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Abstract— We have previously (ISIT’05) introduced the op-
timal Diversity versus Multiplexing Tradeoff (DMT) for a FIR
frequency-selective i.i.d. Rayleigh MIMO channel. This tradeoff
is the same as for a frequency-flat MIMO channel with the
larger of the number of receive or transmit antennas being mul-
tiplied by the delay spread. In this paper we provide alternative
proofs and insights into this result. In particular, we consider
the ordered LDU decomposition instead of the usual eigen
decomposition of the channel Gram matrix. Popular approaches
for frequency-selective channels use OFDM techniques in order
to exploit the diversity gain due to frequency selectivity. We
show that the minimum number of subcarriers that need to
be involved in space-frequency coding to allow achieving the
optimal tradeoff is the delay spread times the smaller of the
number of transmit or receive antennas, thus answering a
question that was open hitherto. Although the no-CSIT/full-
CSIR case is considered here, we propose an alterative DMT
interpretation based on negligible CSIT. This CSIT allows to
exploit the ordered LDU decomposition.

I. INTRODUCTION

Consider a linear modulation scheme and single-carrier

transmission over a Multiple Input Multiple Output (MIMO)

linear channel with additive white noise, as shown in Fig. 1.

The multiple (subchannel) outputs will be mainly thought

of as corresponding to multiple receive antennas. After a

Rx filter (possibly noise whitening), we sample the received

signal to obtain a discrete-time system at symbol rate1. After

stacking the samples corresponding to multiple subchannels

in column vectors, the discrete-time communication system

is described by

yk = H(q) ak + vk =

L−1∑

l=0

Hlak−l + vk , (1)

where H(q) =

L−1∑

l=0

Hl q
−l, q−1xk = xk−1 (q−1 is the unit

sample delay operator). The coefficients Hl are Nr × Nt

matrices. L is the channel delay spread. We introduce the

SNR variable ρ = P

Ntσ2
v

=
σ2

a

σ2
v

. We consider the i.i.d.

Rayleigh channel model in which the entries of Hl, l =
0, . . . , L − 1 are i.i.d. Gaussian : Hrt

l ∼ CN (0, 1).

1In the case of additional oversampling with integer factor, we would
vectorize the samples to get a per antenna vector received signal sequence
at symbol rate.
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Fig. 1. MIMO channel model.

II. DIVERSITY AND OUTAGE BASICS

The SINR is random due to its dependence on the random

channel h. In [1], it was demonstrated that at high SNR

outage only depends on the SINR distribution behavior near

zero (this was also observed in [2]). This result is quite

immediate. Indeed, let us introduced the normalized SINR γ
through SINR = ρ γ and consider the dominating term in

the cumulative distribution function (cdf) of γ:

Prob{γ ≤ ǫ} = c ǫk (2)

for small ǫ > 0. Then the outage probability for a certain

outage threshold α is

Prob{SINR ≤ α} = c

(
α

ρ

)k

=

(
α

g ρ

)k

(3)

from which we see that k is the diversity order and g = c−1/k

is the coding gain (reduction in SNR required for identical

outage probability). When γ is obtained as a combination

of independent γi, we get the diversity orders k that are

indicated in the table below.

γ k
∑

i γi

∑
i ki

maxi γi

∑
i ki

mini γi mini ki

∏
i γi mini ki

In [2], Zheng and Tse introduced a scenario of SNR-

adaptive modulation and coding schemes (MCS) with hence



varying diversity and spatial multiplexing (or normalized

rate). Scheme C(ρ) is a family of codes (MCS) of block

length T (one code for each SNR level), that supports a bit

rate R(ρ). This scheme is said to achieve spatial multiplexing

r and diversity gain d if the data rate and the average error

probability satisfy

lim
ρ→∞

R(ρ)

ln(ρ)
= r , lim

ρ→∞

lnPe(ρ)

ln(ρ)
= −d . (4)

For each r, d∗(r) is defined to be the supremum of the diver-

sity order achieved over all possible schemes. The maximal

diversity gain is defined by d∗max = d∗(0) and the maximal

spatial multiplexing gain is r∗max = sup{r : d∗(r) > 0}.

For a Flat MIMO channel (L = 1), with T ≥ Nt,

the optimal trade-off curve d∗(r) (DMT) is given by the

piecewise-linear function connecting the points (k, d∗(k)),
k = 0, 1, . . . , q, where

d∗(k) = (p − k)(q − k),
q = min{Nr, Nt},
p = max{Nr, Nt}

as shown in Fig. 2.The optimal DMT can be achieved by a

family of codes with non-vanishing determinant [3], such as

e.g. the space-time spreading codes of [4].
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Fig. 2. Optimal Diversity vs. Multiplexing tradeoff (DMT) for freq.-flat
MIMO ch.

For SIMO/MISO frequency selective channels, the optimal

trade-off curve is given by the linear function d∗(r) =
L p (1 − r) [5]. For SIMO, the DMT can be achieved by

using QAM at the Tx and MMSE DFE at the Rx [10], see

also [6] for the DMT of various SIMO linear and decision-

feedback equalizers.

III. FLAT MIMO DMT VIA LDU

First of all, for STC schemes with non-vanishing

determinant (see e.g. [3] or also [4]), we have

Pe(ρ) = Prob{error} = Prob{error,outage} +
Prob{error, no outage}

.
= Prob{outage} = Pout(ρ)

(due to the faster decay of Prob{error, no outage}), hence

d∗(r) = dout(r) and an outage analysis suffices. In what

follows, assume w.l.o.g. Nr ≥ Nt (otherwise replace H

by H†). Now introduce the LDU (Lower Diagonal Upper

triangular factorization) [7] of the channel Gram matrix:

HH H = L D LH = (L D
1

2 ) (L D
1

2 )H (5)

where L = [Li,j] has unit diagonal, D =
diag {d1, . . . , dq} , di ≥ 0. The second factorization

in (5) corresponds to the Cholesky decomposition. Let

H = [h1 · · ·hq] = h1:q, and introduce the projection

matrices PH = H(HHH)#HH , P⊥

H
= I − PH. Then we

can write
{

di+1 = ‖P⊥

h1:i

hi+1‖
2

Li+1,j+1 = hH
i+1P

⊥

h1:j

hj+1/‖P⊥

h1:j

hj+1‖2 (6)

The Cholesky factorization of a Wishart matrix (such as

HH H) leads to
{

di+1 ∼ σ2

2 χ2
2(p−i)

Li+1,j+1

√
dj+1 ∼ CN (0, σ2) , i > j

(7)

which is also known as Bartlett’s decomposition [8]. Note

that det(HHH) = det(D) =

q∏

i=1

di. A proof of the DMT

via the LDU decomposition has been provided in [9], in

which the DMT for Flat MIMO has been extended to the

partial CSIT case. The key starting point in [9] is the Matrix

Determinant Expansion lemma:

det(Iq + ρ HHH)

= 1 +
∑q

i=1 ρi
(∑

(l1,...,li)∈(1,...,q) det(Dl1<···<li)
)

.

(8)

A somewhat simpler proof can be obtained by considering

the LDU decomposition with pivoting (ordering): order the

columns of H (no influence on capacity) to obtain the

columns of H̃ =
[
h̃1 · · · h̃q

]
recursively:

‖P⊥

h̃1:i

h̃i+1‖ = max
k∈(i+1,...,q)

‖P⊥

h̃1:i

h̃k‖ , i = 0, 1, . . . , q−1 .

(9)

This leads to the LDU with ordering: H̃
H

H̃ = L̃ D̃ L̃H ,

d̃i+1 = ‖P⊥

h̃1:i

h̃i+1‖
2 ∼ χ2

2(p−i)(q−i). Note that ordering

modifies the marginal pdf’s but not the joint pdf (apart from

the support region). Observe that the diversity orders of the

d̃i+1 correspond to the diversity orders in the breakpoints of

the DMT curve. Also note that H is of rank i if d̃i is not

in outage but d̃i+1 is. Now, the actual quantity of interest is

Iq +ρ H̃
H

H̃ = L
′

D
′

L
′H . However, at high SNR ρ, ln(d

′

i)
.
=

ln(ρ d̃i) if d̃i is not in outage, whereas ln(d
′

i)
.
= 0 otherwise.

To be a bit more precise, consider

Pout(ρ)

= Prob{ln det(Iq + ρ H̃
H

H̃) < r ln ρ}

= Prob{

q∑

i=1

ln d′i < r ln ρ}

.
= Prob{ln d′k−1 + ln d

′

k < (r−k+1) ln ρ}, k−1 < r ≤ k
(10)

This development leads to the DMT, after some details that

are omitted here for lack of space.



IV. DIVERSITY AND MULTIPLEXING FOR

FREQUENCY SELECTIVE MIMO CHANNELS

Assume T >> L, then the mutual information per symbol

period for white input is

IT (H) ≈ I(H) =

∮
dz

2πj z
ln det(I + ρ H(z)H†(z))

=

∮
dz

2πj z
ln det(I + ρ H†(z)H(z))

(11)

where the approximation is explaine din more detail in

[4], and we introduced the paraconjugate (matched filter):

H†(z) = HH(1/z∗). For Single-Carrier Cyclic Prefix (SC-

CP) or OFDM systems, it suffices to replace the integral by

a sum over subcarriers. Now,
∮

dz

2πj z
ln det(I + ρ H†(z)H(z))

.
= ln

∮
dz

2πj z
det(I + ρ H†(z)H(z))

(12)

since det(I+ρ H†(z)H(z)) is a FIR spectrum and for a FIR

spectrum S(z), it was shown in [10] that

c ln(

∮
dz

2πj z
S(z)) ≤

∮
dz

2πj z
lnS(z) ≤ ln(

∮
dz

2πj z
S(z))

(13)

where c only depends on the FIR length. This states that

for a FIR spectrum, a prediction error variance fades like

the corresponding variance. As in the frequency-flat case, at

high SNR outage is determined by the behavior of the Gram

matrix H†(z) H(z). So consider again the LDU factorization:

H†(z) H(z) = L(z)D(z)L†(z). Then

ln

∮
dz

2πj z
ln det(H†(z)H(z))

= ln

∮
dz

2πj z
ln det(D(z))

=

q∑

i=1

ln

∮
dz

2πj z
di(z)

(14)

where di(z) =
det(D1:i(z))

det(D1:i−1(z))
is IIR, but the det(D1:i(z))

are FIR and the numerator and denominator of di(z) are

strongly coupled. In particular,
∮

dz

2πj z
di(z) =

∮
dz

2πj z
h
†
i (z)P⊥

h1:i−1(z)
hi(z) = hH

i Ai hi

(15)

where Ph(z) = h(z)(h†(z)h(z))−1h†(z) and hi =

[hH
i,0 hH

i,1 · · · hH
i,L−1]

H . The matrix Ai is block Toeplitz, with

block (Ai)m,n = Ip δm,n −
∮

dz
2πj z Ph1:i−1(z) z−(m−n).

nullity(Ai) = i − 1 w.p. 1, indeed:

• hH
i Ai hi =

∮
dz

2πj z h
†
i (z)P⊥

h1:i−1(z)
hi(z)

∈ [0 , hH
i hi] ⇒ λk(Ai) ∈ [0, 1]

• Null(Ai) = Span(h1:i−1)

Eigen decomposition:

Ai = Vi︸︷︷︸
pL×(pL−i+1)

Λi︸︷︷︸
(pL−i+1)×(pL−i+1)

V H
i︸︷︷︸

(pL−i+1)×pL

where

Vi is unitary: V H
i Vi = IpL−i+1, Λi is diagonal. Now

hH
i Ai hi = h

′H
i Λi h

′

i =

pL−i+1∑

k=1

λk|h
′

i,k|
2 where h

′

i =

V H
i hi ∼ CN (0, σ2IpL−i+1). Note that Ai and hence Λi is

random since function of h1:i−1. Hence we need the diversity

order of λmin = λpL−i+1.

Now, λmin = 0 if

min{‖h1,0‖, . . . , ‖hi−1,0‖, ‖h1,L−1‖, . . . , ‖hi−1,L−1‖} = 0.

And min{‖h1,0‖, . . . , ‖hi−1,0‖, ‖h1,L−1‖, . . . , ‖hi−1,L−1‖}
(all i.i.d.) has the same pdf as e.g. ‖h1,0‖, so consider w.l.o.g.

‖h1,0‖ = 0. Now, if ‖h1,0‖ = 0, then λmin = 0 with eigen

vector hH = [hH
1,1 · · · hH

1,L−1 01×p].

To find the pdf of λmin near 0, consider ∆λmin = hH ∆Aih

with ∆Ai due to ∆h1,0. It follows that

∆λmin =
|hH

1,1h1,0|2

‖h1,0‖2
∑L−1

k=1 ‖h1,k‖2
∼ χ2

2

hence div(hH
i Ai hi =

∑

k

λk|h
′

i,k|
2) = div(‖h

′

i‖
2) =

div(χ2
2(pL−i+1)) due to the diversity rules in the table in

Section II.

Now, as in the frequency-flat case, consider the ordered

LDU (ordering on variances of di(z)), then due to the same

diversity rule:

div(d̃i+1(z)) = div(χ2
2(pL−i)(q−i)) . (16)

The behavior of I(H) is characterized by I(H)
.
= ln det(I+

ρ H̄H̄
H

), where H̄ =

[
H0...

HL−1

]
for Nt ≤ Nr, H̄ =

[H0, H1, . . . , HL−1] for Nt ≥ Nr. The optimal trade-off

curve d∗(r) is given by the piecewise-linear function con-

necting the points (k, d∗(k)), k = 0, 1, . . . , p, where

d∗(k) = (Lq − k)(p − k),

with p = min{Nr, Nt}, q = max{Nr, Nt} .
(17)

which is the DMT of the equivalent frequency-flat MIMO

channel H̄. For e.g. Nt ≤ Nr, the DMT is the same as for

a flat MIMO channel with N ′
t = Nt and N ′

r = LNr.

A. Outage Manifolds Analysis

An intuitive explanation of the DMT can be obtained as

follows. Consider a parameterization of FIR channels of rank

k ≤ q=Nt ≤ Nr =p

H(z)︸︷︷︸
q×p︸︷︷︸

FIR−L

= H(z)︸︷︷︸
q×k︸︷︷︸

FIR−L

[ Ik H︸︷︷︸
k×(p−k)︸ ︷︷ ︸
constant

] P︸︷︷︸
permutation

. (18)
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Fig. 3. Asymptotic diversity vs. multiplexing tradeoff for a frequency-
selective channel (for the case Nt ≤ Nr).

The number of degrees of freedom in the q×p rank-k FIR-L
manifold is:

q k L︸︷︷︸
H

+ (p − k) k︸ ︷︷ ︸
H

= q p L − (q L − k)(p − k) . (19)

To send at rate k, one needs to be guaranteed rank k.

The diversity degree is the remaining number of degrees of

freedom in H(z):

d∗(k) = q p L−(q p L−(q L−k)(p−k)) = (q L−k)(p−k) .
(20)

B. Min Blocklength / Min Number of OFDM Subcarriers

For a SISO/SIMO/MISO FIR channel of length L and

OFDM transmission, the full diversity order is obtained

by jointly coding over at least L subcarriers. Hence some

may expect this to continue to hold in the MIMO case.

However, for a MIMO OFDM approach using coding over

L independent OFDM subcarriers (frequency-spacing of 1
L

or not): we get d(r) = L(q−r)(p−r) ≤ d∗(r) (in the case

of frequency-spacing of 1
L , the channel transfer function at

the L subcarriers is i.i.d. and the DMT result follows from

the transmission over parallel i.i.d. channels in [2]). In any

case, coding over only L subcarriers is suboptimal in the

MIMO case. The difference (suboptimality) in diversity is

d∗(r)−d(r) = (L−1) r (p−r), it peaks at r = p
2 . For large

L and Nr = Nt, d∗(p/2) ≈ 2 d(p/2).
In the MIMO case, the minimum blocklength in time

domain, or the minimum number of subcarriers to be coded

jointly in an OFDM approach is

q L = min{Nt, Nr} L . (21)

The position of the subcarriers used only influences the

coding gain, not the diversity order. The above result follows

from observing that

det(I + ρ H(z)H†(z)) = g†(z) g(z) (22)

for some scalar FIR spectral factor g(z) of length q L.

C. Case Nt > Nr

Note that even though we consider to be in the no CSIT

case, the whole DMT approach in fact assumes that the

receive SNR is known at the transmitter. Indeed, the whole

DMT idea is one of adaptive modulation and coding, though

adapting only to the average SNR, and hence requires some

minimal feedback. At the very high SNR considered in the

DMT analysis, the capacity becomes unbounded. So, in a

duplex transmission system, feedback consisting of a finite

amount of bits per symbol period or even per transmission

block constitutes a negligible perturbation of the capacity,

and hence can be assimilated to the no CSIT case. This is

the point of view we shall follow in this subsection.

Straightforward space-time coding techniques use Nt L as

blocklength in time or number of subcarriers in frequency.

Tx antenna ordering CSIT can be used to limit transmission

to the Nr best transmit antennas when Nt > Nr. If indeed

we assume the channel column pivoting order to be known

at the Tx, then to transmit at rate r = k, the Tx will only

use the columns (Tx antennas) h̃1:k+1 with diversity order

that of d̃k+1 (weakest): (p − k)(q − k).
So, ordering CSIT is especially handy when Nt > Nr

(d̃i = 0, i > Nr), it allows to simplify the space-time coding

to the Nr (< Nt) Tx antennas scenario. Note: the ordering

is based on the global spatio-frequency SIMO channel power∮
dz

2πj z di(z) after Gram-Schmidt orthogonalization, not to be

confused with per subcarrier ordering.

V. CONCLUDING REMARKS

In this paper we introduced first an alternative proof of

the DMT of frequency-flat MIMO channels by using the

ordered LDU factorization instead of the basic LDU or eigen

decompositions. Then we extend the use of this ordered

LDU factorization to the frequency-selective channel. Some

remarks are in order.

H(z) and H†(z) have the same capacity, but transmission

can only be done from the transmit side ⇒ ordering CSIT

can be handy (MIMO Tx selection diversity); e.g. case 4×2:

with ordering CSIT, one can apply the Golden code instead

of using double Alamouti.

The existing diversity-rate tradeoff: defined at high SNR,

and only focuses on diversity order and not on coding

gain/SNR offset. To observe the frequency-selective MIMO

DMT, one needs to go to very high SNR (e.g. 50dB, due to

bad coding gain of products of fading variables of equal div.

order). Hence, work at finite SNR required.

Correlation of fading variables only influences (decreases)

the coding gain, not the diversity order.

Extension to include temporal diversity: when coding gets

performed over multiple data blocks in which the channel

varies with non-singular covariance of the temporal variation,

then the diversities (at any multiplexing/rate) of the blocks

simply add up.
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