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Abstract. A policy-based encryption scheme allows a user to encrypt a message with respect to a
credential-based policy formalized as monotone boolean expression written in standard normal form.
The encryption is so that only a user having access to a qualified set of credentials for the policy is able
to successfully decrypt the message. An inherent property of policy-based encryption is that in addition
to the recipient an encrypted message is intended for, any collusion of credential issuers or end users who
are able to collect a qualified set of credentials for the policy used to encrypt the message can decrypt it
as well. In some applications, the collusion property may be acceptable or even useful. However, for most
other applications it is undesirable. In this paper, we present a collusion-free policy-based encryption
primitive, called policy-based public-key encryption. We provide precise definition for the new primitive
as well as for the related security model. Then, we describe a concrete implementation using pairings
over elliptic curves and prove its security in the random oracle model.
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1 Introduction

Policy-based encryption, recently formalized in [4], allows to encrypt a message with respect to a credential-
based policy formalized as monotone boolean expression written in standard normal form. The encryption
is so that only a user that is compliant with the policy is able to decrypt the message. A policy involves
conjunctions (logicahND operation) and disjunctions (logicaR operation) of conditions, where each con-
dition is fulfilled by a digital credential representing the signature of a specific credential issuer on a set of
statements about a certain entity. A user is thus compliant with a policy if and only if he has been issued a
qualified set of credentials for the policy i.e. a set of credentials fulfilling the combination of conditions de-
fined by the policy. More generally, policy-based encryption belongs to an emerging family of cryptographic
schemes sharing the ability to integrate encryption with credential-based access structures. This ability al-
lows for several interesting applications in different contexts including but not restricted to oblivious access
control [4, 7, 14], trust negotiation [6, 9, 13], and cryptographic workflow [3].

Suppose that Alice wants to send a sensitive message to Bob, while requiring that Bob fulfills a specific
credential-based policy in order for him to be authorized to read the message. In order to enforce her policy,
Alice first encrypts her message according to her policy using a policy-based encryption algorithm, then she
sends the resulting ciphertext to Bob. If Bob has access to a qualified set of credentials for Alice’s policy, then
he is compliant with the policy and can thus use his credentials to successfully decrypt the received message.
An inherent property of the policy-based encryption primitive is that, in addition to Bob, any collusion of
credential issuers or end users who are able to collect a qualified set of credentials for Alice’s policy can
decrypt the message as well. In some applications, where it is acceptable to assume that the credential issuers



are trusted for not colluding with each other to spy the end user’s communications and that no end user
is willing to share his credentials with other end users, the collusion property is not a problem. In other
applications, collusion of end users is useful when collaboration is required to authorize access to sensitive
information, while collusion of credential issuers may even be desirable for law enforcement. However, for
other applications such as trust establishment in large-scale open environments like the Internet, the collusion
property is undesirable.

In this paper, we present a collusion-free variance of the policy-based encryption primitive defined in [4],
that we callpolicy-based public key encryptiomhe intuition behind our encryption primitive is as follows:

we assume that each end user is associated to a public/private key pair. We suppose that no end user is willing
to share his private key with the others, and thus keeps secret his valuable key in a secure storage system such
as a smart card. Furthermore, we suppose that a credential delivered by a credential issuer is associated to
the requester’s public key, and that it is issued after checking that the requester possesses the corresponding
private key. As opposed to the basic policy-based encryption primitive, our encryption algorithm takes as in-
put, in addition to a credential-based policy, the public key of the recipient the encrypted message is intended
for. The policy taken as input is fulfilled by qualified sets of credentials for which all the credentials are as-
sociated to the recipient’s public key. Our decryption algorithm is such that, in order to successfully decrypt
the message, one needs to have access to a qualified set of credentials for the policy as well as to the recip-
ient’s private key. Thus, our policy-based public-key encryption primitive prevents collusions of credential
issuers by making the decryption algorithm involve a secret element (private key) held only by the recipient
the encrypted message is intended for. Besides, our primitive prevents collusions of end users by associating
all the credentials fulfilling the policy according to which a message is encrypted to the same public key, and
making these credentials useful only in conjunction with the corresponding private key.

In the following, we present the related work found so far in the literature.

1.1 Related Work

As said before, policy-based encryption and policy-based public-key encryption belong to an emerging family
of cryptographic schemes sharing the ability to integrate encryption with credential-based access control
structures. This ability is mainly enabled by pairings over elliptic curves, and more particularly by the Boneh-
Franklin identity-based encryption from bilinear pairings [5]. Note that identity-based encryption could be
seen as a particular case of policy-based encryption. In fact, an identity-based encryption scheme corresponds
to a policy-based encryption scheme for which policies are reduced to a single credential representing the
signature of a centralized credential issuer (called private key generator) on the identity of an end user.

In [7], the authors present various applications of the use of multiple trusted authorities and multiple identities
in the type of identity-based cryptography. They show how to perform encryption according to disjunctions
and conjunctions of credentials. However, their solution remains restricted to a limited number of disjunc-
tions. In [14], the author further pursues the ideas discussed in [7] and presents an elegant and efficient
mechanism to perform access control based on encryption with respect to monotone boolean expressions
written in standard normal forms. The proposed solution remains limited to credentials generated by a cen-
tralized trusted authority. Furthermore, it lacks adequate security arguments. In [4], the authors provide a
further generalization of [14] by considering credentials that might be generated by independent credential
issuers. They formalize the concept of policy-based cryptography and provide precise definitions for policy-
based encryption and policy-based signature primitives. Furthermore, they show how such primitives could
be used to enforce policies with respect to the data minimization principle according to which only strictly



necessary information should be collected for a given purpose. Unfortunately, the presented schemes lack
formal security analysis as for [14].

In [9], the authors introduce hidden credentials as a solution to perform privacy-enabled trust negotiation.
Their solution uses the Boneh-Franklin identity-based encryption scheme [5] and relies on onion-like en-
cryption and multiple encryption operations to deal, respectively, with conjunctions and disjunctions of cre-
dentials. Such approach remains inefficient in terms of both computational costs and bandwidth consumption
(ciphertext size), especially when authorization structures become complex. In [6], the authors propose a so-
lution to improve decryption efficiency as well as policy concealment when implementing hidden credentials
with sensitive policies. They prove the chosen ciphertext security of their solution under the identity-based
security models defined in [5].

Although used in application scenarios with different security requirements, the encryption schemes pre-
sented above share the fact that they allow to encrypt a message according to a credential-based policy so that
only the users having access to a qualified set of credentials for the policy are able to successfully decrypt the
message. While the schemes of [6, 9] consider policies formalized as monotone boolean expressions written
as general conjunctions and disjunctions of atomic terms, the schemes of [4, 14] consider the ones written in
standard normal forms. All the presented schemes are based on the Boneh-Franklin identity-based encryption
primitive described in [5], from which they inherit the collusion property. In fact, the Boneh-Franklin scheme
suffers from the key-escrow property i.e. the credential issuer is able to decrypt the confidential messages
intended for the end users. As for the collusion property faced by policy-based encryption, the key-escrow
property might be necessary in some contexts, especially within organizations, for monitoring and law en-
forcement. However, in most applications, it is undesirable.

In [1], the authors describe a modification of the Boneh-Franklin encryption scheme that allows to avoid the
key-escrow problem. Their primitive, called certificateless public-key encryption, requires each end user to
have a public key. The encryption of a message is performed with respect to the identity of the recipient as well
as with respect to his public key. The decryption algorithm requires both the recipient’s private key and his
identity credential. In [3], the authors consider general access structures and use a similar technique to achieve
the policy-based encryption functionality while avoiding the collusion property. Their scheme could be seen
as the collusion-free variance of the encryption scheme proposed in [6]. They underline the fact that their
scheme supports cryptographic workflow, which is a feature inherited from the Boneh-Franklin encryption
primitive and supported by the policy-based encryption primitive as well. They define formal security models

to support their encryption primitive. Their ‘recipient security model’ considers indistinguishability against
chosen plaintext attacks, where the adversary does not have access to the decryption oracle. Security against
the stronger chosen ciphertext attacks is left as an open research problem.

1.2 Contributions and Outline of the Paper

In this paper, we define a new policy-based cryptographic primitive, called policy-based public-key encryp-
tion, and describe a provably secure concrete implementation based on bilinear pairings over elliptic curves.
Our primitive allows to overcome the collusion problem faced by the original policy-based encryption prim-
itive defined in [4]. We use a technique similar to the one used in [1] to overcome the key-escrow problem
from which may suffer the identity-based encryption primitive defined in [5]. The escrow-free encryption
scheme proposed in [3] may be considered as a policy-based public-key encryption scheme when applied to
policies written in standard normal forms. Some may consider that restricting our scheme to standard normal
forms is a limitation compared to the scheme of [3] which deals with general-form policies. We argue that
this is not so, as in real-world scenarios security policies are typically written in standard normal forms. For



example, the Web Service policy languages-Policy and WSPL consider policies converted to the stan-

dard disjunctive normal form. Our concrete scheme improves the performance of the key-escrow encryption
scheme of [3] (when applied to standard-form policies) both in terms of computational cost and bandwidth
consumption (size of the resulting ciphertext). Furthermore, we prove the security of our scheme against
chosen ciphertext attacks as opposed to the approach of [3] that consider the weaker chosen plaintext attacks.

The rest of the paper is organized as follows: in Section 2, we first set the context for our encryption primitive
including the terminology, the notation and the policy model. Then, we provide a precise definition for policy-
based public-key encryption schemes as well as for the related security model. The latter adapts the strong
security notion of indistinguishability against chosen ciphertext attacks to the specific features of the new
policy-based cryptographic primitive. In Section 3, we describe a concrete policy-based public-key encryption
primitive based on bilinear pairings over elliptic curves. Our scheme is a modification of the original policy-
based encryption scheme described in [4] that integrates the public and private keys in the encryption and
decryption algorithms respectively. As opposed to the scheme presented in [4] which lacks formal security
analysis, we provide reductionist security arguments for our scheme in the random oracle model.

2 Definitions

2.1 Setting the Context

We consider a public key infrastructure where each end user holds a pair offkgysk,). An end user is

identified by his public keypk,. The public key does not has to be bound to the end user's name/identity
(through public-key certification) as for standard PKI systems such as X.509. In fact, in large-scale open
environments, the identity of an end user is rarely of interest to determining whether the end user could
be trusted or authorized to conduct some sensitive transactions. Instead, statements about the end user such
as attributes, properties, capabilities and/or privileges are more relevant. The validity of such statements is
checked and certified by trusted entities called credential issuers through a digital signature procedure.

We consider a set of credential issuérs: {l,...,In}, where the public key ofy, for k € {1,...,N}, is
denotedR¢ while the corresponding master key is denatedWe assume that a trustworthy value of the

public key of each of the credential issuers is known by the end users. Any credentiallissuemay be

asked by an end user to issue a credential corresponding to a set of statements. The requested credential is
basically the digital signature of the credential issuer on an assertion deékfte@he assertion contains, in

addition to the set of statements, the end user’s publiqikgyas well as a set of additional information such

as the validity period of the credential. As the representation of assertions is out of the scope of this paper,
they will simply be encoded as binary strings.

Upon receiving a request for generating a credential on assekfion a credential issueli first checks

the fact that the requester has access to the privatesliesssociated tgk,. Then, the credential issuer
checks the validity of the assertié®k. If it is valid, thenl, executes a credential generation algorithm and
returns a credential denote(R,, APk). Otherwise) returns an error message. Upon receiving the credential
¢(R¢,AP%), the end user may check its integrity usipig public keyR,. The process of checking the validity
of a set of statements about a certain entity is out of the scope of this paper.

We consider credential-based policies formalized as monotone boolean expressions involving conjunctions
(AND / A) and disjunctions@R / V) of credential-based conditions. A credential-based condition is defined
through a pairl, APkt) specifying an assertioAP ¢ {0,1}* (about an end user whose public keypig)



and a credential issuér € I that is trusted to check and certify the validityA&#. An end user whose public
key is pk, fulfills the condition(l,, APK) if and only if he has been issued the credenti&, AP<).

We consider policies written in standard normal forms, i.e. written either in conjunctive normalGote) ¢r
in disjunctive normal form®NF). In order to address the two standard normal forms, we use the conjunctive-
disjunctive normal form¢DNF) introduced in [14]. Thus, a policy denot@dIP* is written as follows:

myj *
PolPks = Al [V AR (o AP, wherel € T andAPS, € {0,1}

Under theCDNF notation, policies written iltNF correspond to the case wheney j = 1} j, while policies
written in DNF correspond to the case whare= 1.
Letg;,, ... (PolPk) denote the set of credentia{l$c(RKi,ji‘k,Afﬁ{k) :l'l' m,, forsome{ji € {1,..., m}} ;.

gesey

2.2 Policy-Based Public-Key Encryption

A policy-based public-key encryption scheme (denoted in shBfPKE) is specified by six algorithms:
System-Setuypssuer-SetupUser-SetupCredGen EncryptandDecrypt which we describe below.

System-SetupOn input of a security parametky this algorithm generates the public paramet2rghich
specify the different parameters, groups and public functions that will be referenced by subsequent algo-
rithms. Furthermore, it specifies a public key spagea message spad¥ and a ciphertext spage

Issuer-Setup This algorithm generates a random master gewnd the corresponding public k& for
credential issuélk € I.

User-Setup This algorithm generates a random private &kyand the corresponding public k@k,.

CredGen On input of the public keyR, of a credential issudi € I and an assertioAPk: ¢ {0,1}*, this
algorithm returns the credentiglRy, APK).

Encrypt On input of a messagd € M, a public keypk, € K and a policyPolP*, this algorithm returns a
ciphertexiC € C representing the encryption bf with respect to policyPolP% and public keypk,.

Decrypt On input of a ciphertex€ € ¢, a pair of keys(pk,,sk;), a policy PolP% and a qualified set of
credentials;j, ._j,,(PolPk), this algorithm returns either a messades M or L (for 'error’).

The algorithms described above have to satisfy the following consistency constraint:

.....

Finally, we definebj, ... j.(C, pk, PolPk) to be the information fron€ that is required to correctly perform
the decryption ofC with respect to policyPolPk and public keypk, using the qualified set of credentials
le’_._ljm(Pole). A concrete example is given when describing @8PKE scheme. Such information is

used in the specification of the security model associated to the policy-based public-key encryption primitive.

2.3 Security Model

Our security model foPB-PKE schemes follows the following reasoning: the standard acceptable notion of
security for public key encryption schemes is indistinguishability against chosen ciphertext dNackEA).
Hence, it is natural to require thatPB-PKE scheme also satisfies this strong notion of security. However,



the definition of this security notion must be adapted to the policy-based settiPB-PXE scheme is such

that a user should not be able to decrypt a message if he does not fulfill the policy according to which the
message was encrypted or if he does not have access to the private key corresponding to the public key used
to encrypt the message. Assume, for instance, that a user Alice wants to send a sensitive message to a user
Bob whose public key ipk,. Moreover, assume that Alice wants to be sure that Bob is compliant with a
specific policyPolPk in order for Bob to be able to read the message. Thus, Alice UBBSP&E scheme to

encrypt her message using Bob’s public kg according to her policyolP%. Two attack scenarios should

be considered:

— In the first scenario, a third user Charlie that has somehow access to a qualified set of credentials for
policy PolP tries to decrypt the intercepted message. For example, Charlie may represent a collusion of
the different credential issuers specifiedipiPk. As Charlie has not access to Bob's private kiy he
must not be able to successfully achieve the decryption. Because Charlie is not the legitimate recipient
of the message he will be call€@ltsider

— In the second scenario, the user Bob (who has access to the privasg kelpes not have access to a
qualified set of credentials for polidgolP* and tries to illegally decrypt the message. As Bob does not
fulfill Alice’s policy, he must not be able to successfully decrypt the message. As opposed to the Outsider
adversary, Bob will be callebhsider.

Our security model is defined in terms of an interactive game played between a challenger and an adversary,
where the adversary can be either Insider or Outsider. The game consists of five SetgpsPhase-1
Challenge Phase-ZandGuesswhich we describe below.

— Setup On input of a security parametkrthe challenger does the following: (1) Run algorit&ystem-
Setupto obtain the system public paramete?swvhich are given to the adversary, (2) Run algorithm
Issuer-Setumnce or multiple times to obtain a set of credential issuets{l4,...,In}, (3) Run algo-
rithm User-Setupto obtain a public/private key pafpke, sk). Depending on the type of the adversary,
the challenger does the following: If the adversary is an Outsider, then the challenger gives to the adver-
sary the public keys as well as the master keys of the credential issuers inclubdeuirthermore, the
challenger gives the public kgyk.h to the adversary while keeping secret the corresponding private key
sk:. However, if the adversary is an Insider, then the challenger just gives to the adversary, in addition to
the pair of keyq pkeh, Sken), the public keys of the credential issuers included iwhile keeping secret
the corresponding master keys.

— Phase-1The adversary performs a polynomial number of oracle queries adaptively i.e. each query may
depend on the replies to the previously performed queries.

— Challenge This stage occurs when the adversary decides thdlthse-1stage is over. The adversary,
be it Insider or Outsider, gives to the challenger two equal length meskighk and a poIicyPoIfr']‘Ch
on which he wishes to be challenged. The challenger picks at rabhderf0, 1}, then runs algorithm
Encrypton input of the tupléMy, pkeh, Polgfc'“), and returns the resulting ciphert&g, to the adversary.

— Phase-2 The adversary performs again a polynomial number of adaptive oracle queries.

— Guess The adversary outputs a gudisand wins the game i =b'.

During thePhase-landPhase-2stages, the adversary may perform queries to two oracles controlled by the
challenger. On one hand, a credential generation oracle deGoteiGen-O On the other hand, a decryption
oracle denote®ecrypt-Q While the oracles are executed by the challenger, their input is specified by the
adversary. The two oracles are defined as follows:



— CredGen-OOn input of a credential issukr < 7 and an assertioAPk: € {0, 1}*, run algorithmCredGen
on input of the tuple(l, APk) and return the resulting credentiglR,, AP). Note that an Outsider
does not need to perform queries to this oracle as he has access to the credential issuers’ master keys.
Besides, an Insider is not allowed to obtain a qualified set of credentials for the Bolfé‘f/“ which he
is challenged on.

— Decrypt-Q On input of a ciphertext e C, a policy PolPk and a set of indice$js,. .., jm}, first run
algorithm CredGenmultiple times to obtain the qualified set of credentigls _j,,(PolPkh), then run
algorithmDecrypton input of the tuplgC, pkch, Sken, PolP%h, ¢, i (PolPkh)), and return the resulting

output. Note that an adversary, be it Insider or Outsider, cannot perform a query toeacigpt-Oon

The game described above is denolid®-Pol-CCAS,, whereX = | for Insider adversaries arxi= O for
Outsider adversaries. A formal definition of chosen ciphertext securityBePKE schemes is given below.
As usual, a real functiog is said to be negligible ifi(k) < ﬁ for any polynomialf.

Definition 1. The advantage of an adversa@/ in the IND-Pol-CCA\ game is defined to be the quantity
Advgx = [Prlb=Db']— %|. A PB-PKE scheme is IND-Pol-CG# secure if no probabilistic polynomial time
adversary has a non-negligible advantage in the IND-Pol-§Cdame.

Note Our security model could be viewed as an extension to the policy-based public-key setting of the
IND-ID-CCA model defined in [5]. INND-ID-CCA, the adversary is not allowed to make decryption queries

on the challenge tupléCeh, IDch). In the policy-based public-key setting, for an encrypted message with
respect to a policy with disjunctions, there is more than one possible qualified set of credentials that can be
used to perform the decryption. That is, forbidding the adversary from making decryption queries on the
challenge tupléCep, Polfrfc“) is not sufficient anymore. In fact, we may have tuples such(tBa®olPkn) £

then be forbidden as welb.

3 Our PB-PKE Scheme
3.1 Description

Before describing ouPB-PKE scheme, we define algorithBDH-Setupas follows:

BDH-Setup Given a security parametkrgenerate a tuplgy, G1, G, e, P) where the map: G1 x G1 — G
is a bilinear pairing(G1,+) and(Gg, x) are two groups of the same ordgrandP is a random generator of
G1. The generated parameters are such that the Bilinear Diffie-Hellman Problem (debetexis hard.

Note-1 We recall that a bilinear pairing satisfies the following three properties: (1) Bilinea®,Qf € G,
and fora,b € Z;, e(a-Q,b- Q') = &(Q, Q)2, (2) Non-degenerate(P,P) # 1 and therefore it is a generator
of G2, (3) Computable: there exists an efficient algorithm to comp(@ Q') for all Q,Q € G;. ¢

Note-2 BDHP is defined as follows: on input of a tup(® a- P,b- P,c- P) for randomly chosem,b,c € Z,

compute the value(P, P)abc. The hardness d8DHP can be ensured by choosing groups on supersingular
elliptic curves or hyperelliptic curves over finite fields and deriving the bilinear pairings from Weil or Tate
pairings. The hardness BDHP implies the hardness of the so called Computational Diffie-Hellman Problem
(denotedcDHP) which is defined as follows: on input of a tugleé a- P,b- P) for randomly chosen, b € Z,



compute the valuab- P. As we merely apply these mathematical primitives in this paper, we refer for instance
to [10, 15] for further detailso

Our PB-PKE scheme consists of the algorithms described below.
System-SetupOn input of a security parametkrdo the following:

1. Run algorithmBDH-Setupo obtain a tupldq, G1, Gy, e, P)

2. LetM ={0,1}", X =Gy andC = G1 x ({0,1}")* x {0,1}" (for somen &€ N*)

3. Define four hash function$iy : {0,1}* — Gy, Hy : {0,1}* — Z§, H2 : {0,1}* — {0,1}"
andHs: {0,1}* — {0,1}"

4. Let? = (9,G1,Gy,e,P,n,Hp,H1, Hy, H3).

Issuer-SetuplLet I ={l4,...,In} be a set of credential issuers. Each credential idguer picks at random
a secret master ke € Zg and publishes the corresponding public kgy= s - P.

User-Setup This algorithm picks at random a private ke, € Zy and computes the corresponding public
key pk, = sk, - P.

CredGen Oninput of issuel, € I and assertioAPk € {0,1}*, this algorithm outputg(R¢, APK) = s - Ho(APK).
Encrypt On input of messagiél € M, public keypk, and policyPolP%, do the following:

Pick at randont; € {0,1}" (fori=1,...,m)

Computer = Hi(M|ta]| ... ||tm), then comput® =r-PandK =r - pk,

Computers j = [Ty &(Rq, ;.. Ho(AP) (for j =1,....m andi =1,....m)

Computey j = Ha (K15 ;{[i[|J), then compute; j =t & i j (for j=1,...,m andi=1,...,m)
ComputeV = M & Ha(t1]|. . . [[tm)

ReturnC = (U, [[v j]{%4)"4, W)

oA wWNE

The intuition behind the encryption algorithm is as follows: each conjunction of condi’[\i@rié\IKi‘j’k,Ai‘?m

is first associated to a magk; that depends not only on the different credentials related to the specified
conditions but also on the specified public key. Then, for each indexX1,...,m}, a randomly chosen
intermediate key; is associated to the disjunctim’ill/\rki"l (IKLLK,A{”;‘_’L). Finally, each intermediate keyis
encryptedm; times using each of the masjs;. This way, it is sufficient to compute any one of the masks
ui.j in order to be able to retriewg In order to be able to retrieve the encrypted message, an entity needs to
retrieve all the intermediate kegsusing not only a qualified set of credentials for polRylP%, but also the
private keysk, corresponding tgk;.

Decrypt . On input of ciphertex€ = (U7[[vi7j]T‘:1}{11,W), the pair of keys pky,sky), policy PolPk and the
qualified set of credentialg, _j,,(PolP%, pk,), do the following:

1. Computefi j; = e(U, 5, C(RKi.ji‘wAiF?Ij(iu,k)) (fori=1,...,m), then comput& = sk,-U
2. Computad j; = Ha(K||75j,|li]l ji), then computé = vi j, ® i j, (fori =1,...,m)

3. ComputeM =W @ Hz(t1]|. . . |[tm), then compute = H1(M||t1]|. . . ||tm)
4. If U =r - P, then return the messadyk otherwise return.

Note OurPB-PKE scheme is such that the decryption informatign.. j..(C = (U, [[vi,j]?ll]i“;l,W), PolPk)
consists of the valudd andW as well as the pair§(v j;, /\Elll' <|Ki‘ji‘k,,6‘i’?ﬁk>)}i”;1. o



3.2 Consistency and Efficiency

The algorithms described above satisfy the standard consistency constraint. In fact, we have, on one hand,
K=sk,-U=sk-(r-P)=r-(sk-P) =r- pk,. On the other hand, the following holds
m,ji KJ m‘ji Kj
i =er-P Z ik HO(Ai‘?ji,k)) = I_l e(S(i‘ji.k ) I:)7"'c)('a‘f.)ji,k))lr = T[ir,ji
k=1 k=1

The essential operation in pairing-based cryptography is pairing computations. Although such operation can
be optimized, it still have to be minimized. In Table 1, we provide the computational costs of our encryption
and decryption algorithms in terms of pairing computations as well as the size of the resulting ciphertext.
Note thatl; denotes the bit-length of the bilinear representation of an element of @oup

Encryption | Decryption Ciphertext Size
OurPB-PKE schemes, 5™, m m l1+ (I, m).n+n
The scheme of (3] 5%, 5%y mj | STy myj |1+ (3, T mj)n+n

Table 1. Performance of ouPB-PKE scheme compared with the scheme of [3]

In Table 1, we provide the performance of the key-escrow scheme of [3] when applied to policies written in
standard normal forms following the notation defined in Section 2. While the encryption algorithms require
the same amount of pairing computations, our decryption algorithm more efficienfas1fori=1,...,m.
Furthermore, asnj > 1 for j =1,...,m andi = 1,...,m, the size of the ciphertexts resulting from our
scheme is at least as short as the one of the ciphertexts produced by the scheme of [3].

Note As for standard asymmetric encryption schenRE&PKE schemes are much less efficient than sym-
metric encryption schemes. In practice, they should be used to exchange the symmetric (session) keys that
are used for bulk encryption.

3.3 Security

In the following, we show respectively that oRB-PKE scheme is botiND-Pol-CCAL, anleD-PoI-CCASK
secure in the random oracle model.

Notation Given the notation used in Section 2, the maximum values that the quamjtigsandm j can
take are denoted, respectivaty,, > 1,m, > 1 andm, > 1. We assume that these upper-bounds are specified
during system setupe

Theorem 1. Our PB-PKE scheme i$ND-Pol-CCA}, secure in the random oracle model under the assumption
that BDHP is hard.

Proof. Theorem 1 follows from a sequence of reduction arguments that are summarized in the following
diagram:
Our PB-PKE scheme—» BasicPub™ —+ BDHP
; W e
IND-Pol-CCAp, IND-CCA



1. Lemma 1 shows that dND-Pol-CCA},, attack on ouPB-PKE scheme can be converted intolaiD-CCA
attack on theasicPub™ algorithm defined in [5].

2. In [5], algorithm BasicPub™ is shown to beND-CCA secure in the random oracle model under the
assumption thaBDHP is hard.

Lemma 1. Let 4° be anIND-Pol-CCA}, adversary with advantage Agv > € when attacking ouPB-PKE
scheme. Assume thdf has running time4- and makes at mostqueries to oracleredGen-0, gq queries
to oracleDecrypt-O as well as g queries to oracle bl Then, there exists daND-CCA adversary4*® the ad-
vantage of which, when attacking tRasicPub™ scheme, is such that Agv> F (qc, dd, Go, N, My, My, my ) €.
Its running time is fo = O(t0).

Proof of Lemma 1 is given in Appendix A.
Note-1 Lemma 1 stated below uses the quarfityc, q, do, N, myA, My, m, ) defined as follows:

1 Fmuamyy g QaY' (N, mya, my,my) 1

F 9 9 aN7 9 am = ’
(0, Ad; do, N, My, my, My ) = ( N Y(Ngo, myn, my,my) )Y(NOD,M//\,WMmA)

WhereV(N%)m/A)mVamA) = Y(Ncb7mV/\7mV)m/\) _Y(Ncb_ (m//\m/)zarn\//\arn\/7m/\) -1

ComputingF (.) relies on computing the quantity{X, m,,, m,, m,), which is defined to be the total num-

ber of ‘'minimal’ (reduced) policies written iGDNF, given the upper-boundsn, »,my,m,) andX possible
credential-based conditions. Computivig, my»,m,,m,) is similar, but not exactly the same as the prob-
lems of computing the number of monotone boolean functiomsvafriables (Dedekind’s Problem [12]) and
computing the number of antichains on a §&t...,n} [11]. As opposed to these problems, the order of
the terms must be taken into consideration when dealing with our policies. This is a typical, yet interest-
ing, ‘counting’ problem. As we do not address the practical security of our scheme in this paper, we do not
elaborate more on the details.

Note-2 In the particular case whetd = my, = m, = m, = 1, we haveY'(Ngy, mys,m,,m,) = 0 and
Y(Nap, mya, My, my) = do. In this case, ouPB-PKE scheme when attacked by the Insider adversary is equiv-
alent to theFullident scheme of [5]. Note that our results match Result 5 of [8]. In fact, our reductionist
security proof follows a strategy similar to the one used in [8].

Note-3 The result of our security reduction remains theoretical. The funétioh depends exponentially
on the policy size bounds which is not acceptable in practice. We are currently working on improving the
tightness of our reduction in order to determine exact security arguments for real-world scenarios.

Theorem 2. Our PB-PKE scheme i$ND-Pol-CCAS, secure in the random oracle model under the assumption
that CDHP is hard.

Proof. Theorem 2 follows from two reduction arguments that are summarized in the following diagram:

Our PB-PKE scheme— EIG-HybridPub ——» CDHP
H oY) ; )
IND-Pol-CCAS, IND-CCA



1. Lemma 2 shows that dND-Pol-CCAS, attack on ouPB-PKE scheme can be converted intol&iD-CCA
attack on theElG-HybridPub algorithm defined in [2].

2. In [2], algorithmEIG-HybridPub™ is shown to beND-CCA secure in the random oracle model under the
assumption thatDHP is hard.

Lemma 2. Let.4° be anIND-Pol-CCAS, adversary with advantage Adv > & when attacking ouPB-PKE
scheme. Then, there exists BND-CCA adversary4°® the advantage of which, when attacking thiss-
HybridPub scheme, is such that Agw> €. Its running time is g = O(tg-).

Proof of Lemma 2 is given in Appendix B.

4 Conclusion

In this paper, we presented a collusion-free policy-based encryption primitive. We provided formal definitions
for the new primitive and described a concrete implementation using bilinear pairings over elliptic curves.
We defined a strong security model for our primitive following the notion of indistinguishability against
chosen ciphertext attacks, and proved the security of our pairing-based scheme in the random oracle model.
The goal of the new primitive is to overcome the weakness of the original policy-based encryption primitive
defined in [4] when used in application scenarios for which collusions of credential issuers and end users are
undesirable. The key-escrow encryption scheme presented in [3] allows to achieve the same security goals
when applied to policies written in standard normal forms. Our proposal improves the scheme of [3] in terms
of both performance and formal security analysis. Our security analysis remains theoretical and the results
of our reductionist proof are unacceptable for practical use of our primitive. We are currently working on
improving the tightness of our reduction and determining exact security parameters for real-world scenarios.
A target application for our primitive is trust establishment and negotiation in large-scale open environments.
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A Proof of Lemma 1

Notation For the sake of clarity to the reader, we use the notdffor as a shortcut for the sentence 'for
varying fromx; toxp’. <

We construct afND-CCA adversary4® that uses adversarg® to mount an attack against ti#asicPub™
algorithm of [5]. The game between the challenger and algoriirstarts with thenitialization stage which
we describe below.

Initialization. On input of the security parameterthe challenger first generates tasicPub™ public key
PK* = (q,G1,G2,e PR, Q*,m".n,Ho, H1,Hz, Hs) such thatn* € {1,...,my } andR* = s*- P, wheres" € Z
is the private key corresponding RK*. Upon receiving?K*, algorithm.4* does the following:

Letm* = m, then choose the valueg < {1,...,rr}v}.andmfj e{l,....m} Z?llzi”il
Pick at randonu? € {1,...,m,,} andrge, o € Zg ™)

Pick at randon € {1,...,m,} andrg. ,u7; € Zg Z?ilzi";'l

Pick at randont?; | € {1,.. ,qo} Yik€{L....,m} andry,- € Zq e Zm U

Pick at randon®;; , € Z*Z 2 7, U™, then comput®? 1= J k=260;, kZ 12
Computex?; , = ((af — ).nl/ + BLJ) —1).my +¥ ik andrK;Lk =ny, T far Zk:‘ﬁ?llzi@l
Choose two hash functionst3 : {1,...,m,,} — {0,1}" andH3 : G; — {0,1}™" "

Define the functiom® : {0,1}™" x {1...,m*} — {0,1}" which on input of a tupléX, i) returns thé™"
block of lengthn of the binary stringX i.e. the bits from(i — 1).n+ 1 toi.n of X.

©ON o g0~ W DR

Note We assume that adversaty is parameterized withw* € N*. Furthermore, we assume tiat> m, ,m,,.
Our proof can be easily adapted to the case whegem, ,m,. ©

The interaction between algorith#® and adversaryd® consists of five stageSetup Phase-1 Challenge
Phase-2andGuesswvhich we describe below.

Setup Algorithm A2* does the following: (1) Le®* = (9,G1,G2,e,P,n,H, H1, H3, H3) the system public pa-
rameters, where the oracle§ andH; are controlled by algorithn®® and the tupléq, G1,G2,e,P,n,Hy, Hs)
is taken fromPK*, (2) Define the the set of credential issuérs {I1,...,In} as follows: fork = k? bk the
public key °f|K{j,k is RKi.,jAk =T R*, whereas, fok € {1,...,N}\ {KI i Wik the public key ofly is

L1,



R¢ = s - P for some randomly chosen € Z;, (3) Generate at random a pair of keyskh, Skn) and give
it to the adversary, (4) Give the public paramet@'sand the trusted authorities’ public kel L’;‘Zl to
adversary4°.

Note Fork € {Ki:j’k}i’j,k, the master key df; is s = r¢s*
Algorithm 2° controls the random oraclg] as follows: algorithm4® maintains a list of tuplegA,Ho,, A|]

which we denoteH(')iSt. The list is initially empty. Assume that adversafly makes a query on assertion
APki ¢ {0,1}*, then adversaryl® responds as follows:

1. If APk already appears on the IISQSt in a tuple[A,,Ho,,A], then returrHo,

2. If APk does not appear dry™ andAP* is thely; ;-th distinct query to oraclelg, then computédoe | =
r;ﬁl : ((r[;itljuij r;i.lu),‘) -Q*— 67 ;-P), returnHo. , and addAPks, Hoy: ,.null] to Hyst

3. If APk does not appear oHy™ and APk is thel?; -th distinct query to oracléds (for k > 1), then

—1 Ae -1 e li

computel—|0,|i-’j‘k = (rvr,,;keimk) -P, returnHoJi-'j?k, and add the entrjAPke, Ho’li',j7k’ ryi',j‘keu’k] to HyS!

4. Otherwise, pick at randor € Zg such tha\ - P does not appear on the IilsléJ'S‘, returnA - P, and add
the entry[APK X - P,A] to HJSt

Note The simulated oraclel is such tha(rﬁﬁ“i',j@#%’) QF = zrknizll ry,, Hoie G

Algorithm 2°* controls the random oracté; as follows: on input of a tupléK, G, i, j), algorithm.4°® returns
the valueA® (U3 (K) & Ha(G 9 ) @ A3 (j),i).

The policy Pol;, = A{i’l \/Til /\ElJi(IKi-_j k’A‘i',:k> is called the 'crucial’ policy. Algorithm4*® hopes that the
‘target’ policy Polg,':c", which will be chosen by adversa in the Challengestage of théND-Pol-CCAbL,
game, will be equal to policiPol.

Phase-1 Adversary4° performs a polynomial number of oracle queries adaptively.

Challenge Once adversary?® decides thaPhase-1 is over. Then, he outputs two equal length messages
Mo andM; as well as a polic;Polfr']‘Ch on which he wishes to be challenged. Algorith! responds as

follows: (1) If Polcpr']‘Ch = Polc, then report failure and terminate (we refer to this evert@}, (2) Otherwise,
give the messagddp, M1 to the challenger who picks randomitye {0,1} and returns a cipherte@” =
(U,v*,W) representing theasicPub™ encryption of messagéy, using the public key?K*. Upon receiving

the challenger’s response, compute the valygs= A® (H3 (pkeh) © V- @ I-Tz’(j), i) [?L 1™, then return the
ciphertextCen = (U, [[Vi, j]?il]E17W) to adversary°.

Note For adversary?®, the ciphertexCh represents a correct encryption of mesdsgeaccording to policy
Polc. In fact, the ciphertex€* is such that) = Hy(Mp||t) - P, W = My @ Hs(t) (for some randomly chosen
t € {0,1}™ "), andv* =t @ Hy(g") whereg = e(R*, Q*). Lett; = A*(t,i), then the following holds

Vij = 8 (R (pen) Bt Ha(e(R, Q) & H3 ().1)
= (1) ® A (H3 (pln) @ Ha[e((rgs ar) - R (T 0T gt - Q)10 ) @ H3 ()).0)

mj mj
=t @oH3(e((rgr Toe) ‘R Y e Hoge )'00]) =t EBHZ.([I_IIe(RKi"j‘kaHO,li"j‘k)}rai j)
, 2 . I



Phase-2 Again, adversary?® performs a polynomial number of oracle queries adaptively.
Guess Algorithm 2° outputs a gueds' for b. Algorithm 4° outputsh’ as its guess fab.

The oracle€redGen-CandDecrypt-Oto which adversaryl® makes queries duringhase-landPhase-2are
described below. Without loss of generality, we assume that advefiSaalyvays makes the appropriate query
on an assertioAP to the random oraclel; before making any query involvingPk to oraclesCredGen-O
andDecrypt-Q

— CredGen-O Assume that adversar§® makes a query on a tup(e<7Ap"U). Let[A;,Ho,,A,] be the tuple
from H(')'St such tha®h, = APk, then algorithm4® responds as follows:

1. If1= |i°,j,1 andk € {Ki'ﬁjyk}m’k, then report failure and terminate (evefyeq)

2. If 1 £ Ile andk € {Ki.?j‘k}i’j,k, then return(rgA) - R* = (r¢s*) - Ho,

3. Ifke {1,...,N}\{Ki.,j’k}i7j’k, then returrs, - Ho,

— Decrypt-Q Assume that adversary® makes an oracle query on a tug@ PolP%n, {j1,.... jm}). Then,
algorithm4* responds as follows:

1. If PolPkn £ Polfh and PolPkn involves a condition(lx, APh) such thatk e {K?; ) and APken ¢
{A,i-_j_l}, then report failure and terminate (evefit..)

2. If PolPken £ PolP¥h andPolPkh does not involve any conditiofl, A) such thak e {K?;,} andA €
{A'fj.l}’ then do the following: (1) Run oractéredGen-Qmultiple times until obtaining the qualified
set ofcredentialsjl,,,,,jm(Polpkch), (2) Run algorithnDecrypton input the tupléC, PolP*h, pkch, Skep,

ch,,,Jm(PoIp"ch)) and return the resulting output back to adversaty
3. If PolPkh — PolP", then do the following: leC = (U, (v j)]4)™,, W), then compute the val-

uesvt = vi j; @ H3(ji) [™;, and make a decryption query to the challenger on ciphe@&xt
(U,H3(pkeh) & (V]| - .- [IVhe ), W) and identifie D®. Upon receiving the challenger’s response, for-
ward it to adversaryd®

In the following, we analyze the simulation described above:

If algorithm 4* does not report failure during the simulation, then the view of algori#tinis identical to its
view in the real attack. In fact, observe first that the responses of algafithimall queries of adversarg® to
oracleHg are uniformly and independently distributed in grd&ip Second, all the responses of algoritkith

to queries made by adversafly to oraclesCredGen-OandDecrypt-Oare consistent. Third, the ciphertext

Cch given to adversary?® corresponds to the encryption according%ﬂé’r'fc“ of My for some randonb €
{0,1}.

Algorithm Z4° reports failure if either everky,, eventZgeq Or eventEye. 0ccurs during the simulation. Since
eventsEeq andEqec are independent, the following statement holds

AdVﬂ' > Pr[ﬁfcred N=FEen A _‘fdec}-s > Pr[_‘zchhfcred A _‘Z:dec}-Pr[_‘zcred]~F’r[ﬁ£dec]~E (1)

From the simulation described above, we have

qcmyAmy

_ 2
NG )

Adversary4°* picks the challenge policy from a set %t{Ngp, m,,,m,,m,) distinct policies. Then, the fol-
lowing statement holds

Pr[‘zcred] §



1

3
(NG, M) ®)

Pr[ﬁfch|ﬁ£cred A ﬁZdec] >

The total number of policies, distinct from poIid%olfrfc'“, that may be specified by adversafy during
queries to oracl®ecrypt-Q and that involve at least one of the conditidihg APh) such thak € {K’ikt

andAPkn ¢ {Ah',- .} could be upper bounded by the quantity
V(N%,mv/\,mv, m/\) = Y(Ncb7rn\//\7rn\/7m/\) - Y(qu - (m\//\rm)z, Mya, rn\/7m/\) -1

Then, the following statement holds

< qdv(N%7mVA:mV7mA)

] = Vg m, o mem,) @

Finally, statements (1), (2), (3) and (4) lead to the result

1o Mmoo qu(Nqo,rmA,rm,mA)) 1
Nop Y(Nago, mya,my,my) " Y(NGp, Mys, My, mMy)

F(qCaqdaq07N7m//\7m/7m/\) = (

B Proof of Lemma 2

We construct aiND-CCA adversaryZ® that uses adversary® to mount an attack against tE&-HybridPub
scheme defined in [2]. The game between the challenger and algofittstarts with thdnitialization stage
which we describe below.

Initialization. On input of the security parametierthe challenger first generates thiS-HybridPub system
paramater®K* = (q,G1,G2,e P,m*.n,H1,Hz, H3). Then, the challenger picks at random a private ey
Zg and computes the corresponding public kéy = s* - P. Upon receivin®K* andpk*, algorithm2* does
the following:

1. Choose a hash functids : {0,1}* — {0,1}"
2. Define the functio\* : {0,1}™ " x {1...,m*} — {0,1}" which on input of a tupléX i) returns tha™"
block of lengthn of the binary stringX i.e. the bits from(i — 1).n+ 1 toi.n of X.

Note We assume that adversay is parameterized withn* € N*. Furthermore, we assume tiat> m, ,m,,.
Our proof can be easily adapted to the case whetem,,m,. ©

The interaction between algorith#® and adversary?® consists of five stageSetup Phase-1 Challenge
Phase-2andGuesswvhich we describe below.

Setup Algorithm 4° does the following: (1) Lef* = (9,G1,G2,€,P,n,Ho, H1,H3, H3) be the system public
parameters, wherkly : {0,1}* — G4 is a randomly chosen hash function, the oradleis controlled by
algorithm.4°* and the tupl€q, G1, G2, P, n,Hy,H3) is taken fromPK*, (2) Define the the set of credential
issuersl = {l1,...,In} as follows: fork € {1,...,N}, the public key oflk is R = s¢ - P for some randomly
chosens € Z3, (3) Give the public parameterB®, the public keypk;, = pk* and the credential issuers’

public and master key&R, s¢) [, to adversaryz°.



Algorithm A2° controls the random oracté3 as follows: on input of a tupl€K, G, i, j), algorithm2°® returns
the valueA® (Ha(K),i) @ Ha(Gli||])-

Phase-1 Adversary4° performs a polynomial number of oracle queries adaptively.

Challenge Once adversarfl® decides thaPhase-1 is over, it outputs two equal length messalygsandM;

as well as a policyPoleh = A{il[v;“:l[/\ﬂl‘ﬂl.(i,j‘k,ALJ-,k)]] on which he wishes to be challenged. Adversary
4° gives the messagédp, M; to the challenger who picks randomitye {0,1} and returns a ciphertext
C* = (U,v*,W) representing th&lG-HybridPub encryption of messagéy, using the public keypk*. Upon
receiving the challenger’s response, compaije= A*(v*, ) & Ha([1,} (U, s, - Ho(A 1) lil1) 174 1™,
then forward the ciphertexic, = (U, [[vi,j]?il]{‘;'l,W) to adversaryq°.

Note For adversary?®, the ciphertexCgn represents a correct encryption of mesdeigeaccording to policy
Polch. In fact, the ciphertext* is such that) =r - P for r = H1(Mp||t), W = Mp @ H3(t) (for some randomly
chosert € {0,1}™"), andv* =t @ Hy(r - pk*). Lett; = A°(t,i), then the following holds

LY
Vij = At @ Ha(r- pk),i) @ Ha([] (r - Psq - Ho(ALji)) il )
k=1

m,|
=t &A% (Hy(r- pk),i) & |:|2(k|_| &(Sc; - P Ho(ALj)) [1]1]) =t & H3 (r - pke[I ;i1 )
=1

Phase-2 Again, adversary?® performs a polynomial number of oracle queries adaptively.
Guess Algorithm 2° outputs a gueds for b. Algorithm 4* outputsh’ as its guess fab.

The oraclegCredGen-OandDecrypt-Oto which adversaryd® makes queries durinBhase-landPhase-2
are described below.

— CredGen-0OSince adversarl® has access to the oratiig and the master keys of the different credential
issuers, it does not need to make queries to this oracle.

— Decrypt-Q Assume that adversar§® makes an oracle query on a tug@ PolP%, {j1...., jm}). Then,
algorithm 2* responds as follows: le€ = (U, [[Vi,j]rjn: J™ ,W), then compute the valueg = v; j ®
I—~|2(|‘|El11‘ e(U,sq ; «-Ho(Aji k) [[i]] ji), and make a decryption query to the challenger on ciphe@text
(U,vi]|... |Ivhe,W). Upon receiving the challenger’s response, forward it to advergary

In the simulation described above, the view of algorithfis identical to its view in the real attack. In fact,
observe first that the responses of algoritAfto all queries of adversarf® to oracleHg are uniformly and
independently distributed in group;. Second, all the responses of algorittithto queries made by adver-
sary 4° to oracleredGen-CandDecrypt-Oare consistent. Third, the ciphert&, given to adversaryl®
corresponds to the encryption according’tﬂfr'fc“ of My, for some randonb € {0,1}. Therefore, Ady. > €.



