
Collusion-Free Policy-Based Encryption

Walid Bagga , Refik Molva

Institut Euŕecom
Corporate Communications

2229, route des Crêtes B.P. 193
06904 Sophia Antipolis (France)
{bagga,molva}@eurecom.fr

Abstract. A policy-based encryption scheme allows a user to encrypt a message with respect to a
credential-based policy formalized as monotone boolean expression written in standard normal form.
The encryption is so that only a user having access to a qualified set of credentials for the policy is able
to successfully decrypt the message. An inherent property of policy-based encryption is that in addition
to the recipient an encrypted message is intended for, any collusion of credential issuers or end users who
are able to collect a qualified set of credentials for the policy used to encrypt the message can decrypt it
as well. In some applications, the collusion property may be acceptable or even useful. However, for most
other applications it is undesirable. In this paper, we present a collusion-free policy-based encryption
primitive, called policy-based public-key encryption. We provide precise definition for the new primitive
as well as for the related security model. Then, we describe a concrete implementation using pairings
over elliptic curves and prove its security in the random oracle model.

Keywords: Pairing-Based Cryptography, Provable Security, Authorization, Credentials

1 Introduction

Policy-based encryption, recently formalized in [4], allows to encrypt a message with respect to a credential-
based policy formalized as monotone boolean expression written in standard normal form. The encryption
is so that only a user that is compliant with the policy is able to decrypt the message. A policy involves
conjunctions (logicalAND operation) and disjunctions (logicalOR operation) of conditions, where each con-
dition is fulfilled by a digital credential representing the signature of a specific credential issuer on a set of
statements about a certain entity. A user is thus compliant with a policy if and only if he has been issued a
qualified set of credentials for the policy i.e. a set of credentials fulfilling the combination of conditions de-
fined by the policy. More generally, policy-based encryption belongs to an emerging family of cryptographic
schemes sharing the ability to integrate encryption with credential-based access structures. This ability al-
lows for several interesting applications in different contexts including but not restricted to oblivious access
control [4, 7, 14], trust negotiation [6, 9, 13], and cryptographic workflow [3].

Suppose that Alice wants to send a sensitive message to Bob, while requiring that Bob fulfills a specific
credential-based policy in order for him to be authorized to read the message. In order to enforce her policy,
Alice first encrypts her message according to her policy using a policy-based encryption algorithm, then she
sends the resulting ciphertext to Bob. If Bob has access to a qualified set of credentials for Alice’s policy, then
he is compliant with the policy and can thus use his credentials to successfully decrypt the received message.
An inherent property of the policy-based encryption primitive is that, in addition to Bob, any collusion of
credential issuers or end users who are able to collect a qualified set of credentials for Alice’s policy can
decrypt the message as well. In some applications, where it is acceptable to assume that the credential issuers

are trusted for not colluding with each other to spy the end user’s communications and that no end user
is willing to share his credentials with other end users, the collusion property is not a problem. In other
applications, collusion of end users is useful when collaboration is required to authorize access to sensitive
information, while collusion of credential issuers may even be desirable for law enforcement. However, for
other applications such as trust establishment in large-scale open environments like the Internet, the collusion
property is undesirable.

In this paper, we present a collusion-free variance of the policy-based encryption primitive defined in [4],
that we callpolicy-based public key encryption. The intuition behind our encryption primitive is as follows:
we assume that each end user is associated to a public/private key pair. We suppose that no end user is willing
to share his private key with the others, and thus keeps secret his valuable key in a secure storage system such
as a smart card. Furthermore, we suppose that a credential delivered by a credential issuer is associated to
the requester’s public key, and that it is issued after checking that the requester possesses the corresponding
private key. As opposed to the basic policy-based encryption primitive, our encryption algorithm takes as in-
put, in addition to a credential-based policy, the public key of the recipient the encrypted message is intended
for. The policy taken as input is fulfilled by qualified sets of credentials for which all the credentials are as-
sociated to the recipient’s public key. Our decryption algorithm is such that, in order to successfully decrypt
the message, one needs to have access to a qualified set of credentials for the policy as well as to the recip-
ient’s private key. Thus, our policy-based public-key encryption primitive prevents collusions of credential
issuers by making the decryption algorithm involve a secret element (private key) held only by the recipient
the encrypted message is intended for. Besides, our primitive prevents collusions of end users by associating
all the credentials fulfilling the policy according to which a message is encrypted to the same public key, and
making these credentials useful only in conjunction with the corresponding private key.

In the following, we present the related work found so far in the literature.

1.1 Related Work

As said before, policy-based encryption and policy-based public-key encryption belong to an emerging family
of cryptographic schemes sharing the ability to integrate encryption with credential-based access control
structures. This ability is mainly enabled by pairings over elliptic curves, and more particularly by the Boneh-
Franklin identity-based encryption from bilinear pairings [5]. Note that identity-based encryption could be
seen as a particular case of policy-based encryption. In fact, an identity-based encryption scheme corresponds
to a policy-based encryption scheme for which policies are reduced to a single credential representing the
signature of a centralized credential issuer (called private key generator) on the identity of an end user.

In [7], the authors present various applications of the use of multiple trusted authorities and multiple identities
in the type of identity-based cryptography. They show how to perform encryption according to disjunctions
and conjunctions of credentials. However, their solution remains restricted to a limited number of disjunc-
tions. In [14], the author further pursues the ideas discussed in [7] and presents an elegant and efficient
mechanism to perform access control based on encryption with respect to monotone boolean expressions
written in standard normal forms. The proposed solution remains limited to credentials generated by a cen-
tralized trusted authority. Furthermore, it lacks adequate security arguments. In [4], the authors provide a
further generalization of [14] by considering credentials that might be generated by independent credential
issuers. They formalize the concept of policy-based cryptography and provide precise definitions for policy-
based encryption and policy-based signature primitives. Furthermore, they show how such primitives could
be used to enforce policies with respect to the data minimization principle according to which only strictly

necessary information should be collected for a given purpose. Unfortunately, the presented schemes lack
formal security analysis as for [14].

In [9], the authors introduce hidden credentials as a solution to perform privacy-enabled trust negotiation.
Their solution uses the Boneh-Franklin identity-based encryption scheme [5] and relies on onion-like en-
cryption and multiple encryption operations to deal, respectively, with conjunctions and disjunctions of cre-
dentials. Such approach remains inefficient in terms of both computational costs and bandwidth consumption
(ciphertext size), especially when authorization structures become complex. In [6], the authors propose a so-
lution to improve decryption efficiency as well as policy concealment when implementing hidden credentials
with sensitive policies. They prove the chosen ciphertext security of their solution under the identity-based
security models defined in [5].

Although used in application scenarios with different security requirements, the encryption schemes pre-
sented above share the fact that they allow to encrypt a message according to a credential-based policy so that
only the users having access to a qualified set of credentials for the policy are able to successfully decrypt the
message. While the schemes of [6, 9] consider policies formalized as monotone boolean expressions written
as general conjunctions and disjunctions of atomic terms, the schemes of [4, 14] consider the ones written in
standard normal forms. All the presented schemes are based on the Boneh-Franklin identity-based encryption
primitive described in [5], from which they inherit the collusion property. In fact, the Boneh-Franklin scheme
suffers from the key-escrow property i.e. the credential issuer is able to decrypt the confidential messages
intended for the end users. As for the collusion property faced by policy-based encryption, the key-escrow
property might be necessary in some contexts, especially within organizations, for monitoring and law en-
forcement. However, in most applications, it is undesirable.

In [1], the authors describe a modification of the Boneh-Franklin encryption scheme that allows to avoid the
key-escrow problem. Their primitive, called certificateless public-key encryption, requires each end user to
have a public key. The encryption of a message is performed with respect to the identity of the recipient as well
as with respect to his public key. The decryption algorithm requires both the recipient’s private key and his
identity credential. In [3], the authors consider general access structures and use a similar technique to achieve
the policy-based encryption functionality while avoiding the collusion property. Their scheme could be seen
as the collusion-free variance of the encryption scheme proposed in [6]. They underline the fact that their
scheme supports cryptographic workflow, which is a feature inherited from the Boneh-Franklin encryption
primitive and supported by the policy-based encryption primitive as well. They define formal security models
to support their encryption primitive. Their ’recipient security model’ considers indistinguishability against
chosen plaintext attacks, where the adversary does not have access to the decryption oracle. Security against
the stronger chosen ciphertext attacks is left as an open research problem.

1.2 Contributions and Outline of the Paper

In this paper, we define a new policy-based cryptographic primitive, called policy-based public-key encryp-
tion, and describe a provably secure concrete implementation based on bilinear pairings over elliptic curves.
Our primitive allows to overcome the collusion problem faced by the original policy-based encryption prim-
itive defined in [4]. We use a technique similar to the one used in [1] to overcome the key-escrow problem
from which may suffer the identity-based encryption primitive defined in [5]. The escrow-free encryption
scheme proposed in [3] may be considered as a policy-based public-key encryption scheme when applied to
policies written in standard normal forms. Some may consider that restricting our scheme to standard normal
forms is a limitation compared to the scheme of [3] which deals with general-form policies. We argue that
this is not so, as in real-world scenarios security policies are typically written in standard normal forms. For

example, the Web Service policy languagesWS-Policy andWSPL consider policies converted to the stan-
dard disjunctive normal form. Our concrete scheme improves the performance of the key-escrow encryption
scheme of [3] (when applied to standard-form policies) both in terms of computational cost and bandwidth
consumption (size of the resulting ciphertext). Furthermore, we prove the security of our scheme against
chosen ciphertext attacks as opposed to the approach of [3] that consider the weaker chosen plaintext attacks.

The rest of the paper is organized as follows: in Section 2, we first set the context for our encryption primitive
including the terminology, the notation and the policy model. Then, we provide a precise definition for policy-
based public-key encryption schemes as well as for the related security model. The latter adapts the strong
security notion of indistinguishability against chosen ciphertext attacks to the specific features of the new
policy-based cryptographic primitive. In Section 3, we describe a concrete policy-based public-key encryption
primitive based on bilinear pairings over elliptic curves. Our scheme is a modification of the original policy-
based encryption scheme described in [4] that integrates the public and private keys in the encryption and
decryption algorithms respectively. As opposed to the scheme presented in [4] which lacks formal security
analysis, we provide reductionist security arguments for our scheme in the random oracle model.

2 Definitions

2.1 Setting the Context

We consider a public key infrastructure where each end user holds a pair of keys(pku,sku). An end user is
identified by his public keypku. The public key does not has to be bound to the end user’s name/identity
(through public-key certification) as for standard PKI systems such as X.509. In fact, in large-scale open
environments, the identity of an end user is rarely of interest to determining whether the end user could
be trusted or authorized to conduct some sensitive transactions. Instead, statements about the end user such
as attributes, properties, capabilities and/or privileges are more relevant. The validity of such statements is
checked and certified by trusted entities called credential issuers through a digital signature procedure.

We consider a set of credential issuersI = {I1, . . . , IN}, where the public key ofIκ, for κ ∈ {1, . . . ,N}, is
denotedRκ while the corresponding master key is denotedsκ. We assume that a trustworthy value of the
public key of each of the credential issuers is known by the end users. Any credential issuerIκ ∈ I may be
asked by an end user to issue a credential corresponding to a set of statements. The requested credential is
basically the digital signature of the credential issuer on an assertion denotedApku. The assertion contains, in
addition to the set of statements, the end user’s public keypku as well as a set of additional information such
as the validity period of the credential. As the representation of assertions is out of the scope of this paper,
they will simply be encoded as binary strings.

Upon receiving a request for generating a credential on assertionApku, a credential issuerIκ first checks
the fact that the requester has access to the private keysku associated topku. Then, the credential issuer
checks the validity of the assertionApku. If it is valid, thenIκ executes a credential generation algorithm and
returns a credential denotedς(Rκ,Apku). Otherwise,Iκ returns an error message. Upon receiving the credential
ς(Rκ,Apku), the end user may check its integrity usingIκ’s public keyRκ. The process of checking the validity
of a set of statements about a certain entity is out of the scope of this paper.

We consider credential-based policies formalized as monotone boolean expressions involving conjunctions
(AND / ∧) and disjunctions (OR / ∨) of credential-based conditions. A credential-based condition is defined
through a pair〈Iκ,Apku〉 specifying an assertionApku ∈ {0,1}∗ (about an end user whose public key ispku)

and a credential issuerIκ ∈ I that is trusted to check and certify the validity ofApku. An end user whose public
key is pku fulfills the condition〈Iκ,Apku〉 if and only if he has been issued the credentialς(Rκ,Apku).

We consider policies written in standard normal forms, i.e. written either in conjunctive normal form (CNF) or
in disjunctive normal form (DNF). In order to address the two standard normal forms, we use the conjunctive-
disjunctive normal form (CDNF) introduced in [14]. Thus, a policy denotedPolpku is written as follows:

Polpku = ∧m
i=1[∨

mi
j=1[∧

mi, j
k=1〈Iκi, j,k,A

pku
i, j,k〉]], whereIκi, j,k ∈ I andApku

i, j,k ∈ {0,1}∗

Under theCDNF notation, policies written inCNF correspond to the case where{mi, j = 1}i, j , while policies
written in DNF correspond to the case wherem= 1.

Let ς j1,..., jm(Polpku) denote the set of credentials{{ς(Rκi, ji ,k
,Apku

i, j i ,k
)}mi, ji

k=1}m
i=1, for some{ j i ∈ {1, . . . ,mi}}m

i=1.

Then,ς j1,..., jm(Polpku) is a qualified set of credentials for policyPolpku.

2.2 Policy-Based Public-Key Encryption

A policy-based public-key encryption scheme (denoted in shortPB-PKE) is specified by six algorithms:
System-Setup, Issuer-Setup, User-Setup, CredGen, EncryptandDecrypt, which we describe below.

System-Setup. On input of a security parameterk, this algorithm generates the public parametersP which
specify the different parameters, groups and public functions that will be referenced by subsequent algo-
rithms. Furthermore, it specifies a public key spaceK , a message spaceM and a ciphertext spaceC .

Issuer-Setup. This algorithm generates a random master keysκ and the corresponding public keyRκ for
credential issuerIκ ∈ I .

User-Setup. This algorithm generates a random private keysku and the corresponding public keypku.

CredGen. On input of the public keyRκ of a credential issuerIκ ∈ I and an assertionApku ∈ {0,1}∗, this
algorithm returns the credentialς(Rκ,Apku).

Encrypt. On input of a messageM ∈ M , a public keypku ∈ K and a policyPolpku, this algorithm returns a
ciphertextC∈ C representing the encryption ofM with respect to policyPolpku and public keypku.

Decrypt. On input of a ciphertextC ∈ C , a pair of keys(pku,sku), a policy Polpku and a qualified set of
credentialsς j1,..., jm(Polpku), this algorithm returns either a messageM ∈ M or⊥ (for ’error’).

The algorithms described above have to satisfy the following consistency constraint:

C =Encrypt(M,Polpku, pku) ⇒ Decrypt(C,Polpku, pku,sku,ς j1,..., jm(Polpku)) = M

Finally, we defineϕ j1,..., jm(C, pku,Polpku) to be the information fromC that is required to correctly perform
the decryption ofC with respect to policyPolpku and public keypku using the qualified set of credentials
ς j1,..., jm(Polpku). A concrete example is given when describing ourPB-PKE scheme. Such information is
used in the specification of the security model associated to the policy-based public-key encryption primitive.

2.3 Security Model

Our security model forPB-PKE schemes follows the following reasoning: the standard acceptable notion of
security for public key encryption schemes is indistinguishability against chosen ciphertext attacks (IND-CCA).
Hence, it is natural to require that aPB-PKE scheme also satisfies this strong notion of security. However,

the definition of this security notion must be adapted to the policy-based setting. APB-PKE scheme is such
that a user should not be able to decrypt a message if he does not fulfill the policy according to which the
message was encrypted or if he does not have access to the private key corresponding to the public key used
to encrypt the message. Assume, for instance, that a user Alice wants to send a sensitive message to a user
Bob whose public key ispkb. Moreover, assume that Alice wants to be sure that Bob is compliant with a
specific policyPolpkb in order for Bob to be able to read the message. Thus, Alice uses aPB-PKE scheme to
encrypt her message using Bob’s public keypkb according to her policyPolpkb. Two attack scenarios should
be considered:

– In the first scenario, a third user Charlie that has somehow access to a qualified set of credentials for
policy Polpkb tries to decrypt the intercepted message. For example, Charlie may represent a collusion of
the different credential issuers specified byPolpkb. As Charlie has not access to Bob’s private keyskb, he
must not be able to successfully achieve the decryption. Because Charlie is not the legitimate recipient
of the message he will be calledOutsider.

– In the second scenario, the user Bob (who has access to the private keyskb) does not have access to a
qualified set of credentials for policyPolpkb and tries to illegally decrypt the message. As Bob does not
fulfill Alice’s policy, he must not be able to successfully decrypt the message. As opposed to the Outsider
adversary, Bob will be calledInsider.

Our security model is defined in terms of an interactive game played between a challenger and an adversary,
where the adversary can be either Insider or Outsider. The game consists of five stages:Setup, Phase-1,
Challenge, Phase-2andGuess, which we describe below.

– Setup. On input of a security parameterk, the challenger does the following: (1) Run algorithmSystem-
Setupto obtain the system public parametersP which are given to the adversary, (2) Run algorithm
Issuer-Setuponce or multiple times to obtain a set of credential issuersI = {I1, . . . , IN}, (3) Run algo-
rithm User-Setupto obtain a public/private key pair(pkch,skch). Depending on the type of the adversary,
the challenger does the following: If the adversary is an Outsider, then the challenger gives to the adver-
sary the public keys as well as the master keys of the credential issuers included inI . Furthermore, the
challenger gives the public keypkch to the adversary while keeping secret the corresponding private key
skch. However, if the adversary is an Insider, then the challenger just gives to the adversary, in addition to
the pair of keys(pkch,skch), the public keys of the credential issuers included inI while keeping secret
the corresponding master keys.

– Phase-1. The adversary performs a polynomial number of oracle queries adaptively i.e. each query may
depend on the replies to the previously performed queries.

– Challenge. This stage occurs when the adversary decides that thePhase-1stage is over. The adversary,
be it Insider or Outsider, gives to the challenger two equal length messagesM0,M1 and a policyPolpkch

ch
on which he wishes to be challenged. The challenger picks at randomb ∈ {0,1}, then runs algorithm
Encrypton input of the tuple(Mb, pkch,Polpkch

ch), and returns the resulting ciphertextCch to the adversary.
– Phase-2. The adversary performs again a polynomial number of adaptive oracle queries.
– Guess. The adversary outputs a guessb′, and wins the game ifb = b′.

During thePhase-1andPhase-2stages, the adversary may perform queries to two oracles controlled by the
challenger. On one hand, a credential generation oracle denotedCredGen-O. On the other hand, a decryption
oracle denotedDecrypt-O. While the oracles are executed by the challenger, their input is specified by the
adversary. The two oracles are defined as follows:

– CredGen-O. On input of a credential issuerIκ ∈ I and an assertionApku ∈ {0,1}∗, run algorithmCredGen
on input of the tuple(Iκ,Apku) and return the resulting credentialς(Rκ,Apku). Note that an Outsider
does not need to perform queries to this oracle as he has access to the credential issuers’ master keys.
Besides, an Insider is not allowed to obtain a qualified set of credentials for the policyPolpkch

ch which he
is challenged on.

– Decrypt-O. On input of a ciphertextC ∈ C , a policy Polpku and a set of indices{ j1, . . . , jm}, first run
algorithmCredGenmultiple times to obtain the qualified set of credentialsς j1,..., jm(Polpkch), then run
algorithmDecrypton input of the tuple(C, pkch,skch,Polpkch,ς j1,..., jm(Polpkch)), and return the resulting
output. Note that an adversary, be it Insider or Outsider, cannot perform a query to oracleDecrypt-Oon
a tuple(C,Polpkch

ch ,{ j1, . . . , jm}) such thatϕ j1,..., jm(C, pkch,Polpkch
ch) = ϕ j1,..., jm(Cch, pkch,Polpkch

ch).

The game described above is denotedIND-Pol-CCAX
PK, whereX = I for Insider adversaries andX = O for

Outsider adversaries. A formal definition of chosen ciphertext security forPB-PKE schemes is given below.
As usual, a real functiong is said to be negligible ifg(k)≤ 1

f (k) for any polynomialf .

Definition 1. The advantage of an adversaryAX in the IND-Pol-CCAXPK game is defined to be the quantity
AdvAX = |Pr[b = b′]− 1

2|. A PB-PKE scheme is IND-Pol-CCAXPK secure if no probabilistic polynomial time
adversary has a non-negligible advantage in the IND-Pol-CCAX

PK game.

Note. Our security model could be viewed as an extension to the policy-based public-key setting of the
IND-ID-CCA model defined in [5]. InIND-ID-CCA, the adversary is not allowed to make decryption queries
on the challenge tuple(Cch, IDch). In the policy-based public-key setting, for an encrypted message with
respect to a policy with disjunctions, there is more than one possible qualified set of credentials that can be
used to perform the decryption. That is, forbidding the adversary from making decryption queries on the
challenge tuple(Cch,Polpkch

ch) is not sufficient anymore. In fact, we may have tuples such that(C,Polpkch) 6=
(Cch,Polpkch

ch) while ϕ j1,..., jm(C,Polpkch) = ϕ j1,..., jm(Cch,Polpkch
ch). Decryption queries on such tuples should

then be forbidden as well.�

3 Our PB-PKE Scheme

3.1 Description

Before describing ourPB-PKE scheme, we define algorithmBDH-Setupas follows:

BDH-Setup. Given a security parameterk, generate a tuple(q,G1,G2,e,P) where the mape : G1×G1 →G2

is a bilinear pairing,(G1,+) and(G2,∗) are two groups of the same orderq, andP is a random generator of
G1. The generated parameters are such that the Bilinear Diffie-Hellman Problem (denotedBDHP) is hard.

Note-1. We recall that a bilinear pairing satisfies the following three properties: (1) Bilinear: forQ,Q′ ∈ G1

and fora,b∈ Z∗
q, e(a ·Q,b ·Q′) = e(Q,Q′)ab, (2) Non-degenerate:e(P,P) 6= 1 and therefore it is a generator

of G2, (3) Computable: there exists an efficient algorithm to computee(Q,Q′) for all Q,Q′ ∈G1. �
Note-2. BDHP is defined as follows: on input of a tuple(P,a ·P,b ·P,c ·P) for randomly chosena,b,c∈ Z∗

q,
compute the valuee(P,P)abc. The hardness ofBDHP can be ensured by choosing groups on supersingular
elliptic curves or hyperelliptic curves over finite fields and deriving the bilinear pairings from Weil or Tate
pairings. The hardness ofBDHP implies the hardness of the so called Computational Diffie-Hellman Problem
(denotedCDHP) which is defined as follows: on input of a tuple(P,a·P,b·P) for randomly chosena,b∈ Z∗

q,

compute the valueab·P. As we merely apply these mathematical primitives in this paper, we refer for instance
to [10, 15] for further details.�
Our PB-PKE scheme consists of the algorithms described below.

System-Setup. On input of a security parameterk, do the following:

1. Run algorithmBDH-Setupto obtain a tuple(q,G1,G2,e,P)
2. Let M = {0,1}n, K = G1 andC = G1× ({0,1}n)∗×{0,1}n (for somen∈ N∗)
3. Define four hash functions:H0 : {0,1}∗ →G1, H1 : {0,1}∗ → Z∗

q, H2 : {0,1}∗ →{0,1}n

andH3 : {0,1}∗ →{0,1}n

4. Let P = (q,G1,G2,e,P,n,H0,H1,H2,H3).

Issuer-Setup. Let I = {I1, . . . , IN} be a set of credential issuers. Each credential issuerIκ ∈ I picks at random
a secret master keysκ ∈ Z∗

q and publishes the corresponding public keyRκ = sκ ·P.

User-Setup. This algorithm picks at random a private keysku ∈ Z∗
q and computes the corresponding public

key pku = sku ·P.

CredGen. On input of issuerIκ ∈ I and assertionApku ∈{0,1}∗, this algorithm outputsς(Rκ,Apku) = sκ ·H0(Apku).

Encrypt. On input of messageM ∈ M , public keypku and policyPolpku, do the following:

1. Pick at randomti ∈ {0,1}n (for i = 1, . . . ,m)
2. Computer = H1(M‖t1‖ . . .‖tm), then computeU = r ·P andK = r · pku

3. Computeπi, j = ∏
mi, j
k=1e(Rκi, j,k,H0(A

pku
i, j,k)) (for j = 1, . . . ,mi andi = 1, . . . ,m)

4. Computeµi, j = H2(K‖πr
i, j‖i‖ j), then computevi, j = ti ⊕µi, j (for j = 1, . . . ,mi andi = 1, . . . ,m)

5. ComputeW = M⊕H3(t1‖ . . .‖tm)
6. ReturnC = (U, [[vi, j]

mi
j=1]

m
i=1,W)

The intuition behind the encryption algorithm is as follows: each conjunction of conditions∧mi, j
k=1〈Iκi, j,k,A

pku
i, j,k〉

is first associated to a maskµi, j that depends not only on the different credentials related to the specified
conditions but also on the specified public key. Then, for each indexi ∈ {1, . . . ,m}, a randomly chosen
intermediate keyti is associated to the disjunction∨mi

j=1∧
mi, j
k=1 〈Iκi, j,k,A

pku
i, j,k〉. Finally, each intermediate keyti is

encryptedmi times using each of the masksµi, j . This way, it is sufficient to compute any one of the masks
µi, j in order to be able to retrieveti . In order to be able to retrieve the encrypted message, an entity needs to
retrieve all the intermediate keysti using not only a qualified set of credentials for policyPolpku, but also the
private keysku corresponding topku.

Decrypt . On input of ciphertextC = (U, [[vi, j]
mi
j=1]

m
i=1,W), the pair of keys(pku,sku), policy Polpku and the

qualified set of credentialsς j1,..., jm(Polpku, pku), do the following:

1. Computeπ̃i, j i = e(U,∑
mi, ji
k=1 ς(Rκi, ji ,k

,Apku
i, j i ,k

)) (for i = 1, . . . ,m), then computẽK = sku ·U
2. Computeµ̃i, j i = H2(K̃‖π̃i, j i‖i‖ j i), then computeti = vi, j i ⊕ µ̃i, j i (for i = 1, . . . ,m)
3. ComputeM = W⊕H3(t1‖ . . .‖tm), then computer = H1(M‖t1‖ . . .‖tm)
4. If U = r ·P, then return the messageM, otherwise return⊥

Note. OurPB-PKE scheme is such that the decryption informationϕ j1,..., jm(C = (U, [[vi, j]
mi
j=1]

m
i=1,W),Polpku)

consists of the valuesU andW as well as the pairs{(vi, j i ,∧
mi, ji
k=1〈Iκi, ji ,k

,Apku
i, j i ,k

〉)}m
i=1. �

3.2 Consistency and Efficiency

The algorithms described above satisfy the standard consistency constraint. In fact, we have, on one hand,
K̃ = sku ·U = sku · (r ·P) = r · (sku ·P) = r · pku. On the other hand, the following holds

π̃i, j i = e(r ·P,
mi, ji

∑
k=1

sκi, ji ,k
·H0(A

pku
i, j i ,k

)) =
mi, ji

∏
k=1

e(sκi, ji ,k
·P,H0(A

pku
i, j i ,k

))r = πr
i, j i

The essential operation in pairing-based cryptography is pairing computations. Although such operation can
be optimized, it still have to be minimized. In Table 1, we provide the computational costs of our encryption
and decryption algorithms in terms of pairing computations as well as the size of the resulting ciphertext.
Note thatl1 denotes the bit-length of the bilinear representation of an element of groupG1.

Encryption Decryption Ciphertext Size

Our PB-PKE scheme∑m
i=1 ∑mi

j=1mi, j m l1 +(∑m
i=1mi).n+n

The scheme of [3] ∑m
i=1 ∑mi

j=1mi, j ∑m
i=1mi, j i l1 +(∑m

i=1 ∑mi
j=1mi, j).n+n

Table 1.Performance of ourPB-PKE scheme compared with the scheme of [3]

In Table 1, we provide the performance of the key-escrow scheme of [3] when applied to policies written in
standard normal forms following the notation defined in Section 2. While the encryption algorithms require
the same amount of pairing computations, our decryption algorithm more efficient asmi, j i ≥ 1 for i = 1, . . . ,m.
Furthermore, asmi, j ≥ 1 for j = 1, . . . ,mi and i = 1, . . . ,m, the size of the ciphertexts resulting from our
scheme is at least as short as the one of the ciphertexts produced by the scheme of [3].

Note. As for standard asymmetric encryption schemes,PB-PKE schemes are much less efficient than sym-
metric encryption schemes. In practice, they should be used to exchange the symmetric (session) keys that
are used for bulk encryption.

3.3 Security

In the following, we show respectively that ourPB-PKE scheme is bothIND-Pol-CCAI
PK andIND-Pol-CCAO

PK
secure in the random oracle model.

Notation. Given the notation used in Section 2, the maximum values that the quantitiesm, mi andmi, j can
take are denoted, respectively,m∨∧ ≥ 1,m∨ ≥ 1 andm∧ ≥ 1. We assume that these upper-bounds are specified
during system setup.�

Theorem 1. Our PB-PKE scheme isIND-Pol-CCAI
PK secure in the random oracle model under the assumption

that BDHP is hard.

Proof. Theorem 1 follows from a sequence of reduction arguments that are summarized in the following
diagram:

OurPB-PKE scheme - BasicPubhy - BDHP

(1) (2)

IND-Pol-CCAI
PK

?

........

IND-CCA
?

........

1. Lemma 1 shows that anIND-Pol-CCAI
PK attack on ourPB-PKE scheme can be converted into anIND-CCA

attack on theBasicPubhy algorithm defined in [5].
2. In [5], algorithm BasicPubhy is shown to beIND-CCA secure in the random oracle model under the

assumption thatBDHP is hard.

Lemma 1. Let A◦ be anIND-Pol-CCAI
PK adversary with advantage AdvA◦ ≥ ε when attacking ourPB-PKE

scheme. Assume thatA◦ has running time tA◦ and makes at most qc queries to oracleCredGen-O, qd queries
to oracleDecrypt-O as well as q0 queries to oracle H0. Then, there exists anIND-CCA adversaryA• the ad-
vantage of which, when attacking theBasicPubhy scheme, is such that AdvA• ≥F(qc,qd,q0,N,m∨∧,m∨,m∧).ε.
Its running time is tA• = O(tA◦).

Proof of Lemma 1 is given in Appendix A.

Note-1. Lemma 1 stated below uses the quantityF(qc,qd,q0,N,m∨∧,m∨,m∧) defined as follows:

F(qc,qd,q0,N,m∨∧,m∨,m∧) = (1− qcm∨∧m∨
Nq0

).(1− qdϒ′(Nq0,m∨∧,m∨,m∧)
ϒ(Nq0,m∨∧,m∨,m∧)

).
1

ϒ(Nq0,m∨∧,m∨,m∧)

whereϒ′(Nq0,m∨∧,m∨,m∧) = ϒ(Nq0,m∨∧,m∨,m∧)−ϒ(Nq0− (m∨∧m∨)2,m∨∧,m∨,m∧)−1.

ComputingF(.) relies on computing the quantityϒ(X,m∨∧,m∨,m∧), which is defined to be the total num-
ber of ’minimal’ (reduced) policies written inCDNF, given the upper-bounds(m∨∧,m∨,m∧) andX possible
credential-based conditions. Computingϒ(X,m∨∧,m∨,m∧) is similar, but not exactly the same as the prob-
lems of computing the number of monotone boolean functions ofn variables (Dedekind’s Problem [12]) and
computing the number of antichains on a set{1, . . . ,n} [11]. As opposed to these problems, the order of
the terms must be taken into consideration when dealing with our policies. This is a typical, yet interest-
ing, ’counting’ problem. As we do not address the practical security of our scheme in this paper, we do not
elaborate more on the details.�
Note-2. In the particular case whereN = m∨∧ = m∨ = m∧ = 1, we haveϒ′(Nq0,m∨∧,m∨,m∧) = 0 and
ϒ(Nq0,m∨∧,m∨,m∧) = q0. In this case, ourPB-PKE scheme when attacked by the Insider adversary is equiv-
alent to theFullIdent scheme of [5]. Note that our results match Result 5 of [8]. In fact, our reductionist
security proof follows a strategy similar to the one used in [8].�
Note-3. The result of our security reduction remains theoretical. The functionF(.) depends exponentially
on the policy size bounds which is not acceptable in practice. We are currently working on improving the
tightness of our reduction in order to determine exact security arguments for real-world scenarios.�

Theorem 2. Our PB-PKE scheme isIND-Pol-CCAO
PK secure in the random oracle model under the assumption

that CDHP is hard.

Proof. Theorem 2 follows from two reduction arguments that are summarized in the following diagram:

OurPB-PKE scheme- ElG-HybridPub - CDHP

(1) (2)

IND-Pol-CCAO
PK

?

........

IND-CCA
?

........

1. Lemma 2 shows that anIND-Pol-CCAO
PK attack on ourPB-PKE scheme can be converted into anIND-CCA

attack on theEIG-HybridPub algorithm defined in [2].
2. In [2], algorithmEIG-HybridPubhy is shown to beIND-CCA secure in the random oracle model under the

assumption thatCDHP is hard.

Lemma 2. Let A◦ be anIND-Pol-CCAO
PK adversary with advantage AdvA◦ ≥ ε when attacking ourPB-PKE

scheme. Then, there exists anIND-CCA adversaryA• the advantage of which, when attacking theEIG-
HybridPub scheme, is such that AdvA• ≥ ε. Its running time is tA• = O(tA◦).

Proof of Lemma 2 is given in Appendix B.

4 Conclusion

In this paper, we presented a collusion-free policy-based encryption primitive. We provided formal definitions
for the new primitive and described a concrete implementation using bilinear pairings over elliptic curves.
We defined a strong security model for our primitive following the notion of indistinguishability against
chosen ciphertext attacks, and proved the security of our pairing-based scheme in the random oracle model.
The goal of the new primitive is to overcome the weakness of the original policy-based encryption primitive
defined in [4] when used in application scenarios for which collusions of credential issuers and end users are
undesirable. The key-escrow encryption scheme presented in [3] allows to achieve the same security goals
when applied to policies written in standard normal forms. Our proposal improves the scheme of [3] in terms
of both performance and formal security analysis. Our security analysis remains theoretical and the results
of our reductionist proof are unacceptable for practical use of our primitive. We are currently working on
improving the tightness of our reduction and determining exact security parameters for real-world scenarios.
A target application for our primitive is trust establishment and negotiation in large-scale open environments.

References

1. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. InASIACRYPT, pages 452–473. Springer-
Verlag, 2003.

2. S.S. Al-Riyami. Cryptographic schemes based on elliptic curve pairings. Ph.D. Thesis, Royal Holloway, University
of London, 2004.

3. S.S. Al-Riyami, J. Malone-Lee, and N.P. Smart. Escrow-free encryption supporting cryptographic workflow. Cryp-
tology ePrint Archive, Report 2004/258, 2004. http://eprint.iacr.org/.

4. W. Bagga and R. Molva. Policy-based cryptography and applications. InProceedings of Financial Cryptography
and Data Security (FC’05), volume 3570 ofLNCS, pages 72–87. Springer-Verlag, 2005.

5. D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. InProceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, pages 213–229. Springer-Verlag, 2001.

6. R. Bradshaw, J. Holt, and K. Seamons. Concealing complex policies with hidden credentials. Cryptology ePrint
Archive, Report 2004/109, 2004. http://eprint.iacr.org/.

7. L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of multiple trust authorities in pairing based cryptosys-
tems. InProceedings of the International Conference on Infrastructure Security, pages 260–275. Springer-Verlag,
2002.

8. D. Galindo. Boneh-franklin identity based encryption revisited. To appear in Proceedings of 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005).

9. J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials. InProc. of the 2003 ACM Workshop on
Privacy in the Electronic Society. ACM Press, 2003.

10. A. Joux. The weil and tate pairings as building blocks for public key cryptosystems. InProceedings of the 5th
International Symposium on Algorithmic Number Theory, pages 20–32. Springer-Verlag, 2002.

11. J. Kahn. Entropy, independent sets and antichains: a new approach to dedekind’s problem. InProc. Amer. Math. Soc.
130, pages 371–378, 2002.

12. D. Kleitman. On dedekind’s problem: the number of monotone boolean functions. InProc. Amer. Math. Soc. 21,
pages 677–682, 1969.

13. N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. InProceedings of the 22nd annual symposium on
Principles of distributed computing, pages 182–189. ACM Press, 2003.

14. N. Smart. Access control using pairing based cryptography. InProceedings CT-RSA 2003, pages 111–121. Springer-
Verlag LNCS 2612, April 2003.

15. Y. Yacobi. A note on the bilinear diffie-hellman assumption. Cryptology ePrint Archive, Report 2002/113, 2002.
http://eprint.iacr.org/.

A Proof of Lemma 1

Notation. For the sake of clarity to the reader, we use the notationHx2
x=x1 as a shortcut for the sentence ’forx

varying fromx1 to x2’. �
We construct anIND-CCA adversaryA• that uses adversaryA◦ to mount an attack against theBasicPubhy

algorithm of [5]. The game between the challenger and algorithmA• starts with theInitialization stage which
we describe below.

Initialization . On input of the security parameterk, the challenger first generates theBasicPubhy public key
PK? = (q,G1,G2,e,P,R?,Q?,m?.n,H0,H1,H2,H3) such thatm? ∈{1, . . . ,m∨∧} andR? = s? ·P, wheres? ∈Z∗

q
is the private key corresponding toPK?. Upon receivingPK?, algorithmA• does the following:

1. Let m• = m?, then choose the valuesm•
i ∈ {1, . . . ,m∨} andm•

i, j ∈ {1, . . . ,m∧} Hm•
i

j=1H
m•
i=1

2. Pick at randomα•
i ∈ {1, . . . ,m∨∧} andrα•i ,ω

•
i ∈ Z∗

q Hm•
i=1

3. Pick at randomβ•i, j ∈ {1, . . . ,m∨} andrβ•i, j ,υ
•
i, j ∈ Z∗

q Hm•
i

j=1H
m•
i=1

4. Pick at randoml•i, j,k ∈ {1, . . . ,q0} , γ•i, j,k ∈ {1, . . . ,m∧} andrγ•i, j,k ∈ Z∗
q H

m•
i, j

k=1H
m•

i
j=1H

m•
i=1

5. Pick at randomθ•i, j,k ∈ Z∗
qH

m•
i, j

k=2H
m•

i
j=1 Hm•

i=1, then computeθ•i, j,1 = ∑
m•

i, j
k=2 θ•i, j,k Hm•

i
j=1H

m•
i=1

6. Computeκ•i, j,k = ((α•
i −1).m∨+β•i, j)−1).m∧+ γ•i, j,k andrκ•i, j,k = rγ•i, j,krβ•i, j rα•i H

m•
i, j

k=1H
m•

i
j=1H

m•
i=1

7. Choose two hash functions:̄H•
2 : {1, . . . ,m∨∧}→ {0,1}n andĤ•

2 : G1 →{0,1}m•.n

8. Define the function∆• : {0,1}m•.n×{1. . . ,m•} → {0,1}n which on input of a tuple(X, i) returns theith

block of lengthn of the binary stringX i.e. the bits from(i−1).n+1 to i.n of X.

Note. We assume that adversaryA◦ is parameterized withm? ∈N∗. Furthermore, we assume thatN≥m∨∧m∨.
Our proof can be easily adapted to the case whereN ≤ m∨∧m∨. �
The interaction between algorithmA• and adversaryA◦ consists of five stages:Setup, Phase-1, Challenge,
Phase-2andGuesswhich we describe below.

Setup. AlgorithmA• does the following: (1) LetP • = (q,G1,G2,e,P,n,H•
0 ,H1,H•

2 ,H3) the system public pa-
rameters, where the oraclesH•

0 andH•
2 are controlled by algorithmA• and the tuple(q,G1,G2,e,P,n,H1,H3)

is taken fromPK?, (2) Define the the set of credential issuersI = {I1, . . . , IN} as follows: forκ = κ•i, j,k, the
public key of Iκ•i, j,k is Rκ•i, j,k = rκ•i, j,k ·R

?, whereas, forκ ∈ {1, . . . ,N} \ {κ•i, j,k}i, j,k, the public key ofIκ is

Rκ = sκ ·P for some randomly chosensκ ∈ Z∗
q, (3) Generate at random a pair of keys(pkch,skch) and give

it to the adversary, (4) Give the public parametersP • and the trusted authorities’ public keysRκ *N
κ=1 to

adversaryA◦.

Note. Forκ ∈ {κ•i, j,k}i, j,k, the master key ofIκ is sκ = rκs?

Algorithm A• controls the random oracleH•
0 as follows: algorithmA• maintains a list of tuples[Aı,H0,ı,λı]

which we denoteH list
0 . The list is initially empty. Assume that adversaryA◦ makes a query on assertion

Apku ∈ {0,1}∗, then adversaryA• responds as follows:

1. If Apku already appears on the listH list
0 in a tuple[Aı,H0,ı,λı], then returnH0,ı

2. If Apku does not appear onH list
0 andApku is thel•i, j,1-th distinct query to oracleH•

0 , then computeH0,l•i, j,1
=

r−1
γ•i, j,1

· ((r−1
β•i, j

υ•i, j r
−1
α•i

ω•
i) ·Q?−θ•i, j,1 ·P), returnH0,l•i, j,1

, and add[Apku,H0,l•i, j,1
,null] to H list

0

3. If Apku does not appear onH list
0 and Apku is the l•i, j,k-th distinct query to oracleH•

0 (for k > 1), then

computeH0,l•i, j,k
= (r−1

γ•i, j,k
θ•i, j,k) ·P, returnH0,l•i, j,k

, and add the entry[Apku,H0,l•i, j,k
, r−1

γ•i, j,k
θ•i, j,k] to H list

0

4. Otherwise, pick at randomλ ∈ Z∗
q such thatλ ·P does not appear on the listH list

0 , returnλ ·P, and add
the entry[Apku,λ ·P,λ] to H list

0

Note. The simulated oracleH•
0 is such that(r−1

β•i, j
υ•i, j r

−1
α•i

ω•
i) ·Q? = ∑

m•
i, j

k=1 rγ•i, j,kH0,l•i, j,k
Hi, j

Algorithm A• controls the random oracleH•
2 as follows: on input of a tuple(K,G, i, j), algorithmA• returns

the value∆•(Ĥ•
2(K)⊕H2(G

υ•i, j
−1ω•

i
−1

)⊕ H̄•
2(j), i).

The policyPolcr = ∧m•
i=1∨

m•
i

j=1∧
m•

i, j
k=1〈Iκ•i, j,k,Al•i, j,k

〉 is called the ’crucial’ policy. AlgorithmA• hopes that the

’target’ policy Polpkch
ch , which will be chosen by adversaryA◦ in theChallengestage of theIND-Pol-CCAI

PK
game, will be equal to policyPolcr.

Phase-1. AdversaryA◦ performs a polynomial number of oracle queries adaptively.

Challenge. Once adversaryA◦ decides thatPhase-1 is over. Then, he outputs two equal length messages
M0 and M1 as well as a policyPolpkch

ch on which he wishes to be challenged. AlgorithmA• responds as

follows: (1) If Polpkch
ch 6= Polcr, then report failure and terminate (we refer to this event asEch), (2) Otherwise,

give the messagesM0,M1 to the challenger who picks randomlyb∈ {0,1} and returns a ciphertextC? =
(U,v?,W) representing theBasicPubhy encryption of messageMb using the public keyPK?. Upon receiving

the challenger’s response, compute the valuesvi, j = ∆•(Ĥ•
2(pkch)⊕ v?⊕ H̄•

2(j), i) *m•
i

j=1 *m•
i=1, then return the

ciphertextCch = (U, [[vi, j]
m•

i
j=1]

m•
i=1,W) to adversaryA◦.

Note. For adversaryA◦, the ciphertextCch represents a correct encryption of messageMb according to policy
Polch. In fact, the ciphertextC? is such thatU = H1(Mb‖t) ·P, W = Mb⊕H3(t) (for some randomly chosen
t ∈ {0,1}m•.n), andv? = t⊕H2(gr) whereg = e(R?,Q?). Let ti = ∆•(t, i), then the following holds

vi, j = ∆•(Ĥ•
2(pkch)⊕ t⊕H2(e(R?,Q?)r)⊕ H̄•

2(j), i)

= ∆•(t, i)⊕∆•(Ĥ•
2(pkch)⊕H2([e((rβ•i, j rα•i) ·R

?,(r−1
β•i, j

υ•i, j r
−1
α•i

ω•
i) ·Q?)r]υ

•
i, j
−1ω•

i
−1

)⊕ H̄•
2(j), i)

= ti ⊕H•
2(e((rβ•i, j rα•i) ·R

?,

m•
i, j

∑
k=1

rγ•i, j,kH0,l•i, j,k
)r , i, j) = ti ⊕H•

2([
m•

i, j

∏
k=1

e(Rκ•i, j,k,H0,l•i, j,k
)]r , i, j)

Phase-2. Again, adversaryA◦ performs a polynomial number of oracle queries adaptively.

Guess. Algorithm A◦ outputs a guessb′ for b. Algorithm A• outputsb′ as its guess forb.

The oraclesCredGen-OandDecrypt-Oto which adversaryA◦ makes queries duringPhase-1andPhase-2are
described below. Without loss of generality, we assume that adversaryA◦ always makes the appropriate query
on an assertionApku to the random oracleH•

0 before making any query involvingApku to oraclesCredGen-O
andDecrypt-O.

– CredGen-O. Assume that adversaryA◦ makes a query on a tuple(Iκ,Apku). Let [Aı,H0,ı,λı] be the tuple
from H list

0 such thatAı = Apku, then algorithmA• responds as follows:
1. If ı = l•i, j,1 andκ ∈ {κ•i, j,k}i, j,k, then report failure and terminate (eventEcred)
2. If ı 6= l•i, j,1 andκ ∈ {κ•i, j,k}i, j,k, then return(rκλı) ·R? = (rκs?) ·H0,ı

3. If κ ∈ {1, . . . ,N}\{κ•i, j,k}i, j,k, then returnsκ ·H0,ı

– Decrypt-O. Assume that adversaryA◦ makes an oracle query on a tuple(C,Polpkch,{ j1, . . . , jm}). Then,
algorithmA• responds as follows:
1. If Polpkch 6= Polpkch

ch andPolpkch involves a condition〈Iκ,Apkch〉 such thatκ ∈ {κ•i, j,k} andApkch ∈
{Al•i, j,1

}, then report failure and terminate (eventEdec)

2. If Polpkch 6= Polpkch
ch andPolpkch does not involve any condition〈Iκ,A〉 such thatκ ∈ {κ•i, j,k} andA∈

{Al•i, j,1
}, then do the following: (1) Run oracleCredGen-Omultiple times until obtaining the qualified

set of credentialsς j1,..., jm(Polpkch), (2) Run algorithmDecrypton input the tuple(C,Polpkch, pkch,skch,
ς j1,..., jm(Polpkch)) and return the resulting output back to adversaryA◦

3. If Polpkch = Polpkch
ch , then do the following: letC = (U, [[vi, j]

m•
i

j=1]
m•
i=1,W), then compute the val-

uesv•i = vi, j i ⊕ H̄•
2(j i) *m•

i=1, and make a decryption query to the challenger on ciphertextC• =
(U, Ĥ•

2(pkch)⊕ (v•1‖ . . .‖v•m•),W) and identifierID•. Upon receiving the challenger’s response, for-
ward it to adversaryA◦

In the following, we analyze the simulation described above:

If algorithmA• does not report failure during the simulation, then the view of algorithmA◦ is identical to its
view in the real attack. In fact, observe first that the responses of algorithmA• to all queries of adversaryA◦ to
oracleH•

0 are uniformly and independently distributed in groupG1. Second, all the responses of algorithmA•

to queries made by adversaryA◦ to oraclesCredGen-OandDecrypt-Oare consistent. Third, the ciphertext
Cch given to adversaryA◦ corresponds to the encryption according toPolpkch

ch of Mb for some randomb ∈
{0,1}.

Algorithm A• reports failure if either eventEch, eventEcred or eventEdec occurs during the simulation. Since
eventsEcred andEdec are independent, the following statement holds

AdvA• ≥ Pr[¬Ecred∧¬Ech∧¬Edec].ε ≥ Pr[¬Ech|¬Ecred∧¬Edec].Pr[¬Ecred].Pr[¬Edec].ε (1)

From the simulation described above, we have

Pr[Ecred]≤
qcm∨∧m∨

Nq0
(2)

AdversaryA• picks the challenge policy from a set ofϒ(Nq0,m∨∧,m∨,m∧) distinct policies. Then, the fol-
lowing statement holds

Pr[¬Ech|¬Ecred∧¬Edec]≥
1

ϒ(Nq0,m∨∧,m∨,m∧)
(3)

The total number of policies, distinct from policyPolpkch
ch , that may be specified by adversaryA• during

queries to oracleDecrypt-O, and that involve at least one of the conditions〈Iκ,Apkch〉 such thatκ ∈ {κ•i, j,k}
andApkch ∈ {Al•i, j,1

} could be upper bounded by the quantity

ϒ′(Nq0,m∨∧,m∨,m∧) = ϒ(Nq0,m∨∧,m∨,m∧)−ϒ(Nq0− (m∨∧m∨)2,m∨∧,m∨,m∧)−1

Then, the following statement holds

Pr[Edec]≤
qdϒ′(Nq0,m∨∧,m∨,m∧)

ϒ(Nq0,m∨∧,m∨,m∧)
(4)

Finally, statements (1), (2), (3) and (4) lead to the result

F(qc,qd,q0,N,m∨∧,m∨,m∧) = (1− qcm∨∧m∨
Nq0

).(1− qdϒ′(Nq0,m∨∧,m∨,m∧)
ϒ(Nq0,m∨∧,m∨,m∧)

).
1

ϒ(Nq0,m∨∧,m∨,m∧)

B Proof of Lemma 2

We construct anIND-CCA adversaryA• that uses adversaryA◦ to mount an attack against theElG-HybridPub
scheme defined in [2]. The game between the challenger and algorithmA• starts with theInitialization stage
which we describe below.

Initialization . On input of the security parameterk, the challenger first generates theElG-HybridPub system
paramatersPK? = (q,G1,G2,e,P,m?.n,H1,H2,H3). Then, the challenger picks at random a private keys? ∈
Z∗

q and computes the corresponding public keypk? = s? ·P. Upon receivingPK? andpk?, algorithmA• does
the following:

1. Choose a hash functioñH•
2 : {0,1}∗ →{0,1}n

2. Define the function∆• : {0,1}m•.n×{1. . . ,m•} → {0,1}n which on input of a tuple(X, i) returns theith

block of lengthn of the binary stringX i.e. the bits from(i−1).n+1 to i.n of X.

Note. We assume that adversaryA◦ is parameterized withm? ∈N∗. Furthermore, we assume thatN≥m∨∧m∨.
Our proof can be easily adapted to the case whereN ≤ m∨∧m∨. �
The interaction between algorithmA• and adversaryA◦ consists of five stages:Setup, Phase-1, Challenge,
Phase-2andGuesswhich we describe below.

Setup. Algorithm A• does the following: (1) LetP • = (q,G1,G2,e,P,n,H0,H1,H•
2 ,H3) be the system public

parameters, whereH0 : {0,1}∗ → G1 is a randomly chosen hash function, the oracleH•
2 is controlled by

algorithmA• and the tuple(q,G1,G2,e,P,n,H1,H3) is taken fromPK?, (2) Define the the set of credential
issuersI = {I1, . . . , IN} as follows: forκ ∈ {1, . . . ,N}, the public key ofIκ is Rκ = sκ ·P for some randomly
chosensκ ∈ Z∗

q, (3) Give the public parametersP •, the public keypkch = pk? and the credential issuers’
public and master keys(Rκ,sκ) *N

κ=1 to adversaryA◦.

Algorithm A• controls the random oracleH•
2 as follows: on input of a tuple(K,G, i, j), algorithmA• returns

the value∆•(Ĥ2(K), i)⊕ H̃2(G‖i‖ j).

Phase-1. AdversaryA◦ performs a polynomial number of oracle queries adaptively.

Challenge. Once adversaryA◦ decides thatPhase-1 is over, it outputs two equal length messagesM0 andM1

as well as a policyPolch = ∧m
i=1[∨

mi
j=1[∧

mi, j
k=1〈Iκi, j,k,Ai, j,k〉]] on which he wishes to be challenged. Adversary

A• gives the messagesM0,M1 to the challenger who picks randomlyb∈ {0,1} and returns a ciphertext
C? = (U,v?,W) representing theElG-HybridPub encryption of messageMb using the public keypk?. Upon

receiving the challenger’s response, computevi, j = ∆•(v?, i)⊕H̃2(∏
mi, j
k=1e(U,sκi, j,k ·H0(Ai, j,k))‖i‖ j) *m•

i
j=1*m•

i=1,

then forward the ciphertextCch = (U, [[vi, j]
m•

i
j=1]

m•
i=1,W) to adversaryA◦.

Note. For adversaryA◦, the ciphertextCch represents a correct encryption of messageMb according to policy
Polch. In fact, the ciphertextC? is such thatU = r ·P for r = H1(Mb‖t), W = Mb⊕H3(t) (for some randomly
chosent ∈ {0,1}m•.n), andv? = t⊕H2(r · pk?). Let ti = ∆•(t, i), then the following holds

vi, j = ∆•(t⊕H2(r · pk?), i)⊕ H̃2(
mi, j

∏
k=1

e(r ·P,sκi, j,k ·H0(Ai, j,k))‖i‖ j)

= ti ⊕∆•(H2(r · pk?), i)⊕ H̃2(
mi, j

∏
k=1

e(sκi, j,k ·P,H0(Ai, j,k))r‖i‖ j) = ti ⊕H•
2(r · pk?‖πr

i, j‖i‖ j)

Phase-2. Again, adversaryA◦ performs a polynomial number of oracle queries adaptively.

Guess. Algorithm A◦ outputs a guessb′ for b. Algorithm A• outputsb′ as its guess forb.

The oraclesCredGen-OandDecrypt-Oto which adversaryA◦ makes queries duringPhase-1andPhase-2
are described below.

– CredGen-O. Since adversaryA◦ has access to the oracleH0 and the master keys of the different credential
issuers, it does not need to make queries to this oracle.

– Decrypt-O. Assume that adversaryA◦ makes an oracle query on a tuple(C,Polpkch,{ j1, . . . , jm}). Then,

algorithm A• responds as follows: letC = (U, [[vi, j]
m•

i
j=1]

m•
i=1,W), then compute the valuesv•i = vi, j i ⊕

H̃2(∏
mi, ji
k=1 e(U,sκi, ji ,k

·H0(Ai, j i ,k))‖i‖ j i), and make a decryption query to the challenger on ciphertextC• =
(U,v•1‖ . . .‖v•m• ,W). Upon receiving the challenger’s response, forward it to adversaryA◦

In the simulation described above, the view of algorithmA◦ is identical to its view in the real attack. In fact,
observe first that the responses of algorithmA• to all queries of adversaryA◦ to oracleH•

0 are uniformly and
independently distributed in groupG1. Second, all the responses of algorithmA• to queries made by adver-
saryA◦ to oraclesCredGen-OandDecrypt-Oare consistent. Third, the ciphertextCch given to adversaryA◦

corresponds to the encryption according toPolpkch
ch of Mb for some randomb∈ {0,1}. Therefore, AdvA• ≥ ε.

