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Abstract. Segmenting an image into semantically meaningful parts is a funda-
mental and challenging task in image analysis and scene understanding prob-
lems. These systems are of key importance for the new content based applica-
tions like object-based image and video compression. Semantic segmentation 
can be said to emulate the cognitive task performed by the human visual system 
(HVS) to decide what one "sees", and relies on a priori assumptions. In this pa-
per, we investigate how this prior information can be modeled by learning the 
local and global context in images by using a multidimensional hidden Markov 
model. We describe the theory of the model and present experiments conducted 
on a set of annotated news videos. 
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1 Introduction 

Hidden Markov Models (HMM) have become increasingly popular in such diverse 
applications as speech recognition [1], language modeling, language analysis, and im-
age recognition [3,9,12]. The reason for this is that they have a rich mathematical 
structure and therefore provide a theoretical basis for many domains. A second reason 
is the discovery of the Baum-Welch's training algorithm [2] which allows estimating 
the numerical values of the model parameters from training data. 
Most of the current applications involve uni-dimensional data. In theory, HMMs can 
be applied as well to multi-dimensional data. However, the complexity of the algo-
rithms grows exponentially in higher dimensions, so that, even in dimension 2, the 
usage of plain HMM becomes prohibitive in practice [4].  
For this reason we have proposed an efficient sub-type of multi-dimensional hidden 
Markov model; the Dependency-Tree Hidden Markov Model [5] (DT-HMM) which 
preserves a reasonable computational feasibility and therefore enables us to apply it to 
multidimensional problems such as image segmentation. 
In this paper, we explore the intrinsic ability of the DT-HMM to automatically associ-
ate pixels (or blocks of pixels) to semantic sub-classes which are represented by the 
states of the Markov model. To this end we enforce restrictions to the states during 



training, by having the training set labeled on pixel level. The performance of the 
model is demonstrated on a subset of the TrecVideo archive [16] which consists of 60 
hours of annotated news broadcast. 
The remainder of this paper is organized as follows: section 3 outlines our motivation 
and presents the theory of DT-HMM. We show how the training and decoding algo-
rithms for DT-HMM keep the same linear complexity as in one dimension. Section 4 
will describe the experimental setup conducted on TrecVideo 2003 data and in section 
5 we conclude and suggest future work. 

2 Related Work 

A number of researches have introduced systems for mapping users’ perception of 
semantic concepts to low-level feature values [8,10]. The probabilistic framework of 
multijects (multi-objects) and multinets by Naphade and Huang [10] maps high level 
concepts to low level audiovisual features by integrating multiple modalities and infer 
unobservable concepts based on observable by a probabilistic network (multinet). The 
Stanford SIMPLIcity system [13] uses a scalable method for indexing and retrieving 
images based on region segmentation. A statistical classification is done to group im-
ages into rough categories, which potentially enhances retrieval by permitting seman-
tically adaptive search methods and by narrowing down the searching range in a data-
base.  
Motivated by the desire to incorporate contextual information, Li and Gray [3] pro-
posed a 2D-HMM for image classification based on a block-based classification algo-
rithm using a path constrained Viterbi. An attempt in associating semantics with im-
age features was done by Barnard and Forsyth at University of California at Berkeley 
[14]. Using region segmentation in a pre-processing step to produce a lower number 
of color categories, image feature search becomes a text search. The data is modeled 
as being generated by a fixed hierarchy of nodes organized as a tree. The work has 
achieved some success for certain categories of images. But, as pointed out by the au-
thors, one serious difficulty is that the algorithm relies on semantically meaningful 
segmentation which is, in general, not available to image databases.  
In recent work by Kumar and Hebert at Carnegie Mellon University [15], a hierarchi-
cal framework is presented to exploit contextual information at several levels. The au-
thors claim that the system encodes both short- and long-range dependencies among 
pixels respectively regions, and that it is general enough to be applied to different 
domains of labeling and object detection. 

3 DT-HMM: Dependency-Tree HMM 

For most images with reasonable resolution, pixels have spatial dependencies which 
should be enforced during the classification. The HMM considers observations (e.g. 



feature vectors representing blocks of pixels) statistically dependent on neighboring 
observations through transition probabilities organized in a Markov mesh, giving a 
dependency in two dimensions.  

3.1 2D-HMM 

In this section, we briefly recall the basics of 2D HMM and describe our proposed 
DT-HMM [5]. The reader is expected to be familiar with 1D-HMM. We denote by 
O={oij, i=1,…m, j=1,…,n} the observation, for example each oij may be the feature 
vector of a block (i,j) in the image. We denote by S = {sij, i=1,…m, j=1,…,n} the state 
assignment of the HMM, where the HMM is assumed to be in state sij at position (i,j) 
and produce the observation vector oij. If we denote by λ the parameters of the HMM, 
then, under the Markov assumptions, the joint likelihood of O and S given λ can be 
computed as: 
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If the set of states of the HMM is {s1, … sN}, then the parameters λ are: 
• the output  probability distributions p(o | si) 
• the transition probability distributions p(si  | sj,sk). 
Depending on the type of output (discrete or continuous) the output probability distri-
bution are discrete or continuous (typically a mixture of Gaussian distribution). We 
would like to point out that there are two ways of modeling the spatial dependencies 
between the neighbor state variables; by a causal or non-causal Markov random field 
(MRF). The former is referred to as Markov mesh and has the advantage that it re-
duces the complexity of likelihood functions for image classification [6]. The causal-
ity also enables the derivation of an analytic iterative algorithm to estimate states with 
the maximum a posteriori probability, due to that the total observation is progres-
sively built from smaller parts. The state process of DT-HMM is defined by the 
Markov mesh. 

3.2 DT-HMM 

The problem with 2D-HMM is the double dependency of si,j on its two neighbors, si-1,j 
and si,j-1, which does not allow the factorization of computation as in 1D, and makes 
the computations practically intractable.  
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Fig. 1.  2D Neighbors 

Our idea is to assume that si,j depends on one neighbor at a time only. But this 
neighbor may be the horizontal or the vertical one, depending on a random variable 
t(i,j). More precisely, t(i,j) is a random variable with two possible values:  
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For the position on the first row or the first column, t(i,j) has only one value, the one 
which leads to a valid position inside the domain. t(0,0) is not defined. So, our model 
assumes the following simplification: 
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If we further define a “direction” function: 
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then we have the simpler formulation: 
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Note that the vector t of the values t(i,j) for all (i,j) defines a tree structure over all po-
sitions, with (0,0) as the root. Figure 2 shows an example of random Dependency 
Tree. 
The DT-HMM replaces the N3 transition probabilities of the complete 2D-HMM by 
2N2 transition probabilities. Therefore it is efficient in terms of storage. We will see 
that it is also efficient in terms of computation. Position (0,0) has no ancestor. In this 
paper, we assume for simplicity that the model starts with a predefined initial state sI 
in position (0,0). It is straightforward to extend the algorithms to the case where the 
model starts with an initial probability distribution over all states. 
 



 
Fig. 2.  Example of Random Dependency Tree 

4 Application to Image Segmentation 

4.1 Viterbi Algorithm 

The Viterbi algorithm finds the most probable sequence of states which generates a 
given observation O: 

),(Argmax S
^

tSOP
S

=  (6) 

The details of the algorithm for DT-HMM are given in [5][18].The algorithm is used 
for training the model, by iteratively reestimating the output and transition probabili-
ties with the relative frequencies computed on the Viterbi sequences of states on the 
training images. It is also used for image segmentation on the test data, where each 
region is composed of the blocks which are covered by a given state in the Viterbi se-
quence. 

4.2 States with semantic labels 

We illustrate the use of DT-HMM for semantic segmentation on the example of seg-
menting beach images (class) into semantic regions (sub-classes). In principle, we 
should define one state of the model for each semantic region, however, to account 
for the variability of the visual appearance of semantic region, each semantic region 
(sub-class) is assigned a range of states. This potentially allows a sub-class such as 
sky to be represented by different states with dominant color blue, white, gray or yel-
low. The table below lists the sub-classes and their associated number of states. 



Table 1. The number of states for each sub-class 

Sub Class No. states 
Un-annotated 3 
Sky 7 
Sea 5 
Sand 6 
Mountain 3 
Vegetation 3 
Person 4 
Building 3 
Boat 2 
8 sub-classes 36 states 

One special class, called “un-annotated”, is used for areas that are ambiguous or con-
tain video graphics etc... Ambiguous areas are patches which contain several sub-
classes or which are difficult to interpret. 

4.3 Model Training  

The training was conducted on the TrecVideo archive [16], from which we selected a 
wide within-class variance of 130 images depicting “Beach” (see Figure 3). 

 
Fig. 3. Example of training images 

Each image is split into blocks of 16x16 pixels, and the observation vector for each 
block is computed as the average and variance of the LUV (CIE LUV color space) 
coding {Lμ,Uμ,Vμ, Lσ,Uσ,Vσ} combined with six quantified DCT coefficients (Dis-
crete Cosine Transform). Thus each block is represented by a 12 dimensional vector. 
Those images have been manually segmented and annotated, so that every feature 
vector is annotated with a sub-class. 
To define the initial output probabilities, a GMM (Gaussian Mixture Model) is trained 
with the feature vectors corresponding to each sub-class. We allow three GMM com-
ponents for every state, so the GMM for the sub-class sky has 21 components and for 
vegetation (see Table 1). Then we group the components into as many clusters as 
there are states for this sub-class (using the k-means algorithm). Finally, the GMM 
model for each state is built by doubling the weight of the components of the corre-
sponding cluster in the GMM of the sub-class. The transition probabilities are initial-
ized uniformly. Then, during training we iterate the following steps: 



• We generate a random dependency tree and perform a Viterbi alignment to gener-
ate a new labeling of the image. The Viterbi training procedure is modified to con-
sider only states that correspond to the annotated sub-class at each position, thus 
constraining the possible states for the observations (the manual annotation speci-
fies the sub-class for each feature vector, but not the state). 

• We reestimate the output and transition probabilities by relative frequencies (emis-
sion of an observation by a state, horizontal and vertical successors of a state) with 
Lagrange smoothing. 

4.4 Experimental Results 

During training, we can observe the state assignments at each iteration as an indica-
tion of how the model fits the training data. For example, the first ten iterations on the 
training image to the left in figure 4 provide the following state assignments: 

 
Fig. 4. State segmentation after 0, 2, 6 and 10 iterations 

This shows that the model has rapidly adapted each sub-class to a particular set of ob-
servations. As such, the Viterbi labeling provides a relevant segmentation of the im-
age. The graph below shows the evolution of likelihood of the training data during the 
training iterations. We can see that the likelihood for the model given the data has an 
asymptotic shape after 10 iterations. 
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Fig. 5 Likelihood of the training data after N iterations 

Once the model is trained, we can apply it on new images. Below is an example of the 
state assignment for an image in the test set; 70% of the blocks are correctly classi-
fied. 



Original image         min. variance 10-6         min. variance 10-10 

  
Fig. 6 State segmentations on test image 

It should be emphasized that this is not just a simple segmentation of the images, but 
that each region is also assigned one of the 36 states (which belongs to one of the 8 
sub-classes). The definition of those states has been done taking into account all train-
ing data simultaneously, and provides a model for the variability of the visual evi-
dence of each sub-class.  
During training, we impose a minimum variance for the Gaussian distributions, in or-
der to avoid degeneracy. This minimum has an impact, as we noted that the number of 
correct labeled blocks in the example above increased to 72% when changing the 
minimum variance from 10-6 to 10-10. An explanation for this is that if the selected 
minimum variance is too high, some Gaussians will be flattened out and collides with 
Gaussians from states representing similar observations. 
Sometimes the result is degraded because of visually ambiguous regions, as in the ex-
amples below (looking through a window, or sky reflection on the sea). Because the 
output probabilities of model have generally a greater dynamic range than the transi-
tion probabilities, they often play the major contribution in the choice of the best state 
assignment. 

 
Fig. 7 Test images with ambiguous regions 

Still, to show the effect of transition probabilities, we used the model to semantically 
segment 40 test images. We compare the best state assignment obtained by the Viterbi 
algorithm (this takes into account both output and transition probabilities) with the as-
signment where each feature vector is assigned the state which has the highest output 
probability. The average rate of correctly labeled blocks was 38% when taking transi-
tion probabilities into account and 32% with only the output probabilities. Figure 8 
shows an example, with the original example image, the sub-class assignment without 
transition probabilities (56% blocks correctly labeled), and the Viterbi assignment 
(72% correct). 



 
Fig. 8 Sub-class assignment without/with transition probabilities 

5 Conclusions and Future Research  

The contribution of this paper is to illustrate semantic segmentation of an image by a 
two dimensional hidden Markov model. We show how the model can be trained on 
manually segmented data, and used for labeling new test data. In particular, we use a 
modified version of the Viterbi algorithm that is able to handle the situation a visual 
sub-class is represented by several states, and only the sub-class annotation (not the 
state annotation) is available. We investigated several properties of this process. The 
motivation for this approach is that it can be easily extended to an larger number of 
classes and sub-classes, provided that training data is available. Allowing several 
states per sub-class gives the model the flexibility to adapt to sub-classes which may 
have various visual evidence. 
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