
Least Squares filtering of Speech Signals for

Robust ASR ?

Vivek Tyagi a,b,∗ Christian Wellekens a,b Dirk T. M Slock a,b

aInstitute Eurecom, P.O Box: 193, Sophia-Antipolis, France.
bSwiss Federal Institute of Technology, Lausanne, Switzerland.

Abstract

The behavior of the least squares filter (LeSF) is analyzed for a class of non-
stationary signals that are either (a) composed of multiple sinusoids (voiced speech)
whose frequencies, phases and the amplitudes may vary from block to block or, (b)
are output of an all-pole filter excited by white noise input (unvoiced speech seg-
ments) and which are embedded in white noise. In this work, analytic expressions for
the weights and the output of the LeSF are derived as a function of the block length
and the signal SNR computed over the corresponding block. We have used LeSF
filter estimated on each block to enhance the speech signals embedded in white noise
as well as other realistic noises such as factory noise and an aircraft cockpit noise.
Automatic speech recognition (ASR) experiments on a connected numbers task,
OGI Numbers95[29] show that the proposed LeSF based features provide a signif-
icant improvement in speech recognition accuracies in various non-stationary noise
conditions when compared directly to the un-enhanced speech, spectral subtraction
and noise robust CJ-RASTA-PLP features.

Key words: Least squares, Adaptive filtering, speech enhancement, robust speech
recognition

1 Introduction

Speech enhancement, amongst other signal de-noising techniques, has been a
topic of great interest for past several decades. The importance of such tech-
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niques in speech coding and automatic speech recognition systems can only be
understated. Towards this end, adaptive filtering techniques have been shown
to be quite effective in various signal de-noising applications. Some representa-
tive examples are echo cancellation[15], data equalization[16–18], narrow-band
signal enhancement[14,19], beamforming[20–22], radar clutter rejection[23],
system identification[24,25] and speech processing[14].

Most of the above mentioned representative examples require an explicit exter-
nal noise reference to remove additive noise from the desired signal as discussed
in [14]. In situations where an external noise reference for the additive noise
is not available, the interfering noise may be suppressed using a Wiener linear
prediction filter (for stationary input signal and stationary noise) if there is
a significant difference in the bandwidth of the signal and the additive noise
[14,11,9]. One of the earliest use of the least mean square (LMS) filtering for
speech enhancement is due to Sambur[7]. In his work, the step size of the LMS
filter was chosen to be one percent of the reciprocal of the largest eigenvalue
of the correlation matrix of the first voiced frame. However, speech being a
non-stationary signal, the estimation of the step size based on the correlation
matrix of just single frame of the speech signal, may lead to divergence of the
LMS filter output. Nevertheless, the exposition in [7] helped to illustrate the
efficacy of the LMS algorithm for enhancing naturally occurring signals such
as speech. In [11], Zeidler et. al. have analyzed the steady state behavior of
the adaptive line enhancer (ALE), an implementation of least mean square
algorithm that has applications in detecting and tracking narrow-band signals
in broad-band noise. Specifically, they have shown that for a stationary input
consisting of multiple (′N ′) sinusoids in white noise, the L-weight ALE, can be
modeled by the L×L Wiener-Hopf matrix equation and that this matrix can
be transformed into a set of 2N coupled linear equations. They have derived
the analytical expression for the steady-state L-weight ALE filter as function
of input SNR and the interference between the input sinusoids. It has been
shown that the coupling terms between the input sinusoid pairs approach zero
as the ALE filter length increases.

In [9], Anderson et al extended the above mentioned analysis for a stationary
input consisting of finite band-width signals in white noise. These signals con-
sist of white Gaussian noise (WGN) passed through a filter whose band-width
α is quite small relative to the Nyquist frequency, but generally comparable to
the bin width 1/L. They have derived analytic expressions for the weights and
the output of the LMS adaptive filter as function of input signal band-width
and SNR, as well as the LMS filter length and bulk delay ’z−P ’ (please refer
to Fig. 1).

In this paper, we extend the previous work in [9,11] for enhancing a class
of non-stationary signals that are composed of either (a) multiple sinusoids
(voiced speech) whose frequencies and the amplitudes may vary from block
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to block or (b) are the output of an all-pole filter excited by white noise
input (unvoiced speech segments) and which are embedded in white noise. The
number of sinusoids may also vary from block to block. The key difference in
the approach proposed in this paper is that we relax the assumption of the
input signal being stationary. The method of least squares may be viewed as
an alternative to Wiener filter theory pg.483 [8]. Wiener filters are derived
from ensemble averages and they require good estimates of the clean signal
power spectral density (PSD) as well as the noise PSD. Consequently, one
filter (optimum in a probabilistic sense) is obtained for all realizations of the
operational environment, assumed to be wide-sense stationary. On the other
hand, the method of least squares is deterministic in approach. Specifically, it
involves the use of time averages over a block of data, with the result that the
filter depends on the number of samples used in the computation. Moreover,
the method of least squares does not require the noise PSD estimate. Therefore
the input signal is blocked into frames and we analyze a L-weight least squares
filter (LeSF), estimated on each frame which consists of N samples of the input
signal.

Working under the assumptions that the clean signal spectral vector and noise
spectral vector are Gaussian distributed with kth spectral value independent
of jth spectral value, Eprahaim and Malah derived the optimum minimum
mean square error (MMSE) estimator of the clean speech’s spectral ampli-
tude (MMSE-STA)[3] and its log spectral amplitude (MMSE-LSA)[4]. This
assumption is valid only if the clean signal and the noise are both stationary
processes and the spectrum is estimated over an infinitely long window. Clearly
the speech signal is neither a stationary process nor does it have a Gaussian
distributed spectrum. Moreover, in most of the situations, the noise is not a
stationary process. Besides this, MMSE-LSA, MMSE-STA, spectral subtrac-
tion (SS) and Wiener filter (WF) based techniques need a good estimate of
noise spectrum. It is often claimed that the estimate of the noise PSD can be
obtained from “non-speech” frames which can be detected using a pre-tuned
threshold [4,3]. However, if the noise power changes (varying SNR conditions),
there is no single threshold which can detect the non-speech frames. Moreover
if the noise is non-stationary, the noise PSD estimate obtained through “non-
speech” frames may not be able to track the noise statistics quite well as it
is dependent on the availability of non-speech frames which are unevenly dis-
tributed in an utterance. Martin[2] has proposed a noise PSD estimator based
on the minimum statistics. However even this techniques relies on certain pa-
rameters which need to be tuned depending on the degree of non-stationarity
of the noise. Several researchers have tried to use a multitude of well-tailored
tuning-parameters dependent on the a-prior knowledge of non-speech frames 1 ,

1 For example, just by the design of the speech databases, the initial few frames
always correspond to the silence and hence can be used for noise PSD estimation.
However in a realistic ASR task such assumptions cannot be made.
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highest and lowest SNR range, and several other ad-hoc weighting factors 2

pg. 438 [1] to achieve noise robustness in ASR.

Therefore it is desirable to develop a new enhancement technique that does
not require an explicit noise PSD estimate. The least squares filter (LeSF)
based techniques fall in this category as they do not explicitly require a noise
PSD estimate. Although, the LeSF is optimal only in the case of the additive
noise being white, the speech recognition experiments, reported in this paper,
indicate that LeSF is also effecitve in case of non-white additive noises such
as the factory noise and the aircraft cockpit noise. MFCC features computed
from the LESF enhanced speech signal lead to significant ASR accuracy im-
provements in various noises as well as SNR conditions. We have derived the
analytical expressions for the impulse response of the L-weight least squares
filter (LesF) as a function of the input SNR (computed over the current frame),
effective band-width of the signal (due to finite frame length), filter length ’L’
and frame length ’N ’.
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Fig. 1. The basic operation of the LeSF. The input to the filter is noisy speech,
(x(n) = s(n)+u(n)), delayed by bulk delay =P . The filter weights wk are estimated
using the least squares algorithm based on the samples in the current frame. The
output of the filter y(n) is the enhanced signal.

2 Least Squares filter (LeSF) for signal enhancement

The basic operation of the LeSF is illustrated in figure (1) and it can be
understood intuitively as follows. The autocorrelation sequence of the additive
noise u(n) that is broad-band decays much faster for higher lags than that of
the speech signal. Therefore the use of a large filter length (’L’) and the delay P

2 such as raising the Wiener filter or spectral subtraction gain function to a certain
power which is empirically tuned, dependent on the SNR conditions.
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causes de-correlation between the noise components of the input signal, namely
(u(n−L−P +1), u(n−L−P +2), ..., u(n−P )) and the noise component of the
reference signal, namely (u(n)). It is worth noting that a longer filter length L
will also help to cause a de-correlation between the noise appearing at the kth

filter tap, namely, u(n−k−P +1)(where, k ∼ L) and the noise component of
the reference signal, namely, u(n). This is due to the fact that the broad-band
noise’s auto-correlation coefficients decay quite rapidly for higher lags. The
LeSF filter responds by adaptively forming a frequency response which has
pass-bands centered at the frequencies of the formants of the speech signal
while rejecting as much of broad-band noise (whose spectrum lies away from
the formant positions). Denoting the clean and the additive noise signals by
s(n) and u(n) respectively, we obtain the noisy signal x(n).

x(n) = s(n) + u(n) (1)

The LeSF filter consists of L weights and the filter coefficients wk for k ∈
[0, 1, 2..L− 1] are estimated by minimizing the energy of the error signal e(n)
over the current frame, n ∈ [0, N − 1].

e(n) = x(n) − y(n) (2)

where y(n) =
L−1∑

i=0

w(i)x(n − P − i) (3)

Let A denote the (N+L)×L data matrix[8] of the input frame x = [x(0), x(1), ....x(N−
1)] and d denote the (N + L) × 1 desired signal vector which in this case is
signal x appended by L zeros. The LeSF weight vector w is then given by

w =
(

AHA
)−1

AHd (4)

As is well known, AHA is a symmetric L × L Toeplitz matrix whose (i, j)
element is the temporal autocorrelation of the signal vector x estimated over
the frame length [8].

[

AHA
]

i,j
= r(|i − j|) (5)

=
N−|i−j|

∑

n=0

x(n)x(n + |i − j|) (6)

In practice, AHA can always be assumed to be non-singular due to presence
of additive noise[8] for filter length L < N . The weight vector w in (4) can be
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obtained using Levinson Durbin algorithm[8] without incurring a significant
computational cost.

3 LeSF applied to Speech

In this section, we will analytically solve (4) to obtain the LeSF w. We model
voiced speech using sinusoidal model[13], while unvoiced speech is modeled
by a source-filter model. However, we show that the functional form of the
equations remain the same except for a change in the parameter values.

3.1 Voiced Speech

As proposed in [13], voiced speech signals can be modeled as a sum of multiple
sinusoids whose amplitudes, phases and frequencies can vary from frame to
frame. Let us assume that a given frame of speech signal s(n) can be approx-
imated as a sum of M sinusoids. The number of sinusoids M may vary from
block to block. Then the noisy signal x(n) can be expressed as

x(n) =
M∑

i=1

Ai cos(ωin + φi) + u(n) (7)

where n ∈ [0, N − 1] and u(n) is a realization of white noise. Then the kth lag
autocorrelation can be shown to be,

r(k) =
∑N−k−1

n=0 x(n)x(n + k)

'
∑M

i=1(N − k)A2
i cos(2πfik) + Nσ2δ(k)

(8)

where it is assumed that the noise u(n) is white, ergodic and uncorrelated with
the signal s(n) and N � 1/(fi − fj) for all frequency pairs (i, j). The latter
condition ensures that all the interference terms between all the sinusoids pairs
(i, j) sum up to zero. The LeSF weight vector w(k) is then obtained as the
solution of the Normal equations,

∑L−1
k=0 r(l − k)w(k) = r(l + P )

l ∈ [0, 1, 2..L − 1]
(9)

An enhancement example is illustrated in Fig.2. The first pane displays the
magnitude spectrum of a clean, voiced speech frame. The second pane shows
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Fig. 2. The first pane displays spectral magnitude of a clean speech segment. Sec-
ond pane displays the spectral magnitude of the same segment corrupted by white
noise (red curve), whereas blue curve corresponds to the spectral magnitude of the
enhanced signal. The third pane displays the frequency response of the LeSF filter
that enhanced the noisy segment and was estimated over the noisy segment itself.

spectra of the same segment embedded in white noise (red curve) and the
spectrum of the enhanced signal (blue curve). As can be noticed, the broad
band white noise has been attenuated while the harmonics have been retained.
The third pane shows the magnitude response of the LeSF filter used for
enhancing this segment and it was estimated over the noisy segment itself. As
can be noticed the LeSF filter automatically puts the pass-bands around the
harmonics, thus enhancing the signal while rejecting the broad-band noise.
In the sections to follow, we will present further examples and performance
specifications of the LeSF filter for enhancing noisy speech signals.

The set of L linear equations described in (9) can be solved by elementary
methods if the z-transform (Sxx(z)) of the symmetric autocorrelation sequence
(r(k)) is a rational function of ’z’ [10]. Sxx(z) is given by,

Sxx(z) =
∞∑

k=−∞

r(k)z−k (10)

Consider then, a real symmetric rational z transform with M pairs of zeros
and M pairs of poles.
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Sxx(z) =G

∏M
m=1(z − e−βm+jΨm)(z−1 − e−βm−jΨm)

∏M
m=1(z − e−αm+jωm)(z−1 − e−αm−jωm)

(11)

If the signal x is real, then so is its autocorrelation sequence, r(k). In this case
the power spectrum, Sxx(z), has quadruplet sets of poles and zeros because of
the presence of conjugate pairs at z = exp(±αm±ωm) and z = exp(±βm±Ψm).
Anderson et. al.[9] have derived the general form of the solution to (9) for input
signal with rational power spectra such as that described by (11). In this case,
the LeSF weights are given by,

w(k)=
M∑

m=1

(

Bme−βmk cos(Ψmk) + Cme+βmk cos(Ψmk)
)

(12)

As can be seen, LeSF consists of an exponentially decaying term and an expo-
nentially growing term attributed to reflection [14], that occurs due to finite
filter length L. The value of the coefficients Bm and Cm can be determined by
solving the set of coupled equations obtained by substituting the expression
for w(k) given in (12) into (9).

To be able to use the general form of the solution of the LeSF filter as in
(12), we need a pole-zero model of the input autocorrelation in the form as
described in (11). For sufficiently large frame length N , such that filter length
L � N , we can make the following approximation.

(N − k) ' Ne−k/N (13)

k ∈ [0, 1, 2, . . . , L] and L � N

The above can be verified by using the Taylor series expansion of Ne−αk and
using only the linear term as k � N . We call (α = 1/N) as αvoiced. Using this
approximation in (8), we get,

r(k) = Ne−αvoicedk
M∑

i=1

A2
i cos(ωik) + Nσ2δ(k) (14)

In this form, r(k) corresponds to a sum of multiple decaying exponential se-
quences and its z transform takes up the form,
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Sxx(z) =
M∑

m=1

NA2
i (1 − e−2α)

2
×

(
1

(z − e−αm+jωm)(z−1 − e−αm−jωm)

+
1

(z − e−αm−jωm)(z−1 − e−αm+jωm)
) + Nσ2

where αm =αvoiced = 1/N ∀ m ∈ [1.M ]

(15)

3.2 Unvoiced Speech

We model unvoiced speech s(n) as the output of an all pole transfer function
(whose poles are at z = e−αunvoiced

i
±ωi) excited by a white noise signal e(n).

Specifically,

S(z) =
E(z)

∏Q
i=1(z − e−αunvoiced

i
+jωi)(z − e−αunvoiced

i
−jωi)

(16)

where S(z), E(z) are the z-transforms of unvoiced speech signal s(n) and white
noise excitation signal e(n) respectively. Then it can be shown that the auto-
correlation coefficients of the unvoiced speech are also decaying exponentials
(pg. 118,[8]) i.e

runvoiced(k) =
Q

∑

i=1

e−αunvoided
i

kcos(ωik), (17)

where the decaying factor αunvoiced
i > αvoiced = 1/N (where N is the block

length). This is due to the fact that voiced speech has sharper spectral peaks
than the unvoiced speech. Consequently the autocorrelation coefficients of the
unvoiced speech decay much faster than those of the voiced speech. However,
the functional form for the autocorrelation coefficients of the voiced and un-
voiced speech is the same, except that αvoiced < αunvoiced. In presence of white
noise, the power spectral density of the noisy unvoiced speech segment is given
by,
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Sxx(z) =
Q

∑

i=1

NA2
i (1 − e−2αi)

2
×

(
1

(z − e−αi+jωi)(z−1 − e−αi−jωi)

+
1

(z − e−αi−jωi)(z−1 − e−αi+jωi)
) + Nσ2

(18)

where αi is a decay factor of the ith pole pair. We note that the functional
form of the power spectral densities in (18) and (15) are the same except
that αi in (18) will in general be greater than αvoiced in (15). Therefore the
functional form of the LeSF filter w in (12) remains the same for both voiced
and unvoiced speech. Its just that for the unvoiced speech the bandwidth of the
pass-bands of the LeSF will be wider than that of voiced LeSF. In Fig. 3, we
show a transfer function with two complex-pole pairs (at conjugate symmetric
positions) that is used to synthesize unvoiced speech by exciting it with white
noise. First pane shows the pole-zero plot. Second pane shows the frequency
response of this all-pole model. In the third pane, blue, red and green curves
are the FFT magnitudes of the clean speech, noisy speech corrupted by white
noise at SNR -3dB and the LeSF enhanced speech respectively. The fact that
the green curve matches the blue curve closely, shows that the LeSF has been
able to filter out the noise component.

3.3 Analytic form of LeSF

From now onward we will not make any distinction between the exponential
decay factors αvoiced and αunvoiced as the functional form of the equations
remain the same. Therefore the following discussion is valid for both voiced
speech and unvoiced speech.

To be able to use the general form of the solution of the LeSF filter as in
(12), we need a pole-zero model of the input autocorrelation in the form as
described in (11). Under the approximation that the decaying exponentials
are widely spaced along the unit circle, the power spectrum Sxx(z) in (15)
that consists of sum of certain terms can be approximated by a ratio of the
product of terms (of the form (z − eρ+jθ)), leading to a rational ’z’ transform.
Specifically, as explained in [10,9] and making the following assumptions,

• The pole pairs in (15) lie sufficiently close to the unit circle (easily satisfied
as α ' 0.)

• All the frequency pairs (ωi, ωj) in (15) are sufficiently separated from each
other such that their contribution to the total power spectrum do not over-
lap significantly.
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Fig. 3. A example of a two-formant vocal-tract frequency response which is excited
by white noise to synthesize unvoiced speech.

the z transform of the total input can be expressed as,

Sxx(z) =σ2

∏M
m=1(z − e−βm+jωm)(z − e+βm+jωm)

∏M
m=1(z − e−αm+jωm)(z − e+αm+jωm)

×
(z − e+βm−jωm)(z − e−βm−jωm)

(z − e+αm−jωm)(z − e−αm−jωm)
(19)

where αm =1/N

Corresponding to each of the sinusoidal component in the input signal there
are four poles at locations z = e±α ± ωm and there are four zeros on the same
radial lines as the signal poles but at different distances away from the unit
circle. Using the general solution described in (12), which has been derived at
length in [9], the solution of the LeSF weight vector to the present problem is,

w(n) =
M∑

m=1

(

Bme−βmn + Cme+βmn
)

cos ωm(n + P ) (20)

The values of βm, Bm and Cm can be determined by substituting (20) and (14)
in (9). The lth equation in the linear-system described in (9) has terms with co-
efficients exp(−βml), exp(+βml), exp(−αl) cos(ωm(l+P )) and exp(αl) cos(ωm(l+
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P )). Besides these, there are two other kind of terms that can be neglected.
The detailed analytic solution is presented in the appendix A. We note that
the analytic solution for the filter weights w(n) has been developed only for the
special when the noise is white. Unfortunately, it is not possible to derive a
closed form (analytic) solution of the filter weights w(n) for non-white noises.
However, as the filter weight w(n) is a continuous function of the noise au-
tocorrelation coefficients (A.6) and the white noise is the limiting case of the
broad-band noise when the bandwidth becomes infinite (or equal to the Nyquist
frequency for the discrete systems, as is the case here), we expect the following.
The filter weight w(n) for a non-white and broad-band noise will approximately
follow a behavior similar to the case of the w(n) when the noise is white. How-
ever, if the noise is significantly narrowband, then this discussion does not hold
true.

• “Non-stationary” terms that are modulated by a sinusoid at frequency 2ωm

where m ∈ [1, M ]. For ωm 6= 0, ωm 6= π, their total contribution is approxi-
mately zero. 3

• Interference terms that are modulated by a sinusoid at frequency ∆ω = (ωi−
ωj) where (i, j) ∈ [1, . . . , M ]. If filter length L � 2π/∆ω, these interference
terms approximately sum up to zero and hence can be neglected.

The coefficients of the terms exp(−βml), exp(+βml) are the same for each of
the L equations and setting them to zero leads to just one equation which
relates βm to α and the SNR. Let ρi denote the “partial” SNR of the sinusoid
at frequency ωi i.e ρi = A2

i /σ
2 and the complementary signal SNR be denoted

as γi = (
∑M

m=1,m6=i A
2
i )/σ

2. Then we have the following relation,

cosh βi = cosh α +
ρi

2γi + ρi + 2
sinh α (21)

There are two interesting cases. First case is when the sinusoid at frequency
ωi is significantly stronger than other sinusoids such that γi is quite low. This
is illustrated in figure (4), where we plot the bandwidth βi of the LeSF’s pass-
band that is centered around ωi as a function of the partial SNR of the ith

sinusoid, ρi. The complementary signal’s SNR is quite low at γi = −6.99db.
We plot curves for different “effective” input sinusoid’s bandwidth α. From
(15), we note that α is reciprocal of frame length N . The vertical line in figure
(4) corresponds to the case when ρi = γi. We note that for a given partial SNR
ρi, the LeSF bandwidth becomes narrower as the frame length N increases,
indicating a better selectivity of the LeSF filter.

In figure (5), we plot the bandwidth βi as a function of ρi for the cases when
complementary signal SNR is high at γi = 10db and is low at γi = −6.99db.

3 due to self cancelling positive and negative half periods of a sinusoid.
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Fig. 4. Plot of the filter bandwidth βi centered around frequency ωi as a function of
partial sinusoid SNR ρi for a given complementary signal SNR γi = −6.99db and
“effective” input bandwidth α(alpha) = 0.01, 0.005, 0.001 respectively. The vertical
line meets the three curves when ρi = γi.

The two dots correspond to the case when ρi = γi. We note that γi = 10db
corresponds to a signal with high overall SNR 4 . Therefore the cross-over point
(γi = ρi) for low γi occurs at narrower bandwidth as compared to high γi case.
This is so because in the former case the overall signal SNR is low and thus
the LeSF filter has to have narrower pass-bands to reject as much of noise as
possible.

Bi and Ci in (20) are determined by equating their respective coefficients. The
“non-stationary” interference terms between all of the pairs of the frequency
(ωi, ωj), can be neglected if (ωi − ωj) >> 2π/L. This requires that LeSF’s
frequency resolution (2π/L) should be able to resolve the constituent sinusoids.

Bi =
2e−βie−αP (α + βi)

2(βi − α)

((α + βi)
2 − e−2βiL(βi − α)2)

Ci =
2e−βi(2L+1)+1e−αP (α + βi)(βi − α)2

((α + βi)
2 − e−2βiL(βi − α)2)

(22)

We note from (21) that the various sinusoids are coupled with each other
through the dependence of their bandwidth βi on the complementary signal
SNR γi. As a consequence of that Bi, Ci are also indirectly dependent on the
powers of the other sinusoids through βi.

In Fig.6, the magnitude response of the LeSF filter is plotted for various SNR.
The input in this case consist of three sinusoids at normalized frequencies (

4 As overall SNR of the signal = 10 log10(10
10γi + 1010ρi)
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respectively. The “effective” input bandwidth α(alpha) = 0.01 for both the curves.
The two dots correspond to the cases when the partial SNR ρi is equal to comple-
mentary signal SNR γi.

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

−5

0

Normalized frequency

M
ag

ni
tu

de
 r

es
po

ns
e 

(in
 d

b)

SNR=3 

SNR=−7 

SNR=−17 

Fig. 6. Plot of the magnitude response of the LeSF filter as a function of the input
SNR. The input consists of three sinusoids at normalized frequencies (0.1, 0.2, 0.4)
with relative strength (1 : 0.6 : 0.4) respectively.

0.1, 0.2, 0.4). The frame length is N = 500 and filter length is (L = 100). As
the signal SNR decreases, the bandwidth of the LeSF filter starts to decrease
in order to reject as much of noise as possible. The LESF filter’s gain decreases
with decreasing SNR. Similar results were reported in [9,11] for the case of
stationary inputs.

In Fig.7, we plot the spectrograms of a clean speech utterance. Fig.8 and Fig.9
display the same utterance embedded in white noise at SNR 6dB and its LeSF
enhanced version respectively. As can be see from these spectrograms, LeSF
has been able to reject the additive white noise to a large extent while retain-
ing most of the speech signal. Fig.10 and Fig.11 display the same utterance
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Fig. 7. Clean spectrogram of an utterance from the OGI Numbers95 database
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Fig. 8. Spectrogram of the utterance corrupted by White noise at 6dB SNR.

embedded in F16-cockpit noise at SNR 6dB and its LeSF enhanced version
respectively. As can be seen from the spectrograms, except for the narrow-
band noise component centered around 2.5KHz, the LeSF filter has been able
to reject significant amount of additive F-16 cockpit noise [29] from the noisy
speech signal. By design, the LeSF puts pass-bands around those regions of
the input signal’s spectrum that has high spectral energy density. As a conse-
quence of that, the LeSF has not been able to well attenuate the narrow band
noise in the spectrograms of Fig.10 and Fig.11. However, it has attenuated
the broad-band noise components quite well.

4 Gain of the LeSF filter

The LeSF filter output consist of filtered sinusoids and the filtered noise signal.
For the input signal described by (7) that is filtered by a LeSF filter with
coefficients as in (20), the output filtered signal power Psignal and the output

15



Time

F
re

qu
en

cy
0   0.25 0.50 0.75 1.0 1.25 1.50

0

1000

2000

3000

4000

Fig. 9. Spectrogram of the noisy utterance (white noise) enhanced by a (L = 100)
tap LeSF filter that has been estimated over blocks of length (N = 500).

Time

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 10. Spectrogram of the utterance corrupted by F16-cockpit noise at 6dB SNR.

filtered noise power Pnoise are approximately 5 given by,

5 assuming N � L such that initial L samples can be used to initialize the filter
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Fig. 11. Spectrogram of the noisy utterance (F16-cockpit noise) enhanced by a
(L = 100) tap LeSF filter that has been estimated over blocks of length (N = 500).

Psignal =
L−1∑

i=0

L−1∑

j=0

w(i)w(j)r(|i− j|) (23)

=
L−1∑

i=0

L−1∑

j=0

w(i)w(j) (24)

×
(N − |i − j|)

N

M∑

m=1

A2
mcos(2πfm(i − j))

Pnoise =
L−1∑

n=0

σ2w2(n)

=
M∑

i=1

[

B2
i e

−βiL + C2
i e

βiL
] σ2 sinh(βiL)

2βi

+ σ2BCL (25)

The output SNR of the LeSF filter is given by (23) divided by (25). The
LeSF gain is given by the ratio of the output SNR to the input SNR =
∑M

i=1 A2
i /(2σ2).

In Fig. 12, we plot the LeSF broadband gain as a function of input SNR, for
a fixed block length of N = 500 and varying filter lengths (L = 100, 80, 60).
As can be noted from the Fig. 12, the LeSF broadband gain approaches a
horizontal asymptote for decreasing input SNR. This is in agreement with
the fact that the bandwidth βi of the LeSF filter approaches a horizontal
asymptote (Fig. 4) for decreasing SNR. We note from Fig. 12 that the LeSF
broadband gain increases as the filter length L increases for a fixed block
length N = 500. However, since the L tap LeSF filter is estimated using the
N samples from a given block, the filter length cannot be increased arbitrarily
and is limited from above by the block length ’N ’.
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Fig. 12. LeSF gain plotted as a function of input SNR for fixed block length N = 500
and various filter lengths L = 100, 80, 60.
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Fig. 13. LeSF gain plotted as a function of input SNR for fixed filter length L = 100
and various block lengths N = 300, 400, 500.

wer

In Fig. 13, we plot the LeSF broadband gain as a function of input SNR, for
a fixed filter length L = 100 and varying block lengths (N = 300, 400, 500).
We note that the LeSF broadband gain increases as the block length N in-
creases. However, for a non-stationary signal such as speech, as the block
length increases, the corresponding power spectrum will become more broad-
band. Therefore we will not be able to model the corresponding block as a
sum of a small number of sinusoids M as done in (7). As a result the number
of sinusoids M will be large and possibly closely spaced to each other, leading
to significant interference terms between the constituent sinusoids in (8) and
(14).
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5 Experiments and Results

In order to assess the effectiveness of the proposed algorithm, speech recog-
nition experiments were conducted on the OGI Numbers[28] corpus. This
database contains spontaneously spoken free-format connected numbers over
a telephone channel. The lexicon consists of 31 words. 6 Hidden Markov Model
and Gaussian Mixture Model (HMM-GMM) based speech recognition systems
were trained using public domain software HTK[27] on the clean training set
from the original Numbers corpus. The system consisted of 80 tied-state tri-
phone HMM’s with 3 emitting states per triphone and 12 mixtures per state.
To verify the robustness of the features to noise, the clean test utterances were
corrupted using White, Factory and F-16 cockpit noise from the Noisex92 [29]
database.

5.1 Bulk Delay P

Noting that the autocorrelation coefficients of a periodic signal are themselves
periodic with the same period (hence they do not decay with the increasing
lag), Sambur[7] has used a bulk delay equal to the pitch period of the voiced
speech for its enhancement. However, for the un-voiced speech a high bulk
delay will result in a significant distortion by the LeSF filter as its autocorre-
lation coefficients decay much more rapidly than those of the voiced speech.
Therefore, we kept the bulk delay at ’P = 1’ as a good choice for enhancing
both the voiced and un-voiced speech frames.

5.2 Block length N and filter length L

Speech signals were blocked into frames of (N=500) samples (62.5ms) each
and a (L=100) tap LeSF filter was derived using (4), through the Levinson-
Durbin algorithm, for each frame that could be either voiced or unvoiced. The
relatively high order (L = 100) of the LeSF filter is required for a twofold rea-
son. Firstly, it provides sufficiently high frequency resolution (2π/L) to resolve
the constituent sinusoids in case of the voiced speech. Secondly, it causes de-
correlation between the noise appearing at the kth filter tap (u(n−k−P+1), k ∼
L) and the noise component of the reference signal u(n). Each speech frame
was then filtered through its corresponding LeSF filter to derive an enhanced
speech frame. Finally MFCC feature vector was computed from the enhanced
speech frame. These enhanced LeSF-MFCC were compared to the baseline

6 With confusable words such as nine, ninety and nineteen, eight, eighty and eigh-
teen and so forth
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MFCC features and noise robust CJ-RASTA-PLP[6] features. The MFCC
feature vector computation is the same for the baseline and the LeSF-MFCC
features. The only difference is that the MFCC baseline features are computed
directly from the noisy speech while the LeSF-MFCC features are computed
from LeSF enhanced speech signal. We also compared our technique with the
soft-decision spectral subtraction based technique. In [5], authors have used a
speech presence probability in conjunction with spectral subtraction to achieve
noise robustness. This can be seen as a soft-decision spectral subtraction which
has been shown to be superior than hard-decision spectral subtraction by
Mcaulay et al.[12]. As the train set, test set and the factory noise environment
in our experiments and those of [5] are the same, we quote the ASR results for
the factory noise directly from [5]. The authors in [5] propose three features
based on the soft-spectral subtraction, which vary in their pre-processing steps
and are termed POST-FILT, POWER-FILT and PSIL. In table 1, we quote
their ASR word error rates in the factory noise environment, directly from the
results reported in[5]. We note that the proposed technique outperforms all
three soft-decision spectral subtraction variants.

The speech recognition results for the baseline MFCC, CJ-RASTA-PLP and
the proposed LeSF-MFCC, in various levels of noise are given in Tables 2, 3
and 4. All the reported features in this paper have cepstral mean subtraction
(CMS). The proposed LeSF processed MFCC performs significantly better
than others in various kinds of heavy noise conditions (SNR 6,0). The slight
performance degradation of the LeSF-MFCC in the clean is due to the fact
that the LeSF filter being an all-pole filter does not model the valleys of the
clean speech spectrum well. As a result, the LeSF filter sometimes amplifies
the low spectral energy regions of the clean spectrum.

Table 1
Word error rate results for factory noise using soft-decision spectral subtraction.

All features have cepstral mean subtraction.

SNR LeSF MFCC POST-FILT POWER-FILT PSIL

Clean 6.6 8.1 8.3 7.1

12 dB 11.3 16.2 17.0 15.7

6 dB 20.0 30.7 31.2 28.7

0 db 41.3 63.1 61.9 58.2

Table 5 shows the word error rate of the LeSF enhanced MFCC features for a
fixed block length of 500 samples (62.5ms) and varying LeSF filter length ’L’.
We note that the word error rate decreases as the filter length increases. This
is so because a higher filter length results in a sharper frequency response of
the LeSF filter(narrower band-width of the passbands), thereby enabling it to
reject as much of the broad-band noise as possible that lies away from the
frequencies of the constituent sinusoids of the clean signal.
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Table 2
Word error rate results for factory noise. Parameters of the LeSF filter, L=100

and N=500. All features have cepstral mean subtraction.

SNR MFCC CJ-RASTA-PLP LeSF MFCC

Clean 5.7 7.8 6.6

12 dB 12.3 12.2 11.3

6 dB 27.1 23.8 20.0

0 db 71.0 59.8 41.3

Table 3
Word error rate results for white noise. Parameters of the LeSF filter, L=100 and

N=500. All features have cepstral mean subtraction.

SNR MFCC CJ-RASTA-PLP LeSF MFCC

Clean 5.7 7.8 6.6

12 dB 16.4 14.7 17.3

6 dB 34.6 29.0 24.1

0 db 80.3 66.0 40.4

Table 4
Word error rate results for F16-cockpit noise. Parameters of the LeSF filter, L=100

and N=500. All features have cepstral mean subtraction.

SNR MFCC CJ-RASTA-PLP LeSF MFCC

Clean 5.7 7.8 6.6

12 dB 13.6 14.2 12.5

6 dB 28.4 25.3 21.0

0 db 72.3 59.2 41.0

6 Conclusion

We consider a class of non-stationary signals as input that are composed of
either (a) multiple sinusoids (voiced speech) whose frequencies and the ampli-
tudes may vary from block to block or, (b) output of an all-pole filter excited
by white noise input (unvoiced speech segments) and which are embedded in
white noise. We have derived the analytical expressions for the impulse re-
sponse of the L-weight least squares filter (LesF) as a function of the input
SNR (computed over the current frame), effective band-width of the signal
(due to finite frame length), filter length ’L’ and frame length ’N ’. Recogniz-
ing that such a time-varying sinusoidal model[13] and the source-filter model
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Table 5
Word error rate results for factory noise for varying length, L = 100, 50, 20 of the

LeSF filter. The block length, N is 500 (62.5ms).

SNR LeSF L=20 LeSF L=50 LeSF L=100

Clean 9.3 7.3 6.6

12 dB 14.3 12.3 11.3

6 dB 24.4 22.0 20.0

0 db 46.5 43.0 41.3

are a reasonable approximation to the voiced speech and unvoiced speech
respectively, we have applied the block estimated LeSF filter for de-noising
speech signals embedded in the realistic[29] broad-band noise as commonly
encountered on a factory floor and an aircraft cockpit. The proposed tech-
nique leads to a significant improvement in ASR performance as compared to
noise robust CJ-RASTA-PLP[6], speech presence probability based spectral
subtraction[5] and the MFCC features computed from the unprocessed noisy
signal.

A Appendix: Solution to the equation

A.1 Autocorrelation over a block of samples

We consider the signal x(n) as

x(n) =
M∑

i=1

Ai cos(ωin + φi) + u(n) (A.1)
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where n ∈ [0, N − 1] and u(n) is a realization of white noise. Then the kth lag
autocorrelation is given by,

r(k) =
∑N−k−1

n=0 x(n)x(n + k)

=
∑N−k−1

n=0 (
∑M

i=1 Ai cos(ωin + φi) + u(n))(
∑M

j=1 Aj cos(ωj(n + k) + φj) + u(n + k))

=
∑N−k−1

n=0 (
∑M

i=1 A2
i cos(ωin + φi) cos(ωi(n + k) + φi)

+
∑N−k−1

n=0

∑M
i=1

∑M
j=1,j 6=i AiAj cos(ωin + φi) cos(ωj(n + k) + φj)

+
∑N−k−1

n=0

∑M
j=1 Aju(n) cos(ωj(n + k) + φj) +

∑N−k−1
n=0

∑M
i=1 Aiu(n + k) cos(ωin + φi)

+
∑N−k−1

n=0 u(n)u(n + k)

=
∑N−k−1

n=0 (
∑M

i=1
A2

i

2
(cos(ωik) + cos(2ωin + ωik + 2φi)))

+
∑N−k−1

n=0

∑M
i=1

∑M
j=1,j 6=i

AiAj

2
(cos((ωi − ωj)n − ωjk + φi − φj) + cos((ωi + ωj)n + ωj(k) + φi + φj))

+
∑N−k−1

n=0

∑M
j=1 Aju(n) cos(ωj(n + k) + φj) +

∑N−k−1
n=0

∑M
i=1 Aiu(n + k) cos(ωin + φi)

+
∑N−k−1

n=0 u(n)u(n + k)

= (N − k)
M∑

i=1

A2
i

2
cos(ωik)

︸ ︷︷ ︸

SIG

+
∑M

i=1

A2
i

2

N−k−1∑

n=0

cos(2ωin + ωik + 2φi))

︸ ︷︷ ︸

A

+
∑M

i=1

∑M
j=1,j 6=i

AiAj

2

N−k−1∑

n=0

cos((ωi − ωj)n − ωjk + φi − φj)

︸ ︷︷ ︸

B

+
∑M

i=1

∑M
j=1,j 6=i

AiAj

2

N−k−1∑

n=0

cos((ωi + ωj)n + ωj(k) + φi + φj)

︸ ︷︷ ︸

C

+
∑M

j=1

N−k−1∑

n=0

Aju(n) cos(ωj(n + k) + φj)

︸ ︷︷ ︸

D

+
∑M

i=1

N−k−1∑

n=0

Aiu(n + k) cos(ωin + φi)

︸ ︷︷ ︸

E

+
N−k−1∑

n=0

u(n)u(n + k)

︸ ︷︷ ︸

F

(A.2)

Let us consider the under-braced terms A, B, C. They are the sums of the
samples of a cosine wave at frequencies, 2ωi, ωi−ωj, ωi+ωj respectively. If (N-
k) is much greater than the 2π

ωi
and 2π

ωi−ωj
for all frequency pairs (i, j), then the

sums A, B, C will contain several periods of their corresponding cosine waves.
Sum over ’Q’ periods of the samples of a cosine wave at any nonzero frequency
is zero. This can be seen by the following integral which approximates the sum
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of the samples in A, B, C,

∫ t=Q2π/ω
t=0 A cos(ωt + φ)dt = 0 (A.3)

This happens as the negative and positive swings of the cosine cancel each
other. Therefore A, B, C are approximately zero. Let (N − k) = Q × T + ∆,
where Q is an integer and T is the period of a certain sinusoid at frequency
ω and ∆ is the left over part as N − k is not an exact multiple of T . Hence
∆ < T . Then we have,

∑n=N−k
n=0 A cos(ωn + φ) =

∑n=QT
n=0 A cos(ωn + φ) +

∑n=N−k
n=QT+1 A cos(ωn + φ)

=
∑n=N−k

n=QT+1 A cos(ωn + φ)

< A × ∆ � A × (N − k)

(A.4)

This proves the A, B, C can safely be ignored in comparison to SIG term which
is proportional to (N-k). Moreover D, E are also approximately zero as the
noise u(n) is assumed uncorrelated with signal s(n). The term F = Nσ2δ(k)
as the noise is assumed to be white. Hence ignoring A, B, C, D, E, we get

r(k) =
∑N−k−1

n=0 x(n)x(n + k)

'
∑M

i=1(N − k)A2
i cos(2πfik) + Nσ2δ(k)

'
∑M

i=1(N exp(−αk))A2
i cos(2πfik) + Nσ2δ(k)

(A.5)

where α = 1/N and hence α � 1.

A.2 Solving the least squares matrix equation

In the section, we will analytically solve the LeSF equation for the form of the
autocorrelation coefficients given above in (A.5). The (L × L) matrix LeSF
equation is reproduced below













r(0) r(1) r(2) · · · r(L − 1)

r(1) r(0) r(1) · · · r(L − 2)

· · · · · · · · · · · · · · ·

r(L − 1) r(L − 2) · · · · · · r(0)













×













w(0)

w(1)

· · ·

w(L − 1)













=













r(P )

r(P + 1)

· · ·

r(P + L − 1)













(A.6)
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where the w(0), w(1), · · · , w(L − 1) are the LeSF filter tap weights and the
autocorrelation coefficients r(k) are given by (A.5). In [9], it has been shown
that the functional form of filter tap weights in (A.6) for the form of the r(k)
as in (A.5), is given by,

w(k) =
∑M−1

i=1 (Bi exp(−βik) + Ci exp(βik)) cos(ωi(k + P )) (A.7)

where P is the bulk delay. In (A.7), the quantities Ci, Bi, βi are unknown. Our
objective is to solve (A.6) for the unknown quantities in the filter tap weights
w in closed form. Towards this end, let’s consider the (p+1)th equation in the
system of the equations (A.6) which is reproduced below,

∑k=p−1
k=0 r(p − k)w(k) + r(0)w(p) +

∑L−1
k=p+1 r(k − p)w(k) = r(P + p) (A.8)

Next, we substitute the functional forms of r(k) and w(k) in (A.8). We collect
the terms that correspond to the ith sinusoid together and call them as “self-
terms” while the terms that have contribution from the ith and the jth sinusoid
are called “cross terms”. As, we will show that some of these cross terms can be
ignored in comparison to the “self-terms”, thus facilitating analytical solution.
The “self-terms” due to the ith sinusoid, on the right hand side of (A.8) are,
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∑p−1
k=0 [Bi exp(−βik) + Ci exp(βik)] cos(ωi(k + P )) [A2

i exp(−α(p − k)) cos(ωi(p − k))]

+ [Bi exp(−βip) + Ci exp(βip)] cos(ωi(p + P ))
[
∑M

i=1 A2
i + σ2

]

∑L−1
k=p+1 [Bi exp(−βik) + Ci exp(βik)] cos(ωi(k + P )) [A2

i exp(−α(k − p)) cos(ωi(k − p))]

=
1

2
A2

i cos(ωi(p + P ))
k=p−1
∑

k=0

[Bi exp(−βik) + Ci exp(βik)] exp(−α(p − k))

︸ ︷︷ ︸

stationary

+
1

2
A2

i

k=p−1
∑

k=0

[Bi exp(−βik) + Ci exp(βik)] exp(−α(p − k)) cos(2ωik − ωi(p − P ))

︸ ︷︷ ︸

non−stationary

+ [Bi exp(−βip) + Ci exp(βip)] cos(ωi(p + P ))(
M∑

i=1

A2
i + σ2)

︸ ︷︷ ︸

stationary

1

2
A2

i cos(ωi(p + P ))
k=L−1∑

k=p+1

[Bi exp(−βik) + Ci exp(βik)] exp(−α(k − p))

︸ ︷︷ ︸

stationary

+
1

2
A2

i

k=L−1∑

k=p+1

[Bi exp(−βik) + Ci exp(βik)] exp(−α(k − p)) cos(2ωik − ωi(p − P ))

︸ ︷︷ ︸

non−stationary

(A.9)

The “non-stationary” terms approximately sum up to zeros due to the self-
canceling positive and negative swings of the sinusoid at frequency (2ωi) and
hence can be ignored in comparison to the “stationary terms”. Similarly in
the (p + 1)th equation, there are “cross-terms” that get contribution from the
ith and the jth sinusoid. These terms are given below.
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∑p−1
k=0 [Bi exp(−βik) + Ci exp(βik)] cos(ωi(k + P ))

[

A2
j exp(−α(p − k)) cos(ωj(p − k))

]

+
∑L−1

k=p+1 [Bi exp(−βik) + Ci exp(βik)] cos(ωi(k + P ))
[

A2
j exp(−α(k − p)) cos(ωj(k − p))

]

=
1

2
A2

j

k=p−1
∑

k=0

[Bi exp(−βik) + Ci exp(βik)] exp(−α(p − k)) [cos((ωi − ωj)(k) + ωiP + ωjp)]

︸ ︷︷ ︸

non−stationary

+
1

2
A2

j

k=p−1
∑

k=0

[Bi exp(−βik) + Ci exp(βik)] exp(−α(p − k)) [cos((ωi + ωj)(k) + ωiP − ωjp)]

︸ ︷︷ ︸

non−stationary

+
1

2
A2

j

k=L−1∑

k=p+1

[Bi exp(−βik) + Ci exp(βik)] exp(−α(k − p)) [cos((ωi − ωj)k + ωiP + ωjp)]

︸ ︷︷ ︸

non−stationary

+
1

2
A2

j

k=L−1∑

k=p+1

[Bi exp(−βik) + Ci exp(βik)] exp(−α(k − p)) [cos((ωi + ωj)(k) + ωiP − ωjp)]

︸ ︷︷ ︸

non−stationary

(A.10)

If (ωi − ωj) � 2π
L

and (ωi + ωj) 6= 2π, then these “non-stationary” terms
approximately sum up to zero too. Therefore, all the cross-terms noted above
can be safely neglected on the right hand side of the equation (A.8). Therefore
neglecting all the non-stationary terms in (A.9), (A.10), we get,

1

2
A2

i cos(ωi(p + P ))
k=p−1
∑

k=0

[Bi exp(−βik) + Ci exp(βik)] exp(−α(p − k))

︸ ︷︷ ︸

stationary

+ [Bi exp(−βip) + Ci exp(βip)] cos(ωi(p + P ))(
M∑

i=1

A2
i + σ2)

︸ ︷︷ ︸

stationary

+
1

2
A2

i cos(ωi(p + P ))
k=L−1∑

k=p+1

[Bi exp(−βik) + Ci exp(βik)] exp(−α(k − p))

︸ ︷︷ ︸

stationary

=
∑M

i=1 exp(−α(p + P ))A2
i cos(ωi(p + P ))

(A.11)

Next, we collect all the terms in (A.11) with the coefficients exp(−βip),exp(+βip)
for each of the ith sinusoid and set them to zero as there are no terms on the
right hand side of (A.11) with these coefficients. Consider the terms with the
coefficient exp(−βip), which are given below, and is set to zero as explained

27



above.

∑M
i=1

[

−
A2

i
2

cos(ωi(p + P ))Bi exp(−βip)
(1 − exp(−(βi − α)))

+ Bi exp(−βip) cos(ωi(p + P ))
(
∑M

i=1 A2
i + σ2

)
]

+
∑M

i=1

[

A2
i

2
Bi exp(−βip) exp(−(α + βi)) cos(ωi(p + P ))

(1 − exp(−(α + βi)))

]

= 0

(A.12)
Therefore for each “i”, we get the relationship,

cosh βi = cosh α + ρi
2γi + ρi + 2 sinh α (A.13)

where, ρi denotes the “partial” SNR of the sinusoid at frequency ωi i.e ρi =
A2

i /σ
2 and the complementary signal SNR is denoted as γi = (

∑M
m=1,m 6=i A

2
i )/σ

2.
The coefficients of the terms exp(−βip), exp(+βip) are the same for each of
the L equations and setting them to zero leads to just one equation which
relates βi to α, ρi and γi. Next step is to solve for Bi and Ci. Towards this
end, we equate the coefficient of exp(−αp) on both the left and right hand
sides of (A.11). This leads to,

A2
i cos(ωi(p + P ))Bi exp(−αp)

1 − exp(−(α − βi))
+

A2
i cos(ωi(p + P ))Ci exp(−αp)

1 − exp(−(α + βi))

= A2
i exp(−αp) exp(−αP ) cos(ωi(p + P ))

(A.14)

Similarly we set the coefficient of exp(+αp) to zero as there is no term with
this coefficient on the right hand side of (A.11). This leads to,

A2
i cos(ωi(p + P ))Bi exp(−(α + βi)) exp(−αL + αp + α − βiL + βi)

1 − exp(−(α + βi))

+
A2

i cos(ωi(p + P ))Ci exp(−α + βi) exp(−αL + αp + α + βiL − βi)
1 − exp(−α + βi)

= 0

(A.15)

There are two unknowns Bi and Ci in (A.14) and (A.15). Solving them simul-
taneously gives,
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Bi =
2e−βie−αP (α + βi)

2(βi − α)

((α + βi)
2 − e−2βiL(βi − α)2)

Ci =
2e−βi(2L+1)+1e−αP (α + βi)(βi − α)2

((α + βi)
2 − e−2βiL(βi − α)2)

(A.16)

This concludes the analytic solution of the LeSF equation.
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