 2 extreme cases:

\[
0 \leq \lim_{P \to 0} \frac{R_{M_0}}{R_1} \leq \frac{1}{M_0} \quad \text{if } \epsilon = 0,
\]

(32)

\[
0 \leq \lim_{P \to 0} \frac{R_{M_0}}{R_1} \leq 1 \quad \text{if } \epsilon = 1.
\]

(33)

First, we note that the relation \(\lim_{P \to 0} (R_{M_0}/R_1) \geq 0 \) follows from the fact that both \(R_{M_0} \) and \(R_1 \) are greater than zero for positive \(P \). In order to proof the upper bound on \(\lim_{P \to 0} (R_{M_0}/R_1) \) for \(\epsilon = 0, 1 \), we consider an upper bound on the sum rate, provided by using Metric 4. Since in this case \(\alpha = 0 \), we use the sum-rate function given in (22). We obtain the following result:

\[
\lim_{P \to 0} \frac{R_{M_0}}{R_1} \leq \lim_{P \to 0} \frac{\sum_{i=1}^{M_0} \log_2 \left[1 + \sum_{n=1}^{K_i} \mathcal{B}_n \mathcal{K}_{1,n} (P/n) / Cn \right]}{\log_2 \left[1 + \sum_{n=1}^{K} \mathcal{B}_n \mathcal{K}_{1,n} (P/n) \right]}
\]

(34)

where (a) follows from applying L’Hôpital’s rule, with \((1/C)' = \partial (1/C) / \partial P = M_0 / [M_0 + (M - 1) \beta P]^2 \), and (b) follows from \(\lim_{P \to 0} (1/C)' = 1/M_0 \). For the case \(\epsilon = 0 \), we have that \(K_i = K \) and \(K_i = 0 \) for \(i \geq 2 \). Hence, it can be seen from (34) that the ratio becomes 1/\(M_0 \), thus yielding (32). For the case \(\epsilon = 1 \), we get \(K_i = K - i + 1, i = 1, \ldots, M_0 \). For simplicity, we provide a looser upper bound by considering \(K_i = K - i + 1, i = 1, \ldots, M_0 \), which yields the result described in (33). Since intermediate values of \(\epsilon \) independent of the SNR will yield values for (34) in the range \((1/M_0, 1) \), we obtain the desired result.

7. **Numerical Results**

Figure 5 shows a performance comparison in terms of sum rate versus orthogonality factor \(\epsilon \) for various levels of channel state information at the transmitter (CSIT). The simulated system has \(M = 2 \) antennas and a simple codebook of \(B = 1 \) bit. The number of active users is \(K = 10 \) and the average SNR = 20 dB. The upper curve corresponds to the sum rate obtained with transmit matched filtering, with perfect CSIT and exhaustive search. Hence, its average rate is not a function of the orthogonality factor. The lower curve corresponds to the sum rate that the system can guarantee when the CSIT consists of quantized channel directions and Metric 3 as scalar feedback (equivalent to Metric 1 for \(M = 2 \)). Thus, this curve corresponds to a lower bound on the actual sum rate that the system can achieve. Finally, the third curve corresponds to the sum rate of a system with
due to the fact that a simple transmission technique has been worse scaling than RBF and the perfect CSIT solution. This is the multiuser diversity. Note that all schemes exhibit slightly feedb ack and full CSIT.

Using Metrics 1, 2, and 4 are assumed to appropriately set M_0 and ϵ both for transmission and metric computation, maximizing the sum rate for each K and SNR pair. On the other hand, the scheme with Metric 2 uses optimal ϵ values in each scenario.

Figure 6 shows a performance comparison in terms of sum rate versus number of users for $\text{SNR} = 10$ dB, in a cell with realistic number of active users. The scheme based on Metric 1 provides slightly better performance than the other schemes. The scheme based on Metric 3 exhibits worse scaling with the number of users, thus exploiting less effectively the multiuser diversity. Note that all schemes exhibit slightly worse scaling than RBF and the perfect CSIT solution. This is due to the fact that a simple transmission technique has been used, TxMF, since beamforming design is beyond the scope of this paper. In order to restore the optimal scaling with K, zero-forcing beamforming (ZFBF) can be performed at the transmitter based on the available channel quantizations, as discussed in [13].

Figure 7 depicts the performances of different schemes in the low-mid SNR region, in a setting with $K = 10$ users. As the average SNR in the system increases, the sum rate of schemes using Metrics 1 and 3 for feedback converges to the same value. They exhibit linear increase in the high SNR region as expected, which corresponds to a TDMA solution. The scheme that uses Metric 4 for scheduling also benefits from a variable number of active beams, although providing worse performance than the systems using Metrics 1 and 3. Since in the simulated system the number of codebook bits B is not increased proportionally to the average SNR, as discussed in [9], the scheme using Metric 2 ($M_0 = M$) exhibits an interference-limited behavior, flattening out at high SNR.

8. CONCLUSIONS

A design framework for scalar feedback in MIMO broadcast channels with limited feedback has been presented. In order to perform user scheduling, these metrics may contain information such as channel power gain, quantization error, orthogonality factor between beamforming vectors, and/or number of active beams. An approximation on the sum rate has been provided for the proposed family of metrics, which has been validated through simulations. As it has been shown, the proposed sum-rate function is a powerful design tool and enables simple analysis. A sum-rate comparison between SDMA and TDMA has been provided in several extreme regimes. Particularly, SDMA outperforms TDMA as the number of users becomes large. TDMA provides better...
rates than SDMA in the high SNR regime (interference-limited region). Moreover, the importance of optimizing the orthogonality factor ϵ in the low SNR regime has been highlighted. Several metrics have been presented based on the proposed design framework, illustrating their performances through numerical simulations. The system sum rate can be drastically improved by considering a variable number of active beams adapted to each scenario. In addition, scalar metrics based on SNR lower bounds can provide benefits from a point of view of QoS and feedback reduction.

APPENDICES

A. PROOF OF PROPOSITION 1

Define the following changes of variables:

$$\psi := \sin^2 \theta_h, \quad x := \frac{1}{\delta} \phi (1 - \psi),$$

$$\phi := ||\mathbf{h}_k||^2, \quad y := \frac{1}{\delta} \phi \psi.$$ (A.1)

Then, the metric in (10) can be expressed as

$$\xi = \frac{x}{\alpha x + \beta y + 2 \gamma \sqrt{\alpha y + \lambda}},$$

where $\lambda = \delta M_0 / P$. Note that $\xi \leq 1/\alpha$, with equality for $P \rightarrow \infty$.

The Jacobian of the transformation $x = f(\phi, \psi), y = g(\phi, \psi)$ described in (A.1) is given by

$$f(\phi, \psi) = \begin{vmatrix} \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\ \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi} \end{vmatrix} = \frac{\phi}{\delta^2}.$$ (A.3)

Expressing ϕ and ψ as a function of x and y, we have $\phi = \delta (x + y)$ and $\psi = y/(x + y)$. Substituting in the Jacobian, we get $f(x, y) = (x + y)/\delta$. Since ϕ and ψ are independent random variables for i.i.d. channels, the joint probability density function (pdf) of x and y is obtained from $f_{xy}(x, y) = (1/f(x, y)) \delta \{y/(x + y)\}$. The pdf of ϕ is

$$f_\phi(\phi) = \frac{\phi^{M-1}}{\Gamma(M)} e^{-\phi},$$

where $\Gamma(M) = (M-1)!$ is the complete gamma function. The pdf f_ϕ is obtained from the cdf of ψ given in (6). Hence, we get the joint density

$$f_{xy}(x, y) = \frac{\delta}{\Gamma(M-1)} e^{-\delta (x+y)} y^{M-2}.$$ (A.5)

The cdf of the proposed SINR metric is found by solving the integral

$$F_\xi(s) = \int_{x,y \in D_s} f_{xy}(x, y) dx \, dy.$$ (A.6)

The bounded region D_s in the xy-plane represents the region where the inequality $x/(\alpha x + \beta y + 2 \gamma \sqrt{\alpha y + \lambda}) \leq s$ holds. Isolating x on the left side of the inequality, D_s can be equivalently described as $x \leq g(y)$, with $g(y)$ given by

$$g(y) = \frac{2y^2 + \beta s(1-\alpha s)}{\lambda s + \sqrt{y^2 s^2 + \beta s(1-\alpha s)}} + \varphi(s),$$

where $\varphi(s) = \lambda s/(1-\alpha s)$. Since using $g(y)$ in the integration limits yields difficult integrals, we use the following linear approximation:

$$g(y) \approx m(s) y + \varphi(s),$$

where the slope $m(s)$ corresponds to the oblique asymptote of $g(y)$:

$$m(s) = \lim_{y \rightarrow \infty} \frac{\partial g(y)}{\partial y} = \frac{2y s + \sqrt{y^2 s^2 + \beta s(1-\alpha s)}}{(1-\alpha s)^2} + \frac{\beta s(1-\alpha s)}{(1-\alpha s)^2}.$$ (A.9)

Note that, since $0 \leq s \leq 1/\alpha$, then $m(s) \geq 0$ for all s. In addition, since the domain of s is $D_s = [0, \delta]$, we also obtain the inequalities $y/(x + y) \geq 0, y/(x + y) \leq \delta$, and thus $x \geq ((1-\delta)/\delta) y$. Hence, $F_\xi(s)$ is obtained by integrating $f_{xy}(x, y)$ over the first quadrant of the xy-plane, in the region defined by $x \leq g(y)$ and $x \geq ((1-\delta)/\delta) y$. Depending on the slopes of these linear boundaries, the integral in (A.6) is carried out over different regions

$$F_\xi(s) \approx \begin{cases} \int_0^\infty \int_0^\infty \int_0^\infty f_{xy}(x, y) dx \, dy, & \text{for } m \geq \frac{1-\delta}{\delta}, \\
\int_0^\infty \int_0^\infty f_{xy}(x, y) dx \, dy, \quad 0 \leq m < \frac{1-\delta}{\delta}. \end{cases}$$

(A.10)
The upper integration limit y_c along the y axis in the region $0 \leq m < (1 - \delta)/\delta$ corresponds to the value of y in which the linear boundaries intersect

$$y_c = \frac{\lambda s(1 - \alpha s)\delta}{(1 - \delta)^2 - \beta s(1 - \alpha s)\delta - 2\sqrt{s(1 - \alpha s) + \gamma^2 s^2}\delta}.$$

(A.11)

Expressing the regions of the domain of $F_\xi(s)$ as function of s_c, defined as the crossing point between $m(s)$ and $(1 - \delta)/\delta$, and substituting (A.5) into (A.10), the cdf of ξ is found from the following integrals:

$$F_\xi(s) \approx \begin{cases}
\frac{\delta}{\Gamma(M - 1)} \int_0^m e^{s_y \gamma M - 2} e^{-\delta s_y} ds_y dy, & s_c \leq s < 1/\alpha, \\
\frac{\delta}{\Gamma(M - 1)} \int_0^{y_c} e^{s_y \gamma M - 2} e^{-\delta s_y} ds_y dy, & 0 \leq s < s_c,
\end{cases}$$

(A.12)

where s_c is given by

$$s_c = \frac{a(1 - \delta)^2 + \beta(1 - \delta)\delta - 2\sqrt{\gamma^2(1 - \delta)^2 \delta}}{a^2(1 - \delta)^2 + 2a\beta(1 - \delta)\delta + \delta(\beta^2 \delta - 4\gamma^2(1 - \delta))}.$$

(A.13)

Solving the integrals in (A.12), the resulting cdf becomes

$$F_\xi(s) = \begin{cases}
1 - \frac{e^{-M_0 s/P(1 - \alpha s)}}{\delta^{M-1}(1 + m)^{M-1}}, & s_c \leq s < 1/\alpha, \\
1 - \frac{e^{-M_0 s/P(1 - \alpha s)}}{\delta^{M-1}(1 + m)^{M-1}} + \Phi(s), & 0 \leq s < s_c,
\end{cases}$$

(A.14)

where $\Phi(s) = 1/\Gamma(M - 1)(e^{-M_0 s/P(1 - \alpha s)}/\delta^{M-1}(1 + m)^{M-1})\Gamma(M - 1, (s + 1)y_c - s_c)$. Let $C = M_0 s/P + (M - 1)\beta$, then the integral in (B.17) is approximated by the following integral:

$$\int_0^{1/\alpha} e^{-C n/(1 - \alpha s)} = \frac{1}{\alpha} \left[1 + \frac{C n}{\alpha} e^{-\gamma \alpha} E_i \left(- \frac{C n}{\alpha} \right) \right],$$

(B.20)

where $E_i(x)$ is the exponential integral function, defined as $E_i(x) = -\int_0^\infty e^{-t}/t dt$. By substituting the approximated value of the integral found above into (B.17), and using the definitions of B_m, $K_{m,n}$, and P_m given in Theorem 2, we obtain the desired approximation for the sum rate.

REFERENCES

Special Issue on
Design and Architectures for Signal and Image Processing

Call for Papers
The development of complex applications involving signal, image, and control processing is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation.

Today such sequential design flow is reaching its limits due to:
- The complexity of today’s systems designed with the emerging submicron technologies for integrated circuit manufacturing
- The intense pressure on the design cycle time in order to reach shorter time-to-market, reduce development and production costs
- The strict performance constraints that have to be reached in the end, typically low and/or guaranteed application execution time, integrated circuit area, overall system power dissipation

An alternative approach to a traditional design flow, called algorithm-architecture matching, aims to leverage the design flow by a simultaneous study of both algorithmic and architectural issues, taking into account multiple design constraints, as well as algorithm and architecture optimizations, not only in the beginning but all the way throughout the design process.

Introducing such design methodology is also necessary when facing the new emerging applications such as high-performance, low-power, low-cost mobile communication systems and/or smart sensors-based systems.

This design methodology will have to face also future architectures based on multiple processor cores and dedicated coprocessors to achieve the required efficiency. NoC-based communications will become also mandatory for many applications to enable parallel interconnections and communication throughputs. Adaptive and reconfigurable architectures represent a new computation paradigm whose trend is clearly increasing.

This forms a driving force for the future evolution of embedded system designs methodologies.

This special issue of the EURASIP Journal of Embedded Systems is intended to present innovative methods, tools, design methodologies, and frameworks for algorithm-architecture matching approach in the design flow including system level design and hardware/software codesign, RTOS, system modeling and rapid prototyping, system synthesis, design verification and performance analysis and estimation. Because in such design methodology the system is seen as a whole, this special issue will also cover the following topics:

- New and emerging architectures: SoC, MPSoC, configurable computing (ASIPs), (dynamically) reconfigurable systems using FPGAs
- Smart sensors: audio and image sensors for high performance and energy efficiency
- Applications: Automotive, medical, multimedia, telecommunications, ambient intelligence, object recognition, cryptography, wearable computing

This special issue is open to all contributions. Authors are invited to submit their papers addressing the domain of design and architectures for signal and image processing. We also strongly encourage authors who presented a paper to the DASIP 2007 workshop to submit an extended version of their original workshop contributions.

Authors should follow the EURASIP Journal on Embedded Systems manuscript format described at the journal site http://www.hindawi.com/journals/es/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2008</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2008</td>
</tr>
</tbody>
</table>

Guest Editors

Markus Rupp, Institute of Communications and Radio-Frequency Engineering (INTHFT), Technical University of Vienna, 1040 Vienna, Austria; mrupp@nt.tuwien.ac.at

Dragomir Milojevic, BEAMS, Université Libre de Bruxelles, CP165/56, 1050 Bruxelles, Belgium; dragomir.milojevic@ulb.ac.be

Guy Gogniat, LESTER Laboratory, University of South Brittany, FRE 2734 CNRS, 56100 Lorient, France; guy.gogniat@univ-ubs.fr
6th International Symposium on
COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING (CSNDSP'08)
23-25 July 2008, Graz University of Technology, Graz, Austria

www.csndsp.com

First Call for Papers

Following the success of the last event, and after 10 years, the CSNDSP steering committee decided to hold the next event at the Graz University, Austria. Graz was the 2003 cultural capital of Europe. CSNDSP, a biannual conference, started in UK ten years ago and in 2006 it was held for the first time outside UK in Patras/Greece. CSNDSP has now been recognised as a forum for the exchange of ideas among engineers, scientists and young researchers from all over the world on advances in communication systems, communications networks, digital signal processing and other related areas and to provide a focus for future research and developments. The organising committee invites you to submit original high quality papers addressing research topics of interest for presentation at the conference and inclusion in the symposium proceedings.

Papers are solicited from, but not limited to the following topics:

- Adaptive signal processing
- ATM systems and networks
- Chip design for Communications
- Communication theory
- Coding and error control
- Communication protocols
- Communications for disaster management
- Crosslayer design
- DSP algorithms and applications
- E-commerce and e-learning applications
- Intelligent systems/networks
- Internet communications
- High performance networks
- Mobile communications, networks, mobile computing for e-commerce
- Mobility management
- Modulation and synchronisation
- Modelling and simulation techniques
- Multimedia communications and broadband services
- Microwave Communications
- New techniques in RF-design and modelling
- Network management & operation
- Optical communications
- Optical MEMS for lightwave networks
- RF/Optical wireless communications
- Photonic Network
- Quality of service, reliability and performance modelling
- Radio, satellite and space communications
- RFID & near field communications
- Satellite & space communications
- Speech technology
- Signal processing for storage
- Teletext models and traffic engineering
- VLSI for communications and DSP
- Wireless LANs and ad hoc networks
- 3G/4G network evolution

- Any other related topics

- Papers may be presented in the form of Oral presentation and/or Poster presentations by MPhil/PhD research students are particularly encouraged.

Submission Dates:

- Full Paper due: 27th Jan, 2008
- Notification of acceptance by: 1st April 2008
- Camera ready paper due: 5th May 2008

- Electronic submission by e-mail to: csndsp08@tugraz.at
- All papers will be refereed and published in the symposium proceeding. Selected papers will be published in: The Mediterranean Journal of Computers and Networks and Electronic Communications, and possibly IET proceedings.
- A number of travel grants and registration fee waivers will be offered to the delegates.

Fees: 360.00 EURO, (Group Delegates of 3 persons: 760.00 Euro)

CSNDSP’08 General Information
Contact: Dr. Erich Leitgeb - Local Organising Committee Chair

Institute of Broadband Communications, Graz University of Technology, A-8010 Graz, Inffeldg. 12, Tel.: ++43-316-873-7442, Fax.: ++43-316-463697.
Email: erich.leitgeb@tugraz.at, Web-site: http://www.inw.tugraz.at/ibk
CALL FOR PAPERS
3DTV CONFERENCE 2008
THE TRUE VISION
CAPTURE, TRANSMISSION AND DISPLAY OF VIDEO
28-30 MAY 2008, HOTEL DEDEMAN, ISTANBUL, TURKEY

Following the conference of 2007, the second 3DTV Conference will be held in Istanbul, Turkey in May, 2008. The aim of 3DTV-Con is to bring researchers from different locations together and provide an opportunity for them to share research results, discuss the current problems and exchange ideas.

The conference involves a wide range of research fields such as capturing 3D scenery, 3D image processing, data transmission and 3D displays. You are cordially invited to attend 3DTV-Con 2008 and submit papers reporting your work related to the conference themes listed below.

Conference Topics

3D Capture and Processing:
- 3D time-varying scene capture technology
- Multi-camera recording
- 3D photography algorithms
- Dense stereo and 3D reconstruction
- Synchronization and calibration of camera arrays
- 3D view registration
- Multi-view geometry and calibration
- Holographic camera techniques
- 3D motion analysis and tracking
- Surface modeling for 3D scenes
- Multi-view image and 3D data processing
- Integral imaging techniques

3D Visualization:
- 3D mesh representation
- Texture and point representation
- Object-based representation and segmentation
- Volume representation
- 3D motion animation
- Stereoscopic display techniques
- Holographic display technology
- Reduced parallax systems
- Underlying optics and VLSI technology
- Projection and display technology for 3D videos
- Integral imaging techniques
- Human factors

3D Transmission:
- Systems, architecture and transmission in 3D
- 3D streaming
- Error-related issues and handling of 3D video
- Hologram compression
- Multi-view video coding
- 3D mesh compression
- Multiple description coding for 3D
- Signal processing for diffraction and holographic 3DTV

3D Applications:
- 3D imaging in virtual heritage and virtual archaeology
- 3D teleimmersion and remote collaboration
- Augmented reality and virtual environments
- 3D television, cinema, games and entertainment
- Underlying Technologies for 3DTV
- Medical and biomedical applications
- 3D content-based retrieval and recognition
- 3D watermarking

Paper Submission

Contributors are invited to submit full papers electronically using the online submission interface, following the instructions at http://www.3dtv-con.org. Papers should be in Adobe PDF format, written in English, with no more than four pages including figures, with a font size of 11. Conference proceedings will be published online by IEEE Xplore.

Important Dates

- Special sessions and tutorials proposals deadline: 14 December 2007
- Regular paper submission deadline: 11 January 2008
- Notification of paper acceptance: 29 February 2008
- Camera-ready paper submission deadline: 21 March 2008
- Conference: 28-30 May 2008

Sponsors