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Hard Fairness Versus Proportional Fairness in
Wireless Communications: The Single-Cell Case
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Abstract—We consider a wireless communication system formed
by a single cell with one base station and K user terminals. User
channels are characterized by frequency-selective fading due to
small-scale effects, modeled as a set of M parallel block-fading
channels, and a frequency-flat distance-dependent path loss. We
compare delay-limited systems with variable-rate systems under
fairness constraints, in terms of the achieved system spectral
efficiency (bit/s/Hz) versus Eb=N0. The considered delay-lim-
ited systems impose “hard-fairness”: every user transmits at its
desired rate on all blocks, independently of its fading conditions.
The variable-rate system imposes “proportional fairness” via the
popular Proportional Fair Scheduling (PFS) algorithm, currently
implemented in 3G wireless for data (delay-tolerant) applica-
tions. We find simple iterative resource allocation algorithms that
converge to the optimal delay-limited throughput for orthogonal
(frequency-division multiple access (FDMA)/time-division mul-
tiple access (TDMA)) and optimal (superposition/interference
cancellation) signaling. In the limit of large K and finite M we
find closed-form expressions for as a function of Eb=N0. We
show that in this limit, the optimal allocation policy consists of
letting each user transmit on its best subchannel only. Also, we
find a simple closed-form expression for the throughput of PFS in
a cellular environment, that holds for any K and M . Finally, we
obtain closed-form expressions for versus Eb=N0 in the low and
high spectral efficiency regimes.

The conclusions of our analysis in terms of system design guide-
lines are as follows: a) if hard fairness is a requirement, orthog-
onal access incurs a large throughput penalty with respect to the
optimal (superposition coding) strategy, especially in the regime of
high spectral efficiency; b) for high spectral efficiency, PFS does not
provide any significant gain and may even perform worse than the
optimal delay-limited system, despite the fact that the imposed fair-
ness constraint is laxer; c) for low to moderate spectral efficiency,
the stricter hard-fariness constraint incurs in a large throughput
penalty with respect to PFS.

Index Terms—Code-division multiple access (CDMA), delay-
limited capacity, proportional fair scheduling, uplink–downlink
duality.
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I. INTRODUCTION

WE consider the uplink and the downlink of a wireless
communication system with one base station and user

terminals. Each user is affected by a position-dependent path
loss, fixed in time, and by a slowly time-varying frequency-
selective fading channel modeled as parallel block-fading
channels [1].

We study the system throughput (total spectral efficiency)
versus under hard fairness and proportional fairness con-
straints. By “hard fairness” we mean a system where each user
transmits at its own desired rate, determined independently of
the actual fading channel realization, and the system struggles
to accommodate each user’s rate request. This corresponds to
the so-called delay-limited capacity of fading multiple-access
channels [2]. When such strict rate constraint is relaxed, the no-
tion of throughput (or ergodic) capacity region [3] becomes rel-
evant: in our context, this is the long-term average rate region
achievable when the users adapt their rate and power according
to the actual channel conditions.1 It is well known that the max-
imum long-term average throughput is achieved by letting only
the user with the best channel transmit on each time–frequency
coding interval (referred to as “slot” in the following) [3], [4].
However, in a cellular environment, where users are at different
distance from the base station, this strategy would result in a
very unfair resource allocation where basically only the users
closest to the base station are allowed to transmit, while the
users far from the base station would starve. To cope with this
“near–far effect,” various scheduling algorithms aiming at max-
imizing the long-term average throughput subject to some fair-
ness constraint have been proposed. Among these, the Propor-
tional Fair Scheduling (PFS) algorithm [5] enjoys many desir-
able properties and was adopted in some evolutionary 3G wire-
less communication standards [6], [7] for delay-tolerant data-
oriented communications. By “proportional fairness” we mean
a system that schedules the users according to the PFS policy.

Our analysis allows us to quantify the effect of imposing
hard fairness versus proportional fairness in a cellular environ-
ment, for given and channel statistics. For finite , we
find simple iterative resource allocation algorithms that prov-
ably converge to the optimal delay-limited throughput. Also, in
the limit of very large and finite we find closed-form ex-
pressions for the delay-limited throughput. We show that, for
both optimal and orthogonal signaling, the optimal strategy in

1When coding over an arbitrarily large number of fading blocks is allowed,
the same ergodic capacity region can be achieved by fixed-rate variable-power
transmission. However, due to our assumption of block-fading channel, in this
work we assume that a coding interval spans a single fading realization. Hence,
the variable rate and power scheme is in place.
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the limit of large consists of letting the users transmit on their
own best subchannel only, irrespective of the other users. This
result suggests a system where the users are able to “listen wide-
band,” i.e., measure their channel gain on all the subchannels,
and “talk narrowband,” i.e., they will transmit only on their best
subchannel.

In the case of PFS, we find a simple closed-form expression
for the throughput in the considered cellular environment that
holds for any and .

Finally, we carry out a closed-form analysis of the throughput
versus system in the high and low spectral efficiency re-
gions, for all systems under consideration. Our analysis shows
that, in the high spectral efficiency (high signal-to-noise ratio
(high-SNR)) region, the penalty incurred by imposing hard fair-
ness is generally small. Furthermore, in some cases of prac-
tical interest (with reasonably large but finite ), the optimal
delay-limited system may outperform PFS for high spectral effi-
ciency. On the contrary, the gain of PFS over any delay-limited
system can be significant in the low spectral efficiency region
(low SNR).

The proofs are mainly collected in the Appendices, in order
to keep the flow of exposition.

II. BACKGROUND

A. Capacity Region, Power Region, and

The -user Gaussian multiple-access channel

(1)

has capacity region given by [8]

(2)

with denoting the received energy per symbol of user [9]
and denoting the noise power spectral density.

If orthogonal signaling, e.g., by time-division multiple ac-
cess (TDMA) or frequency-division multiple access (FDMA),
is used, the achievable rate region is given by

(3)

subject to

(4)

where denotes the resource-sharing fraction (proportion
of channel dimensions) given to user . If these fractions are
chosen appropriately, the optimal sum rate can be achieved.
See Fig. 1 for an illustration in the case of users.

Fig. 1. Capacity region for two users with E =N = 7 and E =N = 3

[10]. The “lower” curve refers to orthogonal signaling.

Fig. 2. Received power region for two users with R = 3; R = 2 bits, and
N = 1 [10]. The “upper” curve refers to orthogonal signaling.

The received power region supporting a given set of user rates
is obtained solving the equations in (2) and the equa-
tions in (3) for the symbol energies. This yields

(5)
for optimal signaling and

(6)

for orthogonal signaling, respectively, as shown in Fig. 2. Again,
constraining to orthogonal signaling does not increase the re-
quired sum power if the fractions are chosen appropriately.

Next, we introduce the propagation channel gains by formu-
lating the problem in terms of transmit powers: namely, the re-
ceived symbol energy is related to the transmit symbol en-
ergy by

(7)

where denotes the channel (power) gain of user . This leads
to a rescaling of the axis in Fig. 2 as illustrated in Fig. 3. The
rescaling of the axis implies that the minimum received power
for given user rates is achieved by a unique vertex of the power
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Fig. 3. Transmit power region for two users with R = 3; R = 2 bits, N =

1; d = , and d = 1 [10]. The “upper” curve refers to orthogonal signaling.

region (assuming all user gains distinct). At this vertex, the re-
ceiver can make use of successive decoding (stripping) without
loss of performance. Clearly, users are decoded in decreasing
order of the strengths of their channels [10], [2].

Constraining to orthogonal signaling implies an increase in
total transmit power unless all channel gains are identical. In
addition, the optimal choice of the fractions is influenced by
the channel gains. In order to help users with bad channels,
their fractions are increased at the expense of users with good
channels.

The minimum total energy supporting a given rate -tuple
with gains is obtained

by finding the symbol energies solution of

subject to (8)

where is the region defined in (2) after letting
. Thanks to the fact that the received energy

region is a contra-polymatroid [2], the solution of (8) is found
explicitly as

(9)

where is the permutation of that sorts the channel
gains in increasing order, i.e.,

where we define the associated “back-substitution” decoding
order given by (decoded first), (decoded last).

With orthogonal signaling, the minimum total energy sup-
porting a given rate -tuple with gains is obtained by
solving

subject to (10)

where is the region defined by (3) and (4), after
letting .

Assume that the channel gain vector is constant over the du-
ration of a codeword and it is randomly distributed according
to some joint probability law. The delay-limited capacity re-
gion [2] is the set of all rate -tuples that can be attained

for all , subject to average power constraints
. In particular, in this work we are interested in the total

system throughput (sum rate) versus the total average transmit
energy. Following [11]–[13], we define the system under
a coding strategy that supports user rates
with sum subject to average transmit energy per
symbol constraints as

(11)

where is expressed in bits.2 In the case of equal individual
rates coincides with the individual
user transmit . In general, for finite , an operating
point on the power/spectral efficiency plane is
a function of both the signaling strategy and of the individual
user rates , as well as of the channel gain joint distribution.
In the following sections, we investigate a regime of large
for which, under mild assumptions on the user individual rates,
the dependency on disappears and the total instantaneous
transmit energy converges to its average value.

B. Downlink

So far, we have treated the multiple-access case, modeling the
uplink of a wireless system with a single base station and many
users. Exploiting the recent result on the duality of the Gaussian
multiple-access and broadcast channels [14], it is immediate to
see that for any set of user rates , the required is
the same for uplink and downlink.

For an orthogonal system this follows trivially from the fact
that the uplink and downlink channel gains are identically dis-
tributed. In the case of optimal signaling, letting
denote the Gaussian broadcast channel capacity region with
gains and transmit energy per symbol , [14] showed that

(12)

Any point on the boundary of corresponds to
the vertex of (for some choice of the individual
transmit energies such that ) as-
sociated to successive decoding in the order .
For what has been said before, this vertex is precisely the
one that minimizes the total multiple-access channel transmit
energy for given user rates and channel gains . Therefore,
for any realization of , the downlink achieves the rate -tuple

with the same (minimal) total transmit energy of the uplink.
It follows that uplink and downlink achieve the same set of
optimal operating points . Therefore, from now
on, we shall focus on the uplink, taking into account that all
the results and conclusions are immediately applicable to the
downlink.

Notice that also the coding/decoding schemes for uplink and
downlink are very similar. In the uplink, each user sends
a Gaussian codeword of rate and energy per symbol .

2Throughout this paper, information rates are generally expressed in nats of
analytical convenience. However, we use the obvious convention that, by defi-
nition, in all expressions that yield E =N the information rates (in particular,
the sum-rate �) are expressed in bits.



CAIRE et al.: HARD FAIRNESS VERSUS PROPORTIONAL FAIRNESS IN WIRELESS COMMUNICATIONS: THE SINGLE-CELL CASE 1369

The receiver gets the superposition of all codewords plus noise
and makes use of stripping decoding in the order of decreasing
channel strength. In the downlink the transmitter sends the su-
perposition of independently selected Gaussian codewords
such that codeword has rate and energy per symbol .
Each receiver makes use of stripping decoding in order to
cancel interference of all users with smaller channel gain, while
treating the users with larger channel gain as background noise.
For the sake of completeness, we mention that the downlink
signal energies are determined recursively from the uplink
signal energies according to [14]

...

(13)

In [14] it is proved that .

III. PARALLEL CHANNELS

We consider parallel block-fading channels, where the
channel gain of each user may differ from channel to channel.
Namely, we let

(14)

This is an accurate model for frequency selectivity where
can be interpreted as the subband index. The system spectral
efficiency is given by

(15)

and it is expressed in bits per second per hertz (bit/s/Hz) or,
equivalently, in bits per dimension.

The theoretical foundations of Gaussian parallel multiple-ac-
cess channels were laid down in [15]. The capacity region of this
channel can be achieved by letting each user split its information
messages into parallel streams, encode them independently,
and send the resulting independent codewords over the parallel
channels. The aggregate rate and aggregate energy per symbol
of user are given by

(16)

(17)

respectively, where and denote the rate and the
energy per symbol allocated by user on subchannel .
Letting , and

, the capacity region for given per-user

energies and channel gains can be written
as

(18)

In other words, the partial rates and energies must obey
the constraints (2) and (5) in each subchannel .

For orthogonal multiple access, we let
, where denotes the resource-sharing

fraction of user over channel . The achievable rate region
under orthogonal signaling can be written as

(19)

A. Delay-Limited Systems

As said earlier, in a delay-limited situation, the rates are
fixed a priori, and the system has to allocate transmit energies
in order to let the rate -tuple inside the achievable rate region.
We wish to find the partial rates allocation (and the resource-
sharing fractions in the case of orthogonal signaling) in order
to minimize the required to maintain a given rate

-tuple.
For optimal signaling, we make use of the fact that the suc-

cessive decoding order depends only on the channel gains, but
not on the rates. This has the important consequences that: 1)
the decoding order is independent of the split of rates into par-
tial rates; 2) the decoding order differs, in general, from sub-
channel to subchannel. Let denote the permutation that sorts
the gains in increasing order. The required transmit energy
per symbol of user in channel is given by

(20)

Optimizing the partial rates in order to minimize

(21)

(recall that is fixed by the user rates), subject to the
constraints (16), is a convex optimization problem that can be
solved with standard tools.

In particular, the constraint (16) is separable and the objective
function (21) is convex. For such problems, it is generally suffi-
cient to optimize with respect to while
holding all other variables constant, then optimize with respect
to , etc., in an iterative fashion, in order
to converge to a globally optimum point. This is referred to as
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the block-coordinate descent algorithm and convergence can be
shown under relatively general conditions [16, Sec. 2.7].

Focusing on the optimization step with respect to
, we notice that when all the other rate variables are

fixed, the objective function can be written in the form

subject to , where the coefficients
depend on the other system variables and can be easily eval-

uated. Using the result of Appendix B, we find the solution in
the form

were is the solution of .
For orthogonal signaling, the transmit energy per symbol of

user in subchannel is given by

(22)

The minimization of (21) with respect to
is also a convex optimization problem. In fact, it can

be checked that the function is convex on
. Since the constraints

and

with and are also separable, we can use again
the coordinate descent algorithm and optimize in sequence, and
iteratively, with respect to the variables while keeping
fixed, and then with respect to the ’s while keeping
fixed. From Appendix B, we find that the optimization with re-
spect to yields

were is the solution of .
The optimization with respect to is

a bit more complicated. The associated Lagrangian function is
given by

(23)

where is the Lagrange multiplier. First, notice that any point
with cannot be a solution. Therefore, the Kuhn–Tucker
conditions must hold with equality and yield

Solving for , we obtain

(24)

where is Lambert’s W function
[17], defined by the equation . The value of
the Lagrange multiplier can be found by solving
(numerically) the equation

(25)

B. Delay-Tolerant Systems

In a delay-tolerant situation, the user rates can be adapted
according to their instantaneous channel conditions. For
simplicity, we consider the case of constant total power trans-
mission (that is more relevant for the downlink, where the
base station can operate always at its peak total power) and
let denote the transmit SNR in each slot. A
similar result is obtained if water-filling power allocation is
used. Moreover, for high SNR, the difference between water
filling and constant total power is negligible. Also, we assume
that the channel gains are independent but not necessarily
identically distributed across the users, and symmetrically
distributed across the channels, that is, for any permutation of

, the joint cumulative distribution function (cdf) of
the channel gains satisfies ,
for all . This means that no subchannel is statistically worse or
better than any other. However, the users might have different
channel gain distributions, i.e., our analysis is not restricted to
the case of symmetric users, as in [4], [5].

It is well known that the long-term average throughput under
a total power constraint is maximized by letting only the user
with the best channel transmit at any time and frequency (sub-
channel) [4], [18], [19]. A system based on such a “max-gain”
allocation yields system parametrically given by the
expression

(26)

where denotes the cdf of (in-
dependent of because of the above symmetry assumption).

Next, we consider a “near–far” situation typical of wireless
cellular systems. Signal propagation is characterized by a fre-
quency-flat factor that depends on the distance between the user
terminal and the base station (path loss), and by a frequency-se-
lective “small-scale” fading that depends on the local scattering
environment around the user terminal [20]. The path loss varies
so slowly in time with respect to the signal bandwidth that it
can be considered constant forever. This corresponds to the re-
alistic assumption that users do not change significantly their
distance from the base station during a large number of con-
secutive slots. On the contrary, the small-scale fading changes
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in time depending on the channel Doppler bandwidth: its coher-
ence time is such that the fading gain can be considered constant
on each slot, but varying according to some stationary ergodic
(possibly correlated) process from slot to slot. This model is re-
ferred to as block fading [1].

We model these two effects by letting , where
denotes the path loss of user (symbol stands for “slow”) and

is the frequency-selective block fading of user in channel
(symbol stands for “fast”). Clearly, and are mutually

statistically independent, as they are due to completely different
propagation effects. Appendix A provides expressions for the
channel gain statistics that we use in our numerical results, that
are relevant to typical cellular systems. In particular, we notice
that the symmetry assumption is satisfied when the users are at
fixed distance from the base station and each frequency-selec-
tive channel obeys the classical uncorrelated scattering wide-
sense-stationary fading model [20], since the small-scale fading
is identically distributed at each frequency.

In such a near–far situation, the above “max-gain” scheduling
would result in a very unfair sharing of the channel resource,
letting basically only the users that are very close to the base
station to transmit. Then, the PFS algorithm has been proposed
to alleviate this problem [5]. PFS allocates user on channel
at any given slot if , where

(27)

where denotes the gain of the th channel of user at
slot time and denotes the long-term average throughput
of user at time . The long-term average user throughputs are
recursively computed by

(28)

The parameter regulates the size of the time window over
which fairness is imposed. Very small implies very large delay
jitter and large total average throughput. On the contrary, large

forces the system to schedule users in an almost round-robin
fashion, as in the case of conventional TDMA/FDMA. Here, in
order to stress the difference between the delay-limited system
and the opportunistic (variable-delay) system, we shall consider
the PFS in the limit of vanishing .

In our case, we have that , where is fixed
(distance dependent) and is a stationary ergodic process
with respect to , independent of , identically distributed for
all , and symmetrically distributed with respect to . Then,
the limit exists. By letting
and initializing , the PFS scheduling rule becomes

(29)

It can be shown (see [21], [22]) that the PFS in the limit of van-
ishing maximizes over all possible scheduling
algorithms (proportional fairness property). We shall take this

as the defining property of PFS in this regime. We have the fol-
lowing statement.

Theorem 1: For any given and fixed path loss compo-
nents , under the channel gain statistics de-
fined above, the long-term average throughput achieved by PFS
is given by

(30)

where is the cdf of (indepen-
dent of the channel index ).

Proof: See Appendix C.

Assume now that the path loss is identically distributed
for all users (e.g., in Appendix A we consider the case of users
independently and uniformly distributed in a disk-shaped cell).
As a corollary of Theorem 1, it follows that the average spectral
efficiency as a function of , where expectation is
taken also with respect to the (random) path loss, is given im-
plicitly by

(31)

where denotes the cdf of
and is distributed as the path loss of a random user in the
system.

This parallels the expression (26) for the (unfair) max-gain
scheduling, with the replacement of (cdf of the
maximum over the combined path loss and fading gain) with

(cdf of the maximum over the fading, with
random path loss).

Figs. 4 and 5 compare the spectral efficiency achieved by
PFS and delay-limited systems for finite number of users

(in Fig. 5 we show only the case
and for the optimized-orthogonal system for the sake
of clarity). In all cases, spectral efficiency improves with .
This effect is known as multiuser diversity. However, the ef-
fect of multiuser diversity is quite different in the delay-lim-
ited and delay-tolerant setting. While for the delay-tolerant sys-
tems increasing yields a gain in terms of for all
spectral efficiencies (roughly, a horizontal shift of the versus

curve), for the delay-limited systems increasing
yields a change only for large spectral efficiency. This effect
will be analyzed in depth in Section V, where the high and low
spectral efficiency region will be explicitly addressed.

IV. DELAY-LIMITED SYSTEMS FOR A

LARGE NUMBER OF USERS

In this section, we study the delay-limited systems in the limit
of large . As we shall see, this asymptotic analysis yields both
elegant closed-form expressions for as a function
of spectral efficiency , and some interesting considerations on
system design that will be pointed out later on. We make the
following assumptions:
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Fig. 4. Spectral efficiency versus system E =N for PFS and optimal delay-limited signaling. The curve for conventional TDMA/FDMA and K = 1 users
is shown for comparison. The channel parameters are M = 10, path loss exponent � = 2, and radius of the forbidden region around the base station (see
Appendix A) � = 0:01.

Fig. 5. Spectral efficiency versus systemE =N for PFS and optimized-orthogonal delay-limited signaling. The curve for conventional TDMA/FDMA andK =

1 users is shown for comparison. The channel parameters areM = 10, path loss exponent � = 2, and radius of the forbidden region around the base station (see
Appendix A) � = 0:01.
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[A1] is fixed while becomes arbitrarily large.

[A2] As , the empirical joint channel gain distribu-
tion, defined by

(32)

converges almost surely to a given deterministic cdf
. Moreover, is assumed to be

symmetric, in the sense already defined before. In
particular, the marginal cdfs of are identical.

[A3] For a given system throughput , the user individual
rates are given by , where is the rate
allocation factor for user . As , the empirical
rate allocation distribution, defined by

(33)

converges almost surely to a given deterministic cdf
with mean and support in as ,

where are constants independent
of .

[A4] The rate allocation factors are fixed a priori, in-
dependently of the realization of the channel
gains. Therefore, the empirical joint distribution of

converges to the
product cdf . We remark here
that this assumption reflects the delay-limited nature
of the problem: the user rates are fixed a priori and
independently of the channel gain realization.

The performance of delay-limited systems in the limit of large
number of users is given by the following results.

Theorem 2: Under the assumptions A1, A2, A3, and A4, as
the minimum for given system spectral

efficiency is given by

(34)

where is the limit cdf of the empirical distribution of
, as . This is achieved by letting each

user transmit on its best subchannel only, and by using superpo-
sition coding and successive decoding on each subchannel.

Proof: See Appendix D.

Theorem 3: Under the assumptions A1, A2, A3 and A4, as
the minimum for given spectral efficiency

achieved by orthogonal signaling is given by

(35)
where is defined as in Theorem 2, is Lambert’s
W function, and where is the solution of

(36)

This is achieved by letting each user transmit on its own best
subchannel only, and by using orthogonal signaling with opti-
mized fractions on each subchannel.

Proof: See Appendix E.

We shall compare the optimal and the optimized-orthogonal
delay-limited systems of Theorems 2 and 3 with a conventional
TDMA/FDMA system, where each user chooses its own best
channel to transmit, but resource allocation (the fractions )
are proportional to the users’ requested rates, disregarding the
actual channel gains. Interestingly, most “radio resource man-
agement” schemes in today’s wireless systems follow approxi-
mately this rule and therefore they are suboptimal. The perfor-
mance of conventional TDMA/FDMA is given by

Theorem 4: Under the assumptions A1, A2, A3, and A4, as
the for given system spectral efficiency

, achieved by letting each user transmit on its best subchannel
only and allocating a fraction of channel uses proportional to its
individual rate, is given by

(37)

where is defined as in Theorem 2.
Proof: See Appendix F.

Not surprisingly, a conventional TDMA/FDMA system that
does not make use of optimized resource allocation fractions

as given by Theorem 4 behaves like a single-user system
with spectral efficiency and channel gain . This
is because each user, in order to maintain its own rate on every
slot, has to invert its channel as if it was alone in the system. In
fact, (37) coincides with the spectral efficiency versus
for a single-user system under the channel inversion power con-
trol strategy.

For the sake of further comparisons with the PFS system,
we notice here that for the channel model accounting for path
loss and frequency selective fading , introduced in
Section III-B and, in greater details, in Appendix A, the limit
cdf coincides with , i.e., the cdf of the
product of a random path loss with . In-
tuitively, since , the PFS is able to exploit a much
larger multiuser diversity (order ) than the delay-limited sys-
tems (order ). This will be evident from the results of next
section.

V. LOW AND HIGH SPECTRAL EFFICIENCY BEHAVIORS

We wish to quantify the multiuser diversity gain of the
optimal delay-limited systems of Theorems 2 and 3 over the
conventional TDMA/FDMA system of Theorem 4. Then, we
shall also quantify the loss incurred by delay-limited systems
with respect to opportunistic variable-delay variable-rate sys-
tems based on PFS.

Our comparison is based on the spectral efficiency as a
function of . In particular, we focus on the low and
high spectral efficiency regimes, as defined in [9], [11]. In gen-
eral, the low spectral efficiency behavior is character-
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ized by the minimum system , denoted by
and the wideband slope , such that [9]

(38)

The high spectral efficiency behavior is characterized
by the high-SNR slope and by the horizontal decibel penalty

, such that [11]

(39)

We start with the low spectral efficiency regime. All the delay-
limited systems achieve the same that can be ob-
tained by letting in (34), (35), and in (37), and it is given
by

(40)

The advantage of optimal over conventional delay-limited sig-
naling is evidenced by the wideband slope, provided by the fol-
lowing theorem.

Theorem 5: Under the assumptions A1, A2, A3, and A4, as
the wideband slope (in bit/dimension/3 dB) of

the spectral efficiency versus curve for the delay-
limited systems is given by

(41)

(42)

(43)

Proof: See Appendix H.

The low spectral efficiency behavior of the PFS system is
easily obtained from (31) by letting and using the
results of [9]. We have

(44)

Notice that, under mild conditions on the fading distribution,
goes to zero as . For the channel statistics

of Appendix A, are independent and identically distributed
(i.i.d.) central chi-squared distributed and, for large , we have
that [23]

(45)

Since is finite, goes to zero as .

As far as the wideband slope is concerned, direct application
of the results in [11] yields

(46)

When (45) holds, it is easy to see that

By comparing (40) and (44) under the channel statistics of Ap-
pendix A, we notice that for low spectral efficiency the gain
of the opportunistic scheme over the delay-limited scheme is
twofold: on the one hand it achieves larger multiuser diversity as

, on the other hand it achieves a “Jensen’s inequality”
gain due to the convexitiy of . We conclude that for low spec-
tral efficiency the cost of imposing a strict constraint on rate and
delay is very high. In fact, the optimal delay-limited system does
not benefit in terms of over a conventional orthog-
onal system (or a single-user system). In this regime, multiuser
diversity appears only as a second-order effect, as a gain in the
wideband slope.

Next, we focus on the high spectral efficiency regime. In this
case, the spectral efficiency slope of optimal delay-limited sig-
naling in the limit of large is easily obtained from the defini-
tion (39) and Theorem 2 as

(47)

where the last step follows as an application of Varadhan’s in-
tegral lemma [24]. High-SNR slope equal to is not surprising,
and it is a common feature of any scheme that makes full use
of all system degrees of freedom. After rather trivial calcula-
tions it is easy to show that all other systems considered in this
paper achieve the same . However, they may differ
significantly in their horizontal decibel penalty, as it will be
illustrated in the remainder of this section. The conventional
TDMA/FDMA system yields (calculation is immediate)

(48)

For the optimal delay-limited signaling, we have the following
surprising behavior, already noticed in [10, Sec. 5.2.2] for the
case of frequency-flat path-loss only.

Theorem 6: Under the assumptions A1, A2, A3, and A4, as
the horizontal decibel penalty of the optimal delay-

limited system is given by

(49)

Proof: See Appendix I.
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Fig. 6. Spectral efficiency versus systemE =N for the optimal, optimized-orthogonal, and conventional TDMA/FDMA delay-limited systems forK =1. The
channel parameters are M = 10, path loss exponent � = 2, and radius of the forbidden region around the base station (see Appendix A) � = 0:01. The dotted
lines correspond to the low spectral efficiency approximation (38).

In particular, for and (path-loss only), when
is distributed as in (52), we have that diverges to

as

where is the path-loss exponent. This is the same result found
in [10, Sec. 5.2.2] using a more refined (but more complicated)
direct calculation. For the case (frequency-selective
fading only, path-loss equal to ), then is given by (54)
and we obtain that diverges to as

In both cases, and more in general, in all cases where
is strictly increasing for all sufficiently large , the horizontal
decibel “penalty” diverges to , indicating that optimal
delay-limited signaling yields unbounded decibel gain over the
corresponding conventional TDMA/FDMA system.

The following result provides the horizontal decibel penalty
of optimized-orthogonal delay-limited signaling.

Theorem 7: Under the assumptions A1, A2, A3, and A4, as
the horizontal decibel penalty of the optimized-orthog-

onal delay-limited system is given by

(50)

Proof: See Appendix J.

Finally, for the opportunistic PFS system we obtain, after
simple direct calculation

(51)

In the limit of large , for channel statistics such that (45) holds,
we have the behavior , typical of mul-
tiuser diversity systems [25], [5], [23].

Comparing (48), (50), and (51) we notice that, since
is convex,

by Jensen’s inequality. Furthermore, for the channel statistics of
Appendix A, where , in the usual
case where the number of users is much larger than the number
of subchannels we have that

This quantifies the advantage of optimized-orthogonal versus
conventional TDMA/FDMA signaling, and the advantage of
PFS (which is also an orthogonal system) over the orthogonal
delay-limited systems in the high spectral efficiency region.

Note that the gain of PFS comes only from and
the diversity associated with it. For growing large, the gain
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Fig. 7. Spectral efficiency versus systemE =N for the optimal, optimized-orthogonal, and conventional TDMA/FDMA delay-limited systems forK =1. The
channel parameters are M = 10, path loss exponent � = 2, and radius of the forbidden region around the base station (see Appendix A) � = 0:01. The dotted
lines correspond to the high spectral efficiency approximation (39).

Fig. 8. Spectral efficiency versus systemE =N for the PFS system forK = 10; 20;30;50;100 ( is increasing withK). The channel parameters areM = 10,
path loss exponent � = 2, and radius of the forbidden region around the base station (see Appendix A) � = 0:01. The dotted lines correspond to the low spectral
efficiency approximation (38).

vanishes. Thus, the wider the band, the less advantage for PFS in
terms of spectral efficiency, despite the looser delay constraint.

Figs. 6–9 show the low and high spectral efficiency behavior
of all systems considered. In particular, we observe that, con-

sistently with Theorem 6, the gain of the optimal delay-lim-
ited signaling over orthogonal signaling becomes unbounded as

, although for this case of channel statistics the gain
grows quite slowly.
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Fig. 9. Spectral efficiency versus systemE =N for the PFS system forK = 10; 20;30;50;100 ( is increasing withK). The channel parameters areM = 10,
path loss exponent � = 2, and radius of the forbidden region around the base station (see Appendix A) � = 0:01. The dotted lines correspond to the high spectral
efficiency approximation (39).

VI. CONCLUSION

The main message of this paper is that, in order to achieve
high system spectral efficiency while coping with fairness con-
straints, it is not necessary to relax the individual users rate
requirements from “instantaneous” (i.e., given target rates in
any coding block) to “long-term averages.” On the contrary, ex-
ploiting the differences in the user path losses, and in the fading
multipath frequency selectivity, hard fairness can be achieved
without substantial losses (even more: for sufficiently high spec-
tral efficiency the delay-limited system can outperform PFS).
The inherent diversity given by path losses (near–far diversity),
is a new form of multiuser diversity that PFS is not able to ex-
ploit. This might have an impact on the system design in certain
applications where fixed rates and strict delays are important,
such as video streaming over the wireless cell. Furthermore, an
interesting question arises about the near–far diversity effect in
a multiple-cell environment. In fact, since the users at the cell
border are decoded last, they do not have to boost their power
as in a conventional power-controlled wireless system. These
users are responsible for most of the outer-cell interference and
therefore we expect that the optimal delay-limited policy (even
for the single cell presented here) yields significant gains also
in a multiple-cell environment. This, as well as possible varia-
tions involving coordinated processing at multiple-cell sites, is
left for future work.

However, in order to take full advantage of the near–far diver-
sity, successive decoding at the base station (uplink) and super-
position coding with successive interference cancellation at the
user terminals (downlink) is needed. The optimized-orthogonal
delay-limited scheme does not provide significant gains with re-
spect to conventional TDMA/FDMA.

On the practical side, we notice that the asymptotically
optimal strategy for both optimal and orthogonal signaling
schemes consists of letting each user transmit on its own best
subchannel only, irrespectively of the other users. This result
suggests a system where the users are able to measure their
SNR over a large number of (narrowband) subchannels and
pick the most favorable subchannel for transmission. For a large
number of users, this can be done in a completely decentralized
fashion, i.e., independently of the other users. This feature
reminds certain current proposals referred to as “Cognitive
Radio” (see, for example, [26]). However, we hasten to say
that in order to achieve optimality the transmission power (and
resource-sharing factors in the case of orthogonal signaling)
must be coordinated by the base station for each group of users
sharing the same subchannel.

APPENDIX A
CHANNEL STATISTIC

In cellular communications, signal propagation is typically
characterized by a frequency-flat factor that depends on the dis-
tance between the user terminal and the base station (path loss),
and by a frequency-selective “small-scale” fading that depends
on the local scattering environment around the user terminal
[20]. The path loss varies so slowly in time with respect to the
signal bandwidth that it can be considered constant forever. This
corresponds to the realistic assumption that users do not change
significantly their distance from the base station during a large
number of consecutive slots. On the contrary, the small-scale
fading changes in time depending on the channel Doppler band-
width. In practice, its coherence time is such that it can be con-
sidered constant on each slot, but changing according to some
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stationary ergodic (possibly correlated) process from slot to slot.
This model is referred to as block fading [1].

We take into account these two effects by letting ,
where denotes the path loss of user (symbol stands for
“slow”) and is the frequency-selective block fading of user

in channel (symbol stands for “fast”). Clearly, and
are mutually statistically independent, as they are due to

completely different propagation effects.
Path loss is typically modeled by a monomial signal decay

with distance [27], [28]. This is why received signal strength
imbalance due to path loss is usually referred to as the “near–far
effect.” The path loss takes on the form , where
denotes the distance from the base station and is the path loss
exponent, ranging typically in the interval [2], [4]. Considering
users uniformly distributed within a circular cell with unit ra-
dius, where the base station is placed at the center of the cell,
this results in the following cdf:

(52)

Although the path-loss distribution (52) is widely used in the
analysis of conventional cellular systems [27], [28], it presents
the annoying fact that the path-loss diverges when the distance
between terminal and base station becomes small. While this
has little effect in the analysis of conventional systems, it might
yield completely meaningless conclusions in the case of sys-
tems that take full advantage of the channel knowledge at the
transmitter. For example, in the case of PFS this model yields

for any number of users , since the denom-
inator of (44) is unbounded.

For this reason, we shall assume that the users are uniformly
distributed in the unit-circle cell, but for a forbidden circular
region of radius centered around the base station, where

is a fixed system constant. Under this model, the path-loss
cdf is given by

(53)

where we let the path loss at the cell border be equal to .
Clearly, all our results in terms of must be scaled
by a factor equal to the path loss at the cell border, where

denotes the actual radius of the cell. Of course, the conclu-
sions of our analysis do not change after this scaling, which ap-
plies to all systems in the same way. However, the numerical re-
sults in terms of spectral efficiency versus system need
to be rescaled in order to obtain practically meaningful values.
The path loss statistics (53) are even closer to reality, as for dis-
tances in the order of wavelengths or below, the propagation
loss does not scale monomially with distance due to electro-
magnetic near-field effects. Furthermore, with users indepen-
dently and uniformly distributed in the cell, it is clear that our
assumption A2 holds. In fact, the empirical cdf of the path losses

converges to in (53) as .
Frequency-selective block fading is modeled by a channel

transfer function that, for every fixed frequency , is
a zero-mean Gaussian circularly symmetric random variable

(Rayleigh fading). Under very mild conditions on the channel
impulse response statistics, is identically distributed for
every . By slicing the channel bandwidth into subbands,
each of which is smaller than the channel coherence bandwidth
[20], the physical channel is well modeled by parallel chan-
nels each affected by a channel gain for

, where denotes the center frequency of each
subband. Assuming that the subbands are sufficiently far apart,
we may consider as i.i.d. Hence, the distribution of

is given by

(54)

Recall that in Theorem 2 is defined as the cdf of the
random variable

Hence, it coincides with , as introduced in Sec-
tion III-B in the analysis of the PFS. Then, in the remainder of
this appendix we shall focus on obtaining convenient expres-
sions for .

If path loss and Rayleigh fading occur simultaneously and
independently, we have

(55)

(56)

(57)

where the last line is obtained after a change of variable and
integration by parts.

The integral in (55) can be given in closed form in some spe-
cial cases. In particular, for after some algebra we find

(58)

For , in a similar manner we find

(59)

where, as usual, is the
Gaussian tail function.
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APPENDIX B
A WATER-FILLING-LIKE OPTIMIZATION PROBLEM

In resource allocation for both optimal signaling and opti-
mized-orthogonal signaling, addressed in Section III-A, a key
step in the coordinate descent iterative algorithm takes on the
following form:

(60)

subject to and for all , where
and are fixed positive constants.

This problem is convex. The Kuhn–Tucker conditions are
given as

(61)

where is the Lagrange multiplier for the equality constraint
and where the th inequality must hold with equality if the op-
timal solution has .

Solving for in (61) we find that

(62)

satisfies the Kuhn–Tucker conditions, and it is therefore the
(unique) optimal point.

Finally, the Lagrange multiplier is obtained by solving

This equation can be efficiently solved as follows. Let denote
the sorting permutation such that

Then, the solution must take on the form

where is the smallest integer such that

(where we define ).

APPENDIX C
PROOF OF THEOREM 1

Consider users, with fixed path losses . Because
of the symmetry of the small-scale fading distribution, the av-
erage throughput is the same for all subchannels. Hence, it is
sufficient to focus on a single subchannel and multiply the final
result by . We shall drop the subchannel superscript for the

sake of notation simplicity. We denote by the small-
scale fading gains. They are i.i.d. and evolve in time according
to a stationary ergodic process. Therefore, the users are com-
pletely symmetric with respect to their small scale fading.

Consider a system that allocates the channel to the user
. This scheduling algorithm clearly

achieves individual average throughputs given by

(63)

We let and denote the average throughput of user and
the fraction of slots allocated to user under PFS, respectively.
PFS is defined by the allocation rule

(64)

The average throughput of user under PFS can be written as

(65)

where we have defined the set as the set of all slot times
for which . The rule (64) is a stationary policy

characterized by some decision regions that depend on
and on , which form a partition of . Now, we
define a new random variable that has the same cdf

of , but it is statistically
independent of . We consider the following
experiment: at each time , we generate independently

. By definition, we have that for
the in probability of the random variable

is smaller or equal to the limit in probability of

where the latter, by ergodicity, exists and it is equal to

Since, again by ergodicity and by definition of , the limit

holds almost surely, we have the upper bound

(66)
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This upper bound3 together with (63) and the defining prop-
erty of PFS, implying that , yield the
inequality

(67)

The left-hand side (LHS) of (67) is the divergence (cross en-
tropy) between the uniform probability mass function and
the probability mass function . Since divergence is nonneg-
ative [8] and it is zero if and only if the two probability mass
functions are equal, it follows that , that is, the PFS
scheme equally shares the channel between all users irrespec-
tive or their path loss. It follows also that for all .
This concludes the proof.

Finally, we remark that PFS adaptively and automatically
performs the following operation: it symmetrizes the channel
gain distribution of all users by disregarding the fixed path loss
(near–far effect) and by looking only at the ergodic fading com-
ponent that, under our assumptions, is identically distributed
across the users. Each user is served at its own peak channel
gain.

APPENDIX D
PROOF OF THEOREM 2

We express in nats, as it simplifies notation. Moreover, we
shall consider bounded fading [2], i.e., such that ,
for some constant independent of , with probability

. Let , for all and ,
be a partial rate allocation. Using (20) in (21), we can write the
minimization of as
minimize

(68)

subject to

and to the nonnegativity constraints for all . For
large

Therefore, the objective function for large can be written as

(69)

with associated Lagrangian function

(70)

3Notice that this upper bound holds for any stationary scheduling policy with
fixed decision regions.

Notice that for each we have an optimization problem, and
we denote by the th Lagrange multiplier of the problem
with size users.

By differentiating with respect to , and by letting ,
i.e., user is ranked in the th position on channel , we obtain
the Kuhn–Tucker conditions in the form

(71)

where we have multiplied both sides by and have replaced
by .

We guess the following solution: let
denote the index of the subchannel for which user has max-
imum gain. Then, we let

for

for (72)

Next, we substitute this solution in the Kuhn–Tucker conditions
(71) and show that they are satisfied in the limit of .
Suppose that the value is ranked in the th position by
the permutation . Then, define as the set of users
such that (i.e., having maximum gain on channel )
such that their maximum channel gain is not larger than . For
the allocation (72) we have

(73)

where the last line follows from Lemma 1 in Appendix G. Fur-
thermore, for we notice that the channel gain of a user
ranked in position of permutation must be larger than .
Defining to be the set of users such that
and their gain is in the interval , we have

(74)

where again the last line follows from Lemma 1.
Using (73) and (74), we can write (71) in the limit for large
as

(75)
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for , where denotes the limit of the Lagrange mul-
tiplier for . The right-hand side (RHS) of (75)
is seen as a function of . The guessed solution satis-
fies asymptotically the Kuhn–Tucker conditions if, for all ,

for , i.e., for equal to the maximum
channel gain of user , and for .
This condition holds if is a nonincreasing function of .
The first derivative of is given by

(76)

which is negative for all . We conclude that the so-
lution (72), that allocates each user on its own best channel
only, is asymptotically optimal for large .

Finally, substituting this solution in (69), we define as
the set of users such that , and as before
and, using repeatedly Lemma 1 in Appendix G, we obtain

(77)

where the last line follows from the fact that the subchannels are
statistically symmetric, therefore, the factor of Lemma 1
cancels with the sum with respect to of equal terms.
This proves Theorem 2 for bounded channel gains. Finally, the
proof can be extended to channel gains having a distribution
with unbounded support using standard arguments and under
mild regularity conditions on the channel gain distribution. In
particular, for channel gains having a continuous probability
density function (pdf) with bounded moments the extension is
straightforward.

APPENDIX E
PROOF OF THEOREM 3

Again, for simplicity we express in nats and consider
bounded fading in , for some constant indepen-
dent of , with probability . It is convenient to introduce the
new variables . The minimization of system

is expressed as

(78)

subject to

and to

and under the nonnegativity constraints . It is
clear that the solution of (78) is obtained when the constraints
on the fractions are satisfied with equality (otherwise, one
would not use some channel dimensions without any benefit).
Therefore, the only inequality constraints are the nonnegativity
constraints. The Lagrangian of the problem (78) is given by

(79)

Again, we denote by the th Lagrange multiplier of the
problem with size users. By differentiating with respect to

and with respect to we obtain the Kuhn–Tucker condi-
tions

(80)

and

(81)

We guess the following solution: for every , let
. Then, we let

(82)

and for all . Next, we substitute this
solution in the Kuhn–Tucker conditions (71) and show that they
are satisfied in the limit of .

For each and , the Kuhn–Tucker conditions (80)
and (81) must hold with equality. From (81) we get

(83)

Substituting (83) into (80), after some algebra, we obtain

(84)

where is Lambert’s W function.
If solving for the Lagrange multipliers we find
for all , then the guessed solution is seen to

satisfy the Kuhn–Tucker conditions. In fact, for both
(80) and (81) hold with equality, while for , (81) holds
with equality (since ) and (80) holds with inequality,
since from (84) we have

which implies . Hence, we shall solve for the Lagrange
multipliers and show that as , the solution has the form

, independent of .
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By using and (84) and by summing over
we obtain, for all

(85)

where is the subset of users such that , i.e., the
users that share subchannel . Letting , we have

(86)

Direct application of Lemma 1 of Appendix G to (86) yields
that the Lagrange multiplier equations for all in the limit of

converge to

(87)

Since this equation is the same for all , it follows that the
solution of the Lagrange multipliers is for all , in the
limit of . For what has been said before, this implies
that the guessed solution satisfies the Kuhn–Tucker conditions
in the limit of large and hence it is asymptotically optimal.

Using the asymptotic solution in the objective function of
(78), we obtain

(88)

The final expression of Theorem 3 is obtained by replacing
by (without loss of generality) and extending the result to
channel gain distributions with unbounded support, under mild
regularity conditions.

APPENDIX E
PROOF OF THEOREM 4

Theorem 4 is an immediate application of Lemma 1 in Ap-
pendix G. Let denote the subset of users such that

, i.e., the users that share subchannel . By definition of
the conventional TDMA/FDMA scheme, the fraction of
channel uses for user is given by

(89)

Therefore, its energy allocation is

(90)

for , and zero for .

Using this in (21) with expressed in bits and applying
Lemma 1 we get

(91)

This concludes the proof.

APPENDIX G
LEMMA 1

Let be an interval, and let denote the set of
all such that and . Also, let

denote a continuous measurable function in . Under
Assumptions A2, A3, and A4

(92)

with probability , as and is fixed.
Proof: It follows immediately from the convergence of the

empirical cdf of that, as , we
have

(93)

We have

(94)

This is easily seen by observing that, by symmetry of , the
maximum of the vector can occur at any position

equally likely. Thus, . Moreover,
conditioning on has no effect on the distribution of

. Thus

By Assumption A4, since the joint cdf of and
is the product cdf and by Assumption A3 has mean ,

then

(95)
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Finally, from the preceding discussion we have that

(96)

By using (94)–(96) in (93) the result follows.

APPENDIX H
PROOF OF THEOREM 5

Let us start by recalling some results and notations in [9].
For a complex baseband channel with white additive noise with
power spectral density and subject to an input power con-
straint, let denote the capacity–cost function where,
without loss of generality, the input cost is defined in terms of
the channel SNR, as defined in [9], and let denote
the spectral efficiency (in bit/dimension, or bit/s/Hz) as a func-
tion of . In general, there exists a value
such that for all and

for all . The derivative
of with respect to expressed in decibels, evaluated at

and normalized by 3 dB, is called the wideband
slope and it is usually indicated by . The engineering signifi-
cance of is discussed in depth in [9]. In particular, it is shown
that systems with the same might indeed have very
different behaviors in the wide band (i.e., very large but not in-
finite bandwidth) regime, and this behavior is captured by .

Theorem 9 in [9] provides a nice way to compute the wide-
band slope in terms of the channel capacity–cost function (ex-
pressed in nats)

(97)

where and denote the first and second derivatives
of for .

In our case, Theorems 2–4 yield directly in terms
of . By using the fact that, by definition, ,
it follows that our capacity–cost function is given by the im-
plicit parameterization in terms of given by

(98)

where, for notational simplicity, we indicate briefly by the
functions that yield in terms of , given by (34),
(35), and (37).

From basic calculus, it follows that

(99)

Letting is equivalent to letting ; therefore, we
obtain

Similarly, for the second derivative we have

(100)

Letting again , we find

By using these expressions in (97), we obtain

(101)

The results for the optimal delay-limited system (Theorem 2)
and for the conventional TDMA/FDMA system (Theorem 4)
follow immediately. Details are omitted as they are straight-
forward.

The case of the optimal orthogonal system (Theorem 3) is a
bit more complicated since the function is given implicitly,
parameterized by the Lagrange multiplier (see (35) and (36)).
Since as then , the computation of is straight-
forward and yields

(102)

In fact, is should be noticed that coincides by definition
with . In order to obtain , we can write

(103)

where we use the shorthand notation to indicate
and where denotes the first derivative of Lambert’s W func-
tion and denotes the first derivative of the Lagrange multiplier
with respect to . For small , which implies small , we have
the approximation which becomes tight as

Using in the above, we obtain

and

Using the approximation for in (36), we obtain

(104)

and eventually

(105)
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By collecting all these expressions and using them in (103), it
is not difficult to see that

This, together with (102), used in (101) yields the desired result.

APPENDIX I
PROOF OF THEOREM 6

From the definition (39) and using the fact that , we
have

(106)

where denotes as a function of for the delay-
limited optimal signaling in the limit for . Using The-
orem 2, we obtain

(107)

With the change of variable , (107) can be written
as

(108)

The integral inside the logarithm can be approximated by the
Riemann sum

for a sufficiently large integer . Since we are interested in
the limit for large , we can take and obtain a suf-
ficiently accurate approximation, in the sense that the integral
differs from the Riemann sum by no more than a constant term

.
The term that exponentially dominates the sum inside the log-

arithm is for . Thus, we obtain

(109)

Using (109) in (106) we obtain (in the limit of large )

(110)

This concludes the proof.

APPENDIX J
PROOF OF THEOREM 7

The difficulty in proving Theorem 7 lies in the fact that in
this case versus are given in parametric form as
functions of the Lagrange multiplier , in Theorem 3.

The Lagrange multiplier is defined by the constraint equation

(111)

For large , the LHS of (111) goes to zero. Since Lambert’s
W function is increasing and not smaller than , the RHS can
only become small as the argument of Lambert’s W function
approaches infinity. Thus, we conclude that as .

For large argument, Lambert’s W function can be approxi-
mated as [29]

(112)

This yields

(113)

Noticing that

(114)

(115)

we find

(116)

We shall use repeatedly the following series expansion for
the reciprocal function. Let such that

as . Hence, for sufficiently large

(117)

Applying this to (116) we obtain

(118)

and, integrating with respect to the fading distribution, we get

(119)
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Using again the fact (117), as a function of is given as

(120)

Note that even constant terms in the integral cannot be neglected
against even for large , as will later appear in the
exponent and additive terms become factors to . Only terms
that actually go to zero disappear, as they will be converted to
unit factors.

Now, we turn to the calculation of the system

(121)

With the series expansion (116), for fading distributions with
, we find

(122)

(123)

This gives

(124)

(125)

Using (120) we have that

(126)

and, finally, we obtain

(127)

Comparing the above expression with (39), and taking into ac-
count that we have already established that , the theorem
is proved.
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