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Abstract— Most of the actual group rekeying solutions only
deal with security and scalability issues and are severely lacking
with respect to reliability and customer satisfaction. We suggested
a reliable group rekeying protocol whereby the key server first
partitions members with respect to their membership duration
and offers a strongly reliable delivery for long-lived members. In
this paper, we review this protocol that combines proactive FEC
and replication techniques, describe a user-oriented key assign-
ment scheme in order to define FEC blocks. We then analyze the
efficiency of the protocol based on different simulations and show
that thanks to this protocol, the number of long-lived members
losing their keying material is significantly reduced while the
communication overhead has slightly increased.

I. INTRODUCTION

Group rekeying is one of the most visited areas in network
security. Yet existing solutions remain to be implemented
because they still are severely lacking with respect to real-
life requirements such as reliability and customer satisfaction.
When a new key does not reach its intended recipient because
of some packet losses, members affected by these losses will
not be able to access future rekeying material and the multicast
data. Moreover, the addition or removal of a single member
provoke the update of the keying material of all members alike.

In order to reduce the impact of any rekeying operation
on at least a certain set of privileged members, we recently
suggested in [1] a new approach whereby the service provider
partitions recipients with respect to their membership duration,
defines a set of privileged members (those with long member-
ship duration) and offers them a strongly reliable delivery of
the keying material. In this paper, we review the proposed
protocol that is based on the Logical Key Hierarchy (LKH)
scheme described in [2] and give a performance evaluation of
this protocol based on simulation in order to understand that
it offers an optimization in terms of scalability, reliability and
answers to the requirement of customer satisfaction.

Section II gives a brief description of LKH and summa-
rizes its requirements in terms of reliability and customer
satisfaction. We then review the proposed rekeying protocol
that first partitions members with respect to their membership
duration and offers a strongly reliable delivery to long-duration
members. We also describe a new user oriented key assignment
algorithm that provides group members the ease of recovering
their keying material from a single block of rekeying packets.

Finally, we analyze and validate the efficiency of this protocol
with simulations.

II. PROBLEM STATEMENT

A. Group Rekeying and LKH

The LKH scheme was independently proposed by Wong et
al. [2] and Wallner et al. [3] and proved to be communication
optimal in [4]. In this scheme, the key server constructs and
maintains an almost balanced tree with N leaves where N is
the group size. A random key is attributed to each node and
each leaf node corresponds to a unique member of the group.
The key corresponding to the root node is the data encryption
key. Each member Ri receives the set of keys corresponding
to the path from the root of the tree to its corresponding leaf.
Referring to the example in figure 1, R1 would receive the key
set {k0, k1, k3, k8} where k0 represents the data encryption
key. In order to ensure backward and forward secrecy [5]
which respectively prevents a member for accessing the data
sent before its arrival or after its departure, the key server
needs to rekey the whole group at each member join or leave.
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Fig. 1. An Example of the LKH scheme

For example, to remove a member from the group, all keys
associated with the vertices of the path from the root to the
leaf corresponding to the leaving member are invalidated.
The rekeying operation then consists of substituting these
invalidated keys with new values and broadcasting the new
values in key envelopes encrypted under keying material
known by remaining members. As depicted in figure 1, if
member R4 leaves the group, k4, k1 and k0 are updated with
k4’, k1’ and k0’, respectively. The key server then broadcasts
Ek10(k

′
4), Ek3(k

′
1), Ek′

4
(k′

1), Ek′
1
(k′

0) and Ek2(k
′
0).

Although LKH has been proved to be communication
optimal in [4], it still suffers from some drawbacks in terms of



scalability. Hence, when there are frequent arrivals or depar-
tures, individual rekeying becomes inefficient: at each arrival
or departure of a member, the key server needs to immediately
rekey the whole group. Batched rekeying algorithms have
therefore been proposed in [6] and in [7] whereby join and
leave requests collected during an interval are processed by
rekeying operations performed during the subsequent interval.

B. Reliability Requirements

Existing reliable multicast protocols [8] cannot be con-
sidered as suitable to the delivery of the keying material
where the information is assumed to be sensitive. Hence, LKH
raises special properties that are not addressed by existing
solutions. First, LKH exhibits the sparseness property: while
a key server sends a set of encrypted keys, each member
only needs a small fraction of these keys. In addition to this
sparseness property, there is a strong relationship between
rekeying packets: since updated keys are transmitted while
being encrypted with some other keys, members should have
received these encryption keys. We consider two different
classes of relationships between keys that explain the reason of
the need for a strongly reliable delivery of the keying material:

• the inter-dependency (time dependency) among keys rais-
ing the relationship between keys of different intervals;

• the intra-dependency (spatial dependency) among keys
raising the relationships between keys transmitted within
a single interval.

The key server should thus ensure that each member re-
ceives all of its updated keying material before the beginning
of the subsequent rekeying interval. Recently some studies
[9], [10] have focused on this issue and different reliability
schemes using either Forward Error Correction (FEC) [11] or
replication techniques have been proposed.

C. Customer satisfaction

While security, scalability and reliability are throughly
addressed by existing reliable rekeying approaches, real life
requirements such as customer satisfaction are overlooked or
not even addressed by most solutions. Hence, in all proposed
solutions, the LKH scheme still suffers from the “one affects
all” scalability failure [5] which occurs when the arrival or
departure of a member affects the whole group. Frequent
rekeying operations may have a strong impact on all members
alike, regardless of their behavior. The key server should
at least minimize the impact of rekeying due to frequent
arrivals or departures on a set of privileged members. In [1],
we suggest a new approach that takes into account group
members’ membership duration and provide a strongly reliable
key delivery for long-duration members in order to minimize
the impact of rekeying operations caused by mass arrivals or
departures of short-duration members.

III. THE RELIABLE PARTITIONING PROTOCOL

A. Partitioning group members

In [12], Almeroth et al. observed the group members’ be-
havior during an entire multicast session. The authors realized

that members leave the group either for a very short period
after their arrival or at the end of the session. Based on these
results, we define two real categories to distinguish members:
short-duration members are supposed to leave the group a
very short period after their arrival; long-duration members
are on the opposite supposed to stay in the group during the
entire session. Since the key server cannot predict the time a
member will spend in a multicast session, it cannot decide
if a member belongs to the short-duration category or the
long-duration one. Therefore, we propose to partition members
into two monitored categories. In this proposed partitioning, a
new coming member is first considered to be volatile. If this
member spends more than a certain threshold time tth in the
group, then it becomes permanent.

Volatile and permanent members are respectively re-
grouped in two key trees denoted by Gv and Gp that are
managed and updated separately and periodically. Requests
are thus collected in batch. Assuming that volatile members’
arrivals and departures will happen very frequently, the key
server sets the corresponding rekeying interval Tv to a value as
short as possible. On the other hand, since permanent mem-
bers are assumed to stay longer in the group, the corresponding
rekeying interval Tp will be set to be much longer than Tv .

Thanks to this partitioning, permanent members will not
be affected from departures of volatile members but only from
departures of members from their subgroup which is supposed
to be quasi-static. The reliability processing of each monitored
category will be different and the key server must guarantee
to almost all permanent members the delivery of the keying
material with a very high probability before the receipt of
multicast data encrypted with these keys.

B. The hybrid reliability scheme

We provide a hybrid reliability scheme that combines proac-
tive FEC with proactive replication techniques. The structure
of FEC blocks is defined thanks to the user oriented key
assignment algorithm described in the following section. In
this algorithm, any permanent member receives its complete
required updated keys from one FEC block of rekeying pack-
ets.

1) The user oriented key assignment algorithm: Since LKH
provides a hierarchical structure between keys and since
members that are in a same subtree share a certain number
of keys, we propose to split Gp into disjoint subtrees and
define a specific block for members of each subtree. We denote
dp and hp as the respective outdegree and depth of Gp. A
member needs to receive at most hp − 1 keys from Gp and
the data encryption key. With respect to the chosen subtree,
members share the keys associated with the nodes that are
in the path from the root of Gp to the parent of the root of
the resulting subtrees. We define the block size of a rekeying
packet based on the parameter a such that (dp)a defines the
number of members of the specific subtree. In this case, the
block regroups:

• the data encryption key encrypted with the actual root
key of Gp denoted by kp,0;



• all the encrypted keys in the path from the parent of the
root node of the subtree to the root of Gp ((hp − 1 − a)
keys). They are shared by all the corresponding members
and thus are encrypted only once for this specific block;

• all the keys from the subtree except those at leaf nodes,
encrypted with keys at children nodes:

∑a
i=1(dp)i.
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Fig. 2. An illustration for the User Oriented key assignment algorithm where
a = 1 and a = 2

For example, in figure 2 where Gp is a binary key tree
of depth 4, when the key server sets a = 1, it defines one
block per two members. In this case, the key server partitions
members in four separate subtrees.With this key regrouping
method, some rekeying packets will appear in several blocks.
Hence, if for example k0 needs to be updated, members R1,
R2, R3 and R4 must receive Ek1(k

′
0). If the key server sets

a = 1 as illustrated in figure 2, this rekeying packet will appear
in Block1 and Block2. Therefore, if R1 loses this specific
rekeying packet from its corresponding block, it can get it
from Block2 without performing any additional operation.
Thus, our scheme inherently combines proactive FEC and
proactive replication techniques, and lets members who have
not received their rekeying packets from their block, retrieve
remaining keys from other blocks.

2) Providing customer satisfaction: In the proposed so-
lution, since there is always a probability of loss, the key
server first defines some bounds on the expected losses. It
defines α and β such that α denotes the portion of permanent
members that receive their keying material with probability at
least as high as β. Given the number of permanent members
Np and assuming X is a random variable representing the
number of permanent members that do not receive all of their
corresponding rekeying packets, the previous requirement can
be expressed by the following inequality:

P{X > (1 − α)Np} ≤ (1 − β) (1)

Based on this equation, the key server can define the
reliability parameters in order to ensure the delivery of the
keying material to almost all permanent members.

C. Related Work

In [13], similarly to our protocol, authors base their research
on the observations made in [12] and propose to divide the
key tree into two partitions regrouping members with respect
to their membership duration. In [14], authors investigate the
problem of member revocation and find the optimal number
of keys distributed to each member. However, the aim of these
works only were to optimize the overall communication over-
head or the memory usage respectively. We, on the contrary,
proposed the partitioning scheme in order to deal with the
problems of reliability and customer satisfaction. In addition to
the basic partitioning scheme, for each set of members, we set
different rekeying intervals and different reliability parameters
for each partition. We provide a longer rekeying interval for
permanent members during which the data encryption key
can be automatically retrieved by these members.

IV. SIMULATION BASED VALIDATION OF THE PROPOSED

PROTOCOL

We carry out a simulation based study of the rekeying
protocol described in the previous section. The features of the
protocol are analyzed in terms of simulation metrics that we
deem relevant to assess its basic advantages over the classical
LKH scheme:

• the communication overhead;
• the number of losses.

Simulation results are used to understand that the proposed
rekeying protocol offers an optimization in terms of scalability,
reliability and answers to the requirement of customer satisfac-
tion over LKH. We therefore analyze the performance of the
proposed rekeying protocol over the classical LKH scheme.

• Case 1: we only implement the partitioning scheme defin-
ing the two different key trees respectively for volatile
and permanent members and the key server transmits
rekeying packets without any additional packets;

• Case 2: we apply our user oriented key assignment
algorithm where the key server regroups rekeying packets
such that any member only receives one block to retrieve
all of its updated keying material;

• Case3: we analyze the efficiency of the proposed hybrid
reliability scheme which aims to offer a reliable delivery
of the keying material to almost all permanent members
given parameters α and β.

A. Implementation

The proposed rekeying mechanism is implemented as a
discrete-event simulator in C. The events represent the actions
of a key server and operations performed by recipients such as
join, leave or change status to become permanent. In terms
of reliability, we simulate a packet loss probability which is
independent for each client as an input simulation parameter.
We therefore can analyze the number of members losing at
least one rekeying packet during each rekeying operation.
Finally, we can also simulate different customer behaviors. The
main parameters for this aspect are the inter-arrival and service



time distributions for each class of client (short-duration and
long-duration). The simulator either uses a random variable
generator, given the required parameters for each type of
distribution or the client behavior can explicitly be specified.
Thanks to this option, one can simulate the efficiency of
the proposed rekeying protocol with respect to real customer
behavior.

B. Simulation set-up

In our simulation, we consider two real categories of mem-
bers that are equally present in the group: their inter-arrival
time are distributed exponentially with a mean of one second.
Their membership duration are distributed exponentially with
a mean Ms = 1000s for short-duration members and Ml =
100000s for long-duration members. We set the simulation
time to T = 10000s. The rekeying interval is set to Ts = 60s
for the single key tree scheme and to Tv = 60s and Tp =
60 ∗ 10 = 600s for the proposed partitioning scheme. The
packet loss probability is set to p = 0.1 and the threshold
time to tth = 3000s.

Based on these initial parameters, in the following sections
we analyze and compare the performance of the proposed
scheme with respect to LKH.

C. Case 1: Performance of the partitioning scheme with no
reliability mechanism
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Fig. 3. Number of losses experienced by long-duration members in Case 1

Given the simulation set-up defined in section IV-B, we
analyze the number of losses experienced by long-duration
members in both schemes where there is no reliability method
taken into account. From figure 3, we realize that, before the
threshold value tth = 3000, the number of losses experienced
by long-duration members in the volatile key tree is close to
the one observed in the single key tree case. Beginning from
t = tth, this number does not vary in the volatile key tree. This
is due to the fact that long-duration members are transfered
to the permanent key tree when their membership duration
reaches tth and thus the number of long-duration members
considered as volatile becomes constant. Symmetrically, since
long-duration members can join the permanent key tree at
each Tv , the number of losses experienced in the permanent

key tree increases with the number of long-duration members
transfered to this key tree. Moreover, since in the proposed
partitioning scheme rekeying operations are only performed
every Tp, we observe that members only lose their keying
material at each Tp.

TABLE I

TOTAL NUMBER OF LOSSES EXPERIENCED BY LONG-DURATION MEMBERS

IN CASE 1

Single Key tree Volatile key tree Permanent key tree Both key trees
282025 173729 15830 189559

From table I that presents the total number of losses
experienced by long-duration members, we can derive that the
proposed partitioning scheme reduces the number of losses by
33% with respect to the classical LKH scheme.

TABLE II

TOTAL REKEYING COST IN CASE 1

Single key tree Volatile Key tree Permanent key tree Both key trees
123030 142412 5309 147721

Table II illustrates the total rekeying cost (number of
rekeying packets) resulting from the classical LKH scheme and
the proposed partitioning scheme. The proposed partitioning
method reduces the rekeying cost for permanent members
while increasing the total rekeying cost by 20%.
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Fig. 4. Rekeying cost in Case 1

From figure 4 illustrating the rekeying cost for each key
tree at each interval, we observe that the rekeying cost for
volatile members is slightly higher than the rekeying cost
of the LKH scheme. This difference is in fact due to the
rekeying messages transmitted in order to move members,
whose membership duration reaches the threshold value tth,
from the volatile key tree to the permanent one. In the same
figure, the number of rekeying packets destined to permanent
members is very low with respect to volatile members. From
this observation, we can conclude that since the rekeying cost
resulting from the update of the permanent key tree is low,
given a bandwidth limitation, the key server can manage a
strongly reliable delivery for members of this category.



D. Case 2: Impact of the User oriented Key assignment
algorithm

We now analyze the efficiency of the proposed User-
Oriented Key Assignment algorithm where the key server
regroups rekeying packets such that any member only receives
one block to retrieve all of its updated keying material. We
first perform several simulations with different values of a
and analyze and compare the performance of this algorithm
with the previous case. We remind that this algorithm only is
implemented for permanent members.
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Fig. 5. Losses experienced by permanent members in Case 2

Figure 5 illustrates the number of permanent members los-
ing rekeying packets at each Tp. We observe that this number
increases when a increases. This fact was expected since when
a increases, the number of members needing packets from this
block increases, and packets are less replicated. However, the
number of losses resulting from Case 1 (no key assignment) is
always greater than those when the proposed user-oriented key
assignment algorithm is implemented. We thus can conclude
that the proposed user-oriented key assignment algorithm
reduces the number of losses even when there is no FEC
implementation.

Figure 6 illustrates the number of rekeying packets sent by
the key server to permanent members. We only show the
rekeying cost at each Tp, since the key server does not send any
rekeying packet apart from these intervals. We observe that the
rekeying cost resulting from the user-oriented key assignment
algorithm is greater than the rekeying cost in the permanent
key tree in Case 1. This observation is not surprising since
some keys are inherently replicated in different blocks.

Moreover, in figure 5, we observe that when a increases,
the number of losses increases almost linearly. From this
observation, we can conclude that the key server must choose
the minimum possible value for the block size. However, figure
6 shows that the rekeying cost decreases exponentially. We
notice that between a = 1 and a = 2 the difference is very
high and beginning from a = 3 the rekeying cost is almost
stable. Since there is a tradeoff between these two simulation
metrics, we can conclude that in order to achieve scalability
with customer satisfaction, the key server can set a = 2 or
a = 3.
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Fig. 6. Rekeying cost in Case 2

E. Case 3: Impact of the hybrid reliability scheme

Now that we analyzed the performance of the proposed user-
oriented key assignment algorithm and the estimation of the
optimal FEC block size based on a, we turn to the efficiency
of the hybrid reliability scheme which defines the number of
parity packets for each FEC block depending on α and β.
In the previous simulations, we showed that the key server
needs to set either a = 2 or a = 3 in order to optimize
the performance of the key assignment algorithm. We thus
only take these two cases into account and set α = 0.99 and
β = 0.99.
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Fig. 7. Losses experienced by permanent members in Case 2 and Case 3

Figure 7 illustrates the number of losses experienced by
permanent members for different values of a and for (α, β)
set to (0, 0) (Case 2) and (0.99, 0.99). We observe that the
implementation of the hybrid reliability scheme (α = 0.99,
β = 0.99) reduces the number of losses which almost reaches
zero. Thanks to this simulation, we can conclude that the
hybrid reliability scheme reduces the number of permanent
members losing their keying material and achieves the require-
ment of customer satisfaction.

Figure 8 displays the rekeying cost with and without the
implementation of the hybrid reliability scheme. We notice
that the rekeying cost slightly increases when the key server



generates parity packets with a = 3 (based on α = 0.99,
β = 0.99) whereas for a = 2 the difference becomes much
higher. Since the number of losses depicted in figure 7 remains
acceptable when a = 3, we can conclude that this value
achieves the best tradeoff between losses and rekeying cost.
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F. Summary

TABLE III

EFFICIENCY OF THE PROPOSED REKEYING PROTOCOL: SUMMARY

Case 1 Case 2 Case 3
a=2 a=3 a=2 a=3

Total Losses 16058 3728 6256 286 1030
Total Rekeying Cost 5309 16270 7316 20592 10372

Table III summarizes the simulation results for each sce-
nario. In this table, we illustrate the total number of losses
and the total rekeying cost for the permanent key tree. We
first realize that the use of the proposed User-Oriented Key
Assignment algorithm significantly reduces the number of
losses (77% for a = 2 and 61% for a = 3). Furthermore,
the implementation of the hybrid reliability scheme shows a
much better performance in terms of losses. Unfortunately, this
advantage has an impact on the rekeying cost (about 100% of
increase for a = 3 in Case 3). However, as shown in table
II, this cost still remains low with respect to the volatile key
tree’s one (142412). Consequently, this additional cost will
have a small impact on the total rekeying cost regrouping both
volatile and permanent members (less then 4%).

V. CONCLUSION

In this paper, we analyzed the performance of the proposed
rekeying protocol over LKH scheme in an incremental way.
We first evaluated the efficiency of the partitioning scheme
and showed that this scheme reduces the number of losses
while slightly increasing the total rekeying cost. However, the
rekeying cost resulting from the update of the permanent
key tree being very low with respect to the one resulting
from the update of the volatile key tree, the key server can
transmit additional packets for members on this category in

order to offer a reliable delivery. We then proposed to analyze
the efficiency of the hybrid reliability method for permanent
members. We first showed that the use of the user-oriented
key assignment algorithm reduces the number of losses and
that the key server needs to define the block size as high as
possible in order not to observe a high rekeying cost. We then
came up with the definition of additional parity packets based
on α and β and showed that although this method increases
the rekeying cost, it remains efficient with respect to the total
rekeying cost resulting from the whole group (volatile and
permanent members).

This study reveals that security concerns cannot be ad-
dressed without taking into consideration some other crucial
network parameters and real-life expectations. In order to
reduce the impact of the tradeoff between security, scalability
and reliability requirements, we suggested a classification of
recipients with respect to some real-life criteria such as the
membership duration in order to optimize system parameters
and offer a better service for privileged members.

REFERENCES
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