
Trajectory Knowledge for Improving Topology Control in
Mobile Ad-Hoc Networks

Jérôme Härri
haerri@eurecom.fr

Navid Nikaein
nikaeinn@eurecom.fr

Christian Bonnet
bonnet@eurecom.fr

Institut Eurécom
∗

Department of Mobile Communications
B.P. 193

06904, Sophia Antipolis, France

ABSTRACT
While most topology control protocols only address limited net-
work mobility, we propose in this paper a quasi-localized topology
control algorithm that considers mobility predictions in order to
construct and maintain a power efficient topology without relying
on periodic beacons. Indeed, a node is capable of extracting linear
trajectories of its neighboring nodes based on their positions and
velocities. Based on such information, a node obtains a local pre-
diction of neighborhood evolution and can thereafter proactively
adapt the topology without relying on periodic beacons. Mainte-
nance is driven on a per-event basis. It is therefore only when a
node changes course that messages are exchanged in order to adapt
the structure. Our approach is able to create and keep a stable ki-
netic backbone at a linear message and time complexity. It also
improves concurrent communications by providing a significant re-
duction on local power assignments, therefore reducing interfer-
ences, increasing battery life and improving the overall network
lifespan.

Categories and Subject Descriptors
C.2.1 [Computer Communication Network]: Network Architec-
ture and Design—network topology, wireless communication, dis-
tributed networks; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Algorithms, design, performance

Keywords
Trajectory, localized topology control, power assignment, stochas-
tic mobility prediction, wireless ad hoc networks.

∗Institut Eurécom’s research is partially supported by its indus-
trial members: Bouygues Télécom,Fondation d’entreprise Groupe
Cegetel, Fondation Hasler, France Télécom, Hitachi, ST Micro-
electronics, Swisscom, Texas Instruments, Thales, Sharp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’05, October 24–27, 2005, Toulouse, France.
Copyright 2005 ACM 1-59593-097-X/05/0010 ...$5.00.

1. INTRODUCTION
A mobile ad-hoc network (Manet) consists of a collection of mo-

bile nodes forming a dynamic autonomous network through a fully
mobile infrastructure. Nodes communicate with each other with-
out the intervention of centralized access points or base stations. In
such a network, each node acts as a host and may act as a router.
Due to limited transmission range of wireless network interfaces,
multiple hops may be needed to exchange data between nodes in
the network, which is why the literature often uses the term of
multi-hop network in Manet. The topology of a multi-hop network
is the set of communication links between nodes used by routing
mechanisms. Removing redundant and unnecessary topology in-
formation is usually called topology control.

The importance of topology control lies in the fact that it criti-
cally affects the system performance in several ways. For once, as
shown in [1], it affects networks spatial reuse. Choosing a power
assignment too large results in excessive interference while choos-
ing it too small creates a disconnected network. Power assignment
in topology control also exerts influence on the energy consumption
of communication, thus impacts battery life which is a critical re-
source in many mobile applications. In addition, topology control
also improves contentions at the MAC layer.

Several topology control algorithm have been proposed [2–5,17–
19] to create power efficient network topologies in MANETs, yet
only considering limited mobility or no mobility at all. Some of the
algorithms require explicit propagation channel (e.g., [5]), while
others (e.g., [2]) incur significant message exchanges. In [5] and
its extension [6], Rodoplu et al. introduced the notion of relay re-
gion and enclosure for the purpose of power control. It is shown
that the network is strongly connected if each node maintains links
with the nodes in its enclosure and the resulting topology is a min-
imum power topology. In [4], Ramanathan et al. presented two
centralized algorithms that minimize the maximum power used per
node while maintaining the (bi)connectivity of the network. In the
same paper, the authors also proposed two distributed heuristics for
mobile networks. LINT uses locally available neighbor informa-
tion collected by routing protocols to keep the degree of neighbors
bound. LILT further improves LINT by overriding the threshold on
the node degree when topology changes indicated by routing up-
dates result in undesirable connectivity. In [2], Narayanaswamy et
al. developed a power control protocol, called COMPOW, that re-
duces the power level to a common value that reaches a maximum
network connectivity. In [3], authors proposed an algorithm, called
CBTC(α), in which each node finds the minimum power p such
that transmitting with p ensures that it can reach some nodes in ev-

ery cone of degree α. Other works also exist on power efficient
topology control. Following a probabilistic approach, Santi et al.
derived the suitable common transmission range which preserves
network connectivity [20]. In [21], a ”backbone protocol” is pro-
posed to manage large wireless ad hoc networks, in which a small
subset of nodes is selected to construct the backbone. In [14], Li
et al. presented a MST-based topology control algorithm, in which
each node builds its local minimum spanning tree (LMST) inde-
pendently and only keeps on-tree nodes that are one-hop away as
its neighbors in the final topology. This approach as been improve
in [17] and in [18], where a MST is quasi-locally build from the
LMST structure. Finally, [19] presents a strictly local protocol,
called XTC, which does not only work on Unit Disk Graphs, but
also on general weighted networks graphs.

In this paper, we are focusing on a novel approach, called stochas-
tic mobility prediction, where nodes are able to predict their neigh-
bors’ future positions. We are adapting this concept to a topology
control protocol denoted as Kinetic Adaptive Dynamic topology
control for Energy efficient Routing (KADER). We base our ap-
proach on the DDR [7] protocol which we modified to obtain a
distributed self-maintained topology control strategy which tries to
optimize the power assignment for multi-hop transmissions, and
where modifications to the topology are announced by the respec-
tive nodes in a per-event basis. The contribution of this paper in-
cludes: (i) KADER builds a self adaptive forest which maintains
the network connectivity; (ii) each tree in the forest forms a zone,
in which shortest path routes are proactively maintained; (iii) the
criterion to built the forest is based on the relative power needed to
reach a neighbor, thus minimizing the power assignment and cre-
ating a backbone adapted to mobility; and (iv) Since KADER is
based on mobility predictions, it only needs to update its structure
when a node changes its trajectory. Since most of links remain valid
after a localized topology changes, the updates are also kept local
further minimizing the maintenance cost. The capability of form-
ing a self-adaptive topology that is closely linked to nodes relative
mobility is what make KADER achieve linear time and message
complexity, scalability and energy efficiency.

Both CONNECT and and its extension are centralized algorithms
that requires global information, thus cannot be directly deployed
in the case of mobility. On the other hand, LINT and LILT cannot
guarantee the preservation of the network connectivity. In oppo-
site, KADER does not require global information and is able to
ensure network connectivity. Moreover, COMPOW is known to
give poor performance in the case of uneven spatial distributions,
while the performance of KADER is not subject to the spatial dis-
tribution, and as a matter of fact, is especially well-suited in the
case of uneven spatial distributions. Finally, what makes KADER
unique compared to previous approaches, is its ability to use mo-
bility predictions to maintain its backbone in a complete per-event
way (i.e. non periodically). Indeed, most of the proposed protocols
either do not consider mobility induced topology changes, or per-
form this task periodically although trying to adapt the frequency
of topology updates to nodes limited mobility ([14]).

The rest of the paper is organized as follows. Section 2 outlines
the method used to obtain nodes linear trajectory knowledge, as
well as our motivation to use such information for topology control.
In Section 3, we present in detail the different parts of KADER’s
constructed topology, while in Section 4, we show the impact of tra-
jectory knowledge on KADER’s topology maintenance. Section 5
characterizes the topology created by KADER, and in Section 6,
we show the time and message complexity of KADER. Finally,
Section 7 highlights the benefits of KADER on routing protocols,
and Section 8 draws some concluding remarks.

2. NODES TRAJECTORIES IN MANETS
We explain in this section the methods and motivations for mod-

eling nodes trajectories in MANETs. We model nodes’ positions
as a piece-wise linear trajectory and show that the corresponding
trajectory durations are lengthy enough to become a valuable cost
for the creation of kinetic backbones.

2.1 Trajectory Knowledge
The term ”Kinetic” in KADER reflects the motion aspect of our

algorithm, which computes a node’s trajectory based on its Lo-
cation Information [8]. Such location information may be pro-
vided by the Global Positioning System (GPS) or other solutions
exposed in [9] or [10]. Velocity may be derived through succes-
sive location samples at close time instants. Therefore, we assume
a global time synchronization between nodes in the network and
define x, y, dx, dy as the four parameters describing a node’s posi-
tion and instant velocity 1, thereafter called mobility. We describe
in this section the way KADER is able to extract those trajectories.
We further insist on the fact that KADER’s neighbor discovery pro-
cedure distinguishes itself from regular protocols since it is neither
periodically performed, nor initiated after some adaptive intervals
depending on nodes mobility. It is rather triggered only when the
neighborhood effectively changes.

Over a relatively short period of time 2, one can assume that
each such node, say i, follows a linear trajectory. Its position as a
function of time is then described by

Posi(t) =

�
xi + dxi · t
yi + dyi · t � , (1)

where Posi(t) represents the position of node i at time t, the
vector [xi, yi]

T denotes the initial position of node i, and vector
[dxi, dyi]

T its initial instantaneous velocity. Let us consider node
j as a neighbor of i. In order to let node i compute node j’s tra-
jectory, let us define the squared distance between nodes i and j as

D2
ij(t) = D2

ji(t) = ‖Posj(t) − Posi(t)‖
2
2

= � �
xj − xi

yj − yi � +

�
dxj − dxi

dyj − dyi � · t � 2

= aijt
2 + bijt + cij , (2)

where aij ≥ 0, cij ≥ 0. Consequently, aij , bij , cij are defined
as the three parameters describing nodes i and j mutual trajecto-
ries, and D2

ij(t) = aijt
2 + bijt + cij , representing j’s relative

distance to node i, is denoted as j’s linear relative trajectory to i.
Consequently, thanks to (1), a node is able to compute the future
position of its neighbors, and by using (2), it is able to extract any
neighboring nodes’ future relative distance.

2.2 Average Trajectory Durations in Ad Hoc
Networks

A basic assumption in KADER is to assume that nodes move fol-
lowing a linear trajectory, then predict to update the topology when
a trajectory change occurs. Therefore, KADER scalability is highly
dependent to the number of trajectory changes (or transitions) per
unit of time, thereafter called β.

Part of the results obtained in [15] are depicted in Figure 1. It
shows that even with an average velocity of 20m/s, nodes have an
average trajectory duration of 22s (Figure 1(a)) for the Random

1We are considered moving in a two-dimensional plane.
2The time required to transmit a data packet is orders of magnitude
shorter than the time the node is moving along a fixed trajectory.

Waypoint model and 10s (Figure 1(b)) for the City Section model.
Figure 1 therefore provides a lower bound on the average trajectory
duration, that is 1

β
≈ 10s using extreme values for the configura-

tion parameters of the mobility models. In more realistic situations,
this value is rather 1

β
≈ 30s. Accordingly, it becomes conceivable

to consider predictions to improve ad-hoc protocol the way we did
in KADER.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Average Velocity in m/s

T
ra

je
ct

or
y

D
ur

at
io

n
s

RWM pause=0m/s
RWM pause=2m/s
RWM pause=5m/s

(a) RWM with different
pause times

0 5 10 15 20
0

10

20

30

40

50

60

70

80

Average Velocity in m/s

In
ve

rs
e

P
al

m
 In

te
ns

ity
 in

 s

City Section with map : afton oak
City Section with map : westUnivPlace

(b) City Section with two
suburban maps

Figure 1: Average nodes’ trajectory duration (1
β

) under the
Random Waypoint mobility model and the City Section

3. KADER’S TOPOLOGY CONSTRUCTION
ALGORITHM

We propose to construct a self-adapting forest from an ordinary
network that consists of non-overlapping dynamic trees, thereafter
called zones3 . Each zone is kept connected with its neighboring
zones through gateway nodes, thus making the whole network a set
of connected zones. The size of a zone will increase or decrease dy-
namically without any need of periodic maintenance. Unexpected
topological changes are announced by the respective nodes through
a specific non-periodic message communicating its new mobility
parameters. Following this event, the forest will adapt itself to the
new topology (see section 4).

The algorithm described hereafter consists of five cyclic time-
ordered phases: neighborhood discovery(3.1), preferred neighbor
election(3.2), forest construction(3.3), self-adaptive intra-zone clus-
tering (3.4), and self-adaptive inter-zone clustering(3.5). Since these
phases are similar to DDR [7], we will only describe the major ex-
tensions.

3.1 Neighborhood Discovery
Basically, KADER’s neighborhood discovery procedure makes a

node detect changes in its neighborhood without exchanges of pe-
riodical beacon messages. During this phase, each node broadcasts
a single Hello message indicating its presence in the neighbor-
hood, and transmitting its mobility parameters x, y, dx, dy, along
with its stability parameters β and t0. Such message is emitted
using maximum power in order to reach the maximum number of
neighbors, and is never forwarded. Thanks to mobility predictions,
upon completion of this discovery procedure, nodes in the network
have an accurate knowledge of their neighborhood, and as long as
their neighbors keep on moving along their initial linear trajecto-
ries, there will be no need to refresh it by sending new Hello mes-
sages. If such prediction becomes invalid due to an unpredicted
event (i.e. trajectory changes or disconnections), the respective
node spontaneously advertises its new parameters, refreshing the
predictions in a event-driven way.
3We will later use the term tree and zone interchangeably.

3.2 Preferred Neighbor Election
A node’s Preferred Neighbor (PN) is a dedicated neighbor through

which a node sends, receives, or forwards packets. It therefore rep-
resents the link on which a node sends its traffic. The criterion
determining this neighbor depends on the application needs. For
example, it could be the nodal degree in order to improve broad-
cast, or nodes energy level and traffic level for load balancing. It
also could be a combination of all three. In KADER, we wish to
obtain a criterion that is able to satisfy two objectives. The first one
is to represent the energy needed to reach a neighbor. The second
one is neighbor stability. A node’s stability is the probability that
it evolves as predicted. Since KADER does not periodically up-
date its set of links, we want the links chosen by KADER to remain
stable as possible such that routing errors could be kept low. Ac-
cordingly, KADER should not elect the closest neighbor, but might
decide to choose a more distant yet a more stable one. Therefore,
KADER is able to lower nodes power assignment by preferring
close-by neighbors, which increases transmission concurrency and
improves nodes lifespan. It is also able to lower topology mainte-
nance and routing errors by favoring stable nodes.

3.2.1 An Energy Based Election Criterion
The power cost function, required to transmit between nodes i

and j at time t, is defined as Pij(t) = Dα
ij(t) + γ, where α ≥ 2

and for some constants γ. The constant γ represents a constant
charge for each transmission, including the energy needed for sig-
nal processing, internal computation, and overhead due to MAC
control messages. However, since we assume perfect channel, and
that KADER does not put any extra burden on any particular node4,
γ is common to all nodes and is not of great significance when
comparing power costs. Therefore, without loss of generality, we
assume γ = 05 and define

Pij(t) = D2
ij(t) = aijt

2 + bijt + cij (3)

as the power cost function used by KADER. By choosing the dis-
tance between nodes as the link cost, one obtains minimum power
routes that help preserve battery life (see Figure 2).

Figure 2: The power function used by KADER, where each
parabola represents the energy needed to reach each neighbor
of node i

4KADER is based on a tree and not on a cluster hierarchy
5Therefore, Power and Distance will later be interchangeably used.

We then define

pi(t) = e−βi(t−ti) (4)

as the probability that a node i is continuing on its present trajec-
tory, where the Poisson parameter 1

βi
indicates the average time the

node follows a trajectory, and ti the time its current trajectory has
begun (see Figure 3).

1

t
it

p(t)i

pr
ob

ab
ili

ty
 o

f
tr

aj
ec

to
ry

 e
xi

st
en

ce

Figure 3: The stability function used by KADER, where the
probability for a node i to behave as predicted decreases expo-
nentially

Assuming independent node trajectories,

pij(t) = pi(t) · pj(t)

= e
−(βi+βj)(t−

tiβi+tj βj
βi+βj

)
= e−βij(t−tij) (5)

describes the probability that nodes i and j are continuing on their
respective courses at time t, which will be considered as the sta-
bility6 of link ij.The modified power cost below probabilistically
weights the power cost Pij(t) to reflect the link’s stability.

We finally define

Wij(t) = −
pij(t)

Pij(t)
(6)

= −
e
−(βi+βj)(t−

tiβi+tj βj
βi+βj

)

aijt2 + bijt + cij

(7)

as the composite link cost between two neighbors (see Figure 4). A
low modified power cost favors a low power cost with high stabil-
ity. We have then five parameters aij , bij , cij , βij , tij describing
Wij(t) as criteria for a preferred link between two nodes.

Wij(t)

st
oc

ha
st

ic
 li

nk
 c

os
t

t

regular distance curve

steeper slope due
to the link instability

Figure 4: The composite link cost function used by KADER,
where we can see the cost increase due to the link’s instability.

3.2.2 Election Algorithm
Based on the criterion described above and similarly to [7], a

node i can determine its PN j at time t1, which represents the time
at which j has the smallest cost function over all k other neighbors
of i.

PNi(t1) = j iff Wij(t1) = min
k∈nbi

(Wik(t1))

6The probability that the mutual trajectory between two nodes re-
mains identical after both nodes have changed course at the same
time is negligible

Yet, since we are performing mobility predictions, a PN is not
elected for a single time instant t, but for a time interval [t1, t2].
During this interval, also called activation, the link function as-
signed to this PN is the smallest over all k other neighbors. An
activation between node i and node j over an interval [t1, t2] is
defined as

act(i, j)[t1, t2] = � min t1 s.th. PNi(t1) = j
max t2 ∈ (t1;∞) s.th PNi(t) = j

Therefore, the set (i, j,act(i, j)[t1, t2]) uniquely identifies a pre-
ferred link between node i and node j activated from t1 to t2, and
will thereafter mentioned as ij [t1,t2].

Then, by always considering the smallest link cost function for
all time t, i then creates a set of actual and future preferred neigh-
bors that always minimize the link cost.

3.3 Forest Construction
For every time instant, a dynamic forest, or a group of non over-

lapping dynamic trees, is constructed by connecting each node to
its PN (similarly formulated as connecting the set of all preferred
links). Due to mobility issues, PNs may change (along with pre-
ferred links) during the simulation. But since every node knows in
advance the set of its actual and future PNs, thus actual and future
preferred links, no future re-configuration or exchange of messages
is needed to adapt the topology. We prove in the appendix that,
whatever the network topology is, this approach always yields to a
forest at each time instant.

In order to construct preferred links and consequently the forest,
each node generates a table called Intra-Zone table (see Table 1).
Indeed, as soon as node i determines the set of its PNs, it must
notify its neighbors, especially its PNs, of its decision. It first up-
dates its Intra-Zone table by adding the set of its PNs in a PN field
along with their respective activations. Any node appearing in the
PN field of node i’s Intra-Zone table means it is either a PN of
node i, or it elected node i as PN. Node i then sends a PN mes-
sage PNi = (i, ij[t1,t2]). This message indicates that node i is
electing node j as its PN with the activation act(i, j)[t1, t2]. Upon
reception of i’s message, node j checks whether it has been chosen
as the PN of i. If so, it also updates its intra-zone table regarding
i. Since nodes i and j appear in the PN field of their respective
Intra-Zone table, a tree branch is built between node i and its pre-
ferred neighbor j during [t1, t2]. Therefore, those edges become a
preferred link, and the set of preferred links in each neighborhood
generates the set of preferred paths in the network.

We illustrated KADER’s constructed dynamic forest in Figure 5,
considered at time t = 0. Full lines represent actual preferred
links, while dashed lines future ones. For example, as we can see
on the same Figure and on Table 1(a), node k has a PN c activated
between t = 0s and t = 10s. Since the simulation time t = 0, the
preferred link kc[0,10] is active. But, node k also has a future PN d
activated between t = 10s and t = 20s. Therefore, at time t = 0,
the preferred link kd[10,20] is not yet activated and is considered
as a future preferred link and depicted as a dashed line. It will be
quietly activated at time t = 10.

3.4 Self-Adaptive Intra-Zone Clustering
KADER aims at regrouping closed-by nodes into a zone in order

to provide energy efficient communications. At this phase, we il-
lustrate how nodes obtain the best path, with respect to the electing
criterion, to reach all nodes in their zone and proactively maintain
them in their intra zone table. The process is very similar to [7],
and readers may refer to this paper for a more detailed description.

c g

k

d u

h

b

f r

v

q

a

i
p

s

n

[0,10]

[9,10]

[0,10]

[0,10] [0
,10

]

[0
,1

0]

[10,20]

[0,10]

[0,6]

[0
,1

0]

[0,20]

[0,20]

[0,20]

Actual Tree
Future Branch
Bridge
Gateway

j

w

[6,10]

l

o

e

m

[0,9]

[0,10]
[0,10]

[9,10]

[0,20]

Figure 5: Constructed forest by KADER, considered at time
t = 0. The brackets represent the links’ activation intervals.

When a node i gets elected by a neighbor j, it then locally no-
tify all its neighbors of this election. To do so, i sends a so called
Learned PN message Learned PNi = (i, ij[t1,t2]), indicating
that node j with act(i, j)[t1, t2] has node i as its PN. Upon recep-
tion of this message, each tree member updates its intra zone table,
and re-advertises to its neighbors if it is not a leaf node7. For this
purpose, each node generates another field in its intra zone table
called Learned Preferred Neighbor (Learned PN, see Table 1) in
order to keep nodes that have been learned to belong to the same
tree. Therefore, if node i is chosen to be the PN of j over a time
interval [t1, t2], j sends a PN message to inform its neighborhood
of its elected PN. Among the neighboring nodes of j, the PN i
forwards j’s decision to each node that holds a tree edge with i,
say node k, activated over a time interval [t3, t4]. Then, the local
view of k’s tree is that, over the time interval ([t1, t2] � [t3, t4]),
j is reachable through i. For example, in Figure 5 and in Ta-
ble 1(b), node j elected node w as PN for a time interval [0, 6].
Node j is then a Learned PN of node f over the time interval
([0, 6] � [0, 10]) = [0, 6].

Consequently, as we can see in Table 1, on convergence of KA-
DER, the PN field represents the next hop nodes to reach any node
belonging to its zone (appearing in the Learned PN field). This is
a very interesting feature for routing since the end-to-end delay for
route discovery may be limited.

PN Learned PN
f[0,10] a[0,10], b[0,10]

q[0,10], w[0,10]

r[0,10], j[0,10]

l[9,10], s[9,10]

d[10,20]g[10,20], u[10,20]

v[10,20], h[10,20]

c[0,10] -

(a) Intra ZTk

PN Learned PN
w[0,10] r[0,10]

j[0,6]

k[0,10] c[0,10], d[0,10]

j[6,10] -
b[0,10] -
a[0,10] s[9,10], l[9,10]

q[0,10] -

(b) Intra ZTf

Table 1: Intra-zone table of nodes k and f regarding Figure 5

3.5 Self-Adaptive Inter-Zone Clustering
Once zones have been built, KADER’s task is to keep them con-

nected to each others at each time instant. For that matter, KADER
uses a different table, called Inter Zone table, that regroups con-
nections to different surrounding zones. Each node belonging to
7A leaf node is a node which only has a single neighbor and which
is never a PN.

this table is referred as gateway and the link connecting two zones
as bridge (see Figure 6). Moreover, each gateway must keep a con-
nection to each of its peer-gateways belonging to its neighboring
zones. We prove in the appendix that the zones created by KA-
DER are always connected to each others if the original graph is
complete.

At the beginning, neighbors of a node i are put in its Inter Zone
table during their full initial activation, say [T1, T2], which is de-
fined as the connection lifetime between the two nodes or the time
two nodes remain direct neighbors. Then, as node i succeeds to
add a neighbor j to its tree and updates its intra zone table over
an activation [t1, t2], it prunes j’s initial activation. The remain-
ing activation is then {[T1, T2]\[t1, t2]}. During this time, node
j is still not considered part of i’s tree. Node j then appears in
the Intra Zone table over [t1, t2] and in the Inter Zone table over
{[T1, T2]\[t1, t2]}.

Fore example, in Figure 6 and corresponding tables in Table 2,
node s is in the Inter Zone table and also in the Intra Zone table of
node a, yet for different time intervals. For the time interval [0, 9],
node a is a gateway node and the link sa is a bridge. However, from
the time interval [9, 10], zone z1 grows and zone z2 fusions with
it. Accordingly, for this time interval, node s becomes a PN and
nodes l, o, m, e Learned PN for node a. As we can see, the size
of different zones grows and shrinks over time, which makes them
self-adapting to the mobility-based topology changes, yet without
exchanges of messages.

g

z1

z2

z3

Actual Tree

Bridge

Gateway

c

k

d u

h

b

f r

v

q

a

i
p

s

n
j

w

l

o

e

m

(a) Constructed Forest from t=0s to t=9s

g

z
1

z
3

Actual Tree

Bridge

Gateway

k

d u

h

b

f r

v

q

a

i
p

s

n
j

w

l

o

e

m
c

(b) Construes Forest from t=9s to t=10s

Figure 6: KADER Constructed Forest and its evolution over
time

Gate. ID Zone ID
s[0,9] z2

(a) Inter zone table
of node a regard-
ing Figures 6(a)
and 6(b) .

PN Learned PN
f[0,10] c[0,10], b[0,10]

q[0,10], w[0,10]

r[0,10], j[0,10]

k[0,10]

s[9,10] l[9,10]

(b) Intra zone table
of node a regard-
ing Figures 6(a)
and 6(b).

Table 2: Inter-zone and Intra-zone tables of nodes a regarding
Figure 6

4. MAINTENANCE OF KADER’S
BACKBONE

Zone maintenance consists of several tasks, such as removal of
irrelevant links, acquisition of new neighbors, notification of link
errors. Most of topology control algorithms perform these tasks
periodically. What makes KADER unique is its ability to do these
tasks in a complete per-event manner (i.e. non periodically). Since
it predicts future topology configurations, KADER triggers a zone
maintenance only when those predictions appear to have failed, in
other words, when nodes changed their trajectories.

4.1 Adaptive Aperiodic Neighborhood
Maintenance

A limitation in per-event topology maintenance strategies is the
neighborhood maintenance. While trajectory knowledge allows to
discard invalid links or unreachable neighbors, it remains impossi-
ble to passively acquire new neighbors reaching some other nodes’
neighborhood. The lack of an appropriate method to tackle this
issue would limit KADER’s ability to obtain up-to-date links and
effective low power routes within each zone.
We developed several heuristics to help KADER detecting nodes
stealthily entering some other nodes transmission range in a non-
periodic way.

• Constant Degree Detection— Every node tries to keep a
constant neighbor degree. Therefore, when a node i detects
that a neighbor actually left its neighborhood, it tries to ac-
quire new neighbors by sending a small advertising message.
(see Figure 7(a));

• Implicit Detection— A node j entering node i transmission
range has a high probability to have a common neighbor with
i. Considering the case depicted in Figure 7(b), node k is
aware of both i and j’s trajectories, thus is able to compute
the moment at which either j or i enters each other’s trans-
mission range. Therefore, node k sends a notification mes-
sage to both nodes. In that case, we say that node i implicitly
detected node j and vice versa;

• Adaptive Coverage Detection— We require each node to
send an advertising message when it has moved a distance
equal to a part of its transmission range. An adjusting factor
which vary between 0 and 1 depends on the node’s degree,
its velocity and its stability (see Figure 7(c));

i

j

k

r
advertize

(a) Constant Degree Detec-

tion

i

j

kr
advertize

advertize

(b) Implicit Detection

i

j

k

r
i

n*r

advertize

(c) Adaptive Coverage De-

tection

Figure 7: Three heuristics to detect incoming neighbors in a
per-event basis

4.2 Quasi-local topology maintenance
In this subsection, we show how a particular message, called

New Trajectory (NT), is used to inform neighboring nodes of any
topology changes, and to trigger a quasi-local maintenance process.
Therefore, KADER’s zone maintenance can be seen as per-event
based.

As mentioned before, node trajectories information remains valid
during a short period of time. Then, since a node is unable to pre-
dict the time its neighbors will change their trajectories, it biases
the link cost W to reflect the decreasing probability of the link ex-
istence, and to ensure that a good low power but unstable link could
not be chosen for routing. Yet, we still consider this link valid as
long as it is not otherwise notified. Consequently, when a node is
changing its trajectory, it must inform its neighbors about the in-
duced topology change. To do so, it sends a New Trajectory (NT)
message to all its neighbors and piggybacks its new coordinates
and velocity. Therefore, its neighbors are able to adapt their trees
to this event. Eventually, the algorithm carries out the PN election
phase again.

5. PROPERTIES OF KADER’S TOPOLOGY
In this section, we study KADER’s computed backbone with pa-

rameters such as average zone diameter (i.e. in term of number of
hops), average number of zones in the network, average ratio of
remaining edges, average ratio of PNs in the network, and average
power assignment. The following results are obtained by measur-
ing the metrics after the population of mobile nodes was distributed
uniformly on a A × A grid where A = 2000m, with each node
having a transmission range of 250m. Moreover, each node has a
different stability value, but nodes’ average stability is 1/β = 30s.
We will compare KADER in two different cases : variable density
and globally constant density8.

8Globally constant density is obtained by maintaining the ratio
#nodes

A2 fixed

We begin by illustrating in Figure 8 the topology created by KA-
DER from an arbitrary graph G (see Figure 8(a)) to a forest and
trees (see Figure 8(b)), where solid lines are tree edges and dashed
lines are bridges connecting different trees.

������������

������������

������������

�������
�

	�		�	
�

�

�������
�

���
�

�������
�

������������

������������

������������

�������
�

�������
�

������������

�������
�

������

!�!!�!"�""�"
#�##�#$�$$�$

%�%%�%&�&&�& '�''�'(
(

)�))�)*�**�*

+�++�+,
,

-�--�-.�..�.

/�//�/0
0

1�11�12�22�2

3�33�34
4

5�55�56
6

7�77�78
8

9�99�9:
:

;�;;�;<
<

=�==�=>�>>�>

?�??�?@�@@�@

A�AA�AB
B

C�CC�CD
D

E�EE�EF
F

G�GG�GH
H

I�II�IJ
J

K�KK�KL
L

M�MM�MN
N O�OO�OP�PP�P

Q�QQ�QR�RR�R

S�SS�ST�TT�T

U�UU�UV�VV�V

W�WW�WX�XX�X

Y�YY�YZ�ZZ�Z

[�[[�[\�\\�\

]�]]�]^
^

_�__�_`
`

a�aa�ab�bb�b

c�cc�cd�dd�d

e�ee�ef
f

g�gg�gh
h

i�ii�ij�jj�j

k�kk�kl�ll�l

m�mm�mn�nn�n

o�oo�op�pp�p

q�qq�qr
r

s�ss�st�tt�t

u�uu�uv�vv�v

w�ww�wx�xx�x

y�yy�yz�zz�z

{�{{�{|
| }�}}�}~�~~�~

������������

�������
�

������������������������

�������
�

������������

�������
�

�������
�

������������

�������
�

������������

�������
�

������������

������������

������������

������������

������ � �

¡�¡¡�¡¢
¢

£�££�£¤
¤

¥�¥¥�¥¦�¦¦�¦

§�§§�§¨
¨

©�©©�©ª�ªª�ª

«�««�«¬
¬

��®
®

¯�¯¯�¯°�°°�°

±�±±�±²�²²�²

³�³³�³´
´

µ�µµ�µ¶�¶¶�¶ ·�··�·¸�¸¸�¸

¹�¹¹�¹º�ºº�º

»�»»�»¼�¼¼�¼

½�½½�½¾�¾¾�¾

¿�¿¿�¿À�ÀÀ�À

Á�ÁÁ�ÁÂ�ÂÂ�Â

Ã�ÃÃ�ÃÄ�ÄÄ�Ä

Å�ÅÅ�ÅÆ�ÆÆ�Æ

Ç�ÇÇ�ÇÈ
È

É�ÉÉ�ÉÊ�ÊÊ�Ê

Ë�ËË�ËÌ�ÌÌ�Ì
Í�ÍÍ�ÍÎ�ÎÎ�Î

Ï�ÏÏ�ÏÐ�ÐÐ�Ð

Ñ�ÑÑ�ÑÒ�ÒÒ�Ò

Ó�ÓÓ�ÓÔ
ÔÕ�ÕÕ�Õ

Õ�Õ
Ö�ÖÖ�Ö
Ö�Ö

×�××�×Ø
Ø

Ù�ÙÙ�ÙÚ
Ú

Û�ÛÛ�ÛÜ
Ü

Ý�ÝÝ�ÝÞ
Þ

ß�ßß�ßà
à

á�áá�áâ�ââ�â
ã�ãã�ãä
ä

å�åå�åæ
æ

ç�çç�çè
è

é�éé�éê
ê

ë�ëë�ë
ë�ë
ì�ìì�ì
ì�ì

í�íí�íî�îî�î
ï�ïï�ïð�ðð�ð

ñ�ññ�ñò
ò ó�óó�óô�ôô�ô

õ�õõ�õö
ö

÷�÷÷�÷ø
ø

ù�ùù�ùú�úú�ú

û�ûû�ûü
ü

ý�ýý�ýþ
þ

ÿ�ÿÿ�ÿ�
�

�������
�

������������

�������
�

������	�		�	

�

�
������

������

������������

�������
�

������������

�������
�

������������

������������

�������
�

������������

�������
�

 � � !
!

"�""�"#�##�#

$�$$�$%�%%�%

&�&&�&'�''�'

(�((�()�))�)

*�**�*+
+

,�,,�,-
-

.�..�./�//�/

0�00�01�11�1
2�22�23�33�3

4�44�45
5

6�66�67�77�7

8�88�89�99�9

:�::�:;�;;�;

<�<<�<=�==�=
>�>>�>?�??�?@�@@�@A�AA�A

B�BB�BC�CC�C

D�DD�DE�EE�E

F�FF�FG�GG�GH�HH�HI
I

J�JJ�JK
K

L�LL�LM
M

N�NN�NO�OO�O

P�PP�PQ
Q

R�RR�RS�SS�S

T�TT�TU�UU�U

V�VV�VW�WW�W

X�XX�XY�YY�Y

Z�ZZ�Z[�[[�[

\�\\�\]
]

^�^^�^_
_

`�``�`a�aa�a

b�bb�bc�cc�c

d�dd�de
e

f�ff�fg
g

h�hh�hi
i

j�jj�jk
k

l�ll�lm
m

n�nn�no�oo�op�p
p�pq�qq�q

r�rr�rs
s

t�tt�tu�uu�u
v�vv�vw
w

x�xx�xy�yy�y
z�zz�z
z�z
{{
{

|�||�|}
}

~�~~�~�
�

�������
�

�������
�

������������

������������

������������

�������
�

�������
�

������������

�������
�

(a) An arbitrary graph

������������

������������

������������

�������
�

������������

�������
�

�������
�

 � � ¡
¡

¢�¢¢�¢£�££�£

¤�¤¤�¤¥�¥¥�¥

¦�¦¦�¦§�§§�§

¨�¨¨�¨©
©

ª�ªª�ª«
«

¬�¬¬�¬��

®�®®�®¯
¯

°�°°�°±
±

²�²²�²³�³³�³
´�´´�´µ�µµ�µ

¶�¶¶�¶·�··�· ¸�¸¸�¸¹
¹

º�ºº�º»�»»�»

¼�¼¼�¼½
½

¾�¾¾�¾¿�¿¿�¿

À�ÀÀ�ÀÁ
Á

Â�ÂÂ�ÂÃ�ÃÃ�Ã

Ä�ÄÄ�ÄÅ
Å

Æ�ÆÆ�ÆÇ
Ç

È�ÈÈ�ÈÉ
É

Ê�ÊÊ�ÊË
Ë

Ì�ÌÌ�ÌÍ
Í

Î�ÎÎ�ÎÏ�ÏÏ�Ï

Ð�ÐÐ�ÐÑ�ÑÑ�Ñ

Ò�ÒÒ�ÒÓ
Ó

Ô�ÔÔ�ÔÕ
Õ

Ö�ÖÖ�Ö×
×

Ø�ØØ�ØÙ
Ù

Ú�ÚÚ�ÚÛ
Û

Ü�ÜÜ�ÜÝ
Ý

Þ�ÞÞ�Þß
ß à�àà�àá�áá�á

â�ââ�âã�ãã�ã

ä�ää�äå�åå�å

æ�ææ�æç�çç�ç

è�èè�èé�éé�é

ê�êê�êë�ëë�ë

ì�ìì�ìí�íí�í

î�îî�îï
ï

ð�ðð�ðñ
ñ

ò�òò�òó�óó�ó

ô�ôô�ôõ�õõ�õ

ö�öö�ö÷
÷

ø�øø�øù
ù

ú�úú�úû�ûû�û

ü�üü�üý�ýý�ý

þ�þþ�þÿ�ÿÿ�ÿ

������������

�������
�

������������

������������

	�		�	
�

�

������������

���
� ������������

������������

�������
�

������������������������

�������
�

������������

�������
�

������

!�!!�!"�""�"

#�##�#$
$

%�%%�%&�&&�&

'�''�'(
(

)�))�)*�**�*

+�++�+,�,,�,

-�--�-.�..�.

/�//�/0�00�0

1�11�12�22�2

3�33�34
4

5�55�56
6

7�77�78�88�8

9�99�9:
:

;�;;�;<�<<�<

=�==�=>
>

?�??�?@
@

A�AA�AB�BB�B

C�CC�CD�DD�D

E�EE�EF
F

G�GG�GH�HH�H I�II�IJ�JJ�J

K�KK�KL�LL�L

M�MM�MN�NN�N

O�OO�OP�PP�P

Q�QQ�QR�RR�R

S�SS�ST�TT�T

U�UU�UV�VV�V

W�WW�WX�XX�X

Y�YY�YZ
Z

[�[[�[\�\\�\

]�]]�]^�^^�^

_�__�_`�``�`

a�aa�ab�bb�b

c�cc�cd�dd�d

e�ee�ef
f

g�gg�g
g�g
h�hh�h
h�h

i�ii�ij
j

k�kk�kl
l

m�mm�mn
n

o�oo�op
p

q�qq�qr
r

s�ss�st�tt�t
u�uu�uv
v

w�ww�wx
x

y�yy�yz
z

{�{{�{|
|

}�}}�}
}�}
~�~~�~
~�~

������������

������������

�������
� ������������

�������
�

������������

������������

�������
�

�������
�

�������
�

�������
�

������������

�������
�

������������

������������

�������
�

������ � �

¡�¡¡�¡¢
¢

£�££�£¤�¤¤�¤

¥�¥¥�¥¦
¦

§�§§�§¨�¨¨�¨

©�©©�©ª�ªª�ª

«�««�«¬
¬

��®�®®�®

¯�¯¯�¯°
°

±�±±�±²
²

³�³³�³´�´´�´

µ�µµ�µ¶�¶¶�¶

·�··�·¸�¸¸�¸

¹�¹¹�¹º�ºº�º

»�»»�»¼
¼

½�½½�½¾
¾

¿�¿¿�¿À�ÀÀ�À

Á�ÁÁ�ÁÂ�ÂÂ�Â
Ã�ÃÃ�ÃÄ�ÄÄ�Ä

Å�ÅÅ�ÅÆ
Æ

Ç�ÇÇ�ÇÈ�ÈÈ�È

É�ÉÉ�ÉÊ�ÊÊ�Ê

Ë�ËË�ËÌ�ÌÌ�Ì

Í�ÍÍ�ÍÎ�ÎÎ�Î

Ï�ÏÏ�ÏÐ�ÐÐ�ÐÑ�ÑÑ�ÑÒ�ÒÒ�Ò

Ó�ÓÓ�ÓÔ�ÔÔ�Ô

Õ�ÕÕ�ÕÖ�ÖÖ�Ö

×�××�×Ø�ØØ�ØÙ�ÙÙ�ÙÚ
Ú

Û�ÛÛ�ÛÜ
Ü

Ý�ÝÝ�ÝÞ
Þ

ß�ßß�ßà�àà�à

á�áá�áâ
â

ã�ãã�ãä�ää�ä

å�åå�åæ�ææ�æ

ç�çç�çè�èè�è

é�éé�éê�êê�ê

ë�ëë�ëì�ìì�ì

í�íí�íî
î

ï�ïï�ïð
ð

ñ�ññ�ñò�òò�ò

ó�óó�óô�ôô�ô

õ�õõ�õö
ö

÷�÷÷�÷ø
ø

ù�ùù�ùú
ú

û�ûû�ûü
ü

ý�ýý�ýþ
þ

ÿ�ÿÿ�ÿ������
������������

�������
�

������������
������	
	

�

�
������

������
���

�������
�

�������
�

�������
�

�������
�

������������

������������

������������

�������
�

�������
�

 � � !�!!�!

"�""�"#
#

(b) Constructed forest

Figure 8: KADER’s Topology

50 100 150 200 250 300 350 400 450 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of Nodes

R
em

ov
ed

 E
dg

es
 R

at
io

KADER Constant Density
KADER Variable Density

(a) Removed Edges Ra-
tio

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

R
em

ai
ni

ng
 P

N
s

R
at

io

KADER Constant Density
KADER Variable Density

(b) Remaining PNs Ratio

50 100 150 200 250 300 350 400 450 500
1.5

2

2.5

3

of Nodes

D
ia

m
et

er
 o

f Z
on

es
 (

H

op
s)

KADER Constant Density
KADER Variable Density

(c) Diameter of Zones

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ow

er
 A

ss
ig

nm
en

t

KADER Constant Density
KADER Variable Density

(d) Average Power As-
signment

Figure 9: Properties of KADER’s Topology

We can see in Figure 9(a) that KADER is able to remove 65% of
the total number of edges. By getting rid of unnecessary links, KA-
DER helps improve spatial reuse and concurrent communications.
Then, in Figure 9(b), KADER is able to remove 45% of PNs, which
helps to reduce the broadcasting overhead in the network. There-
fore, by removing 65% of unecessary links and by only keeping a
backbone of 55% of router nodes yet keeping the graph connected,
KADER helps performing load reduction and proves to be broad-
cast efficient.

Then, the graph in Figure 9(c) shows the diameter of a zone ver-
sus the number of nodes in the network. The diameter of a zone is
defined as the length of the path that has the longest euclidean dis-
tance. If the zone diameter is obtained, then we can place an upper
bound on the Intra zone end-to-end delay. We clearly see in Fig-
ure 9(c) that zones in KADER are relatively stable, in both a vari-
able and a constant density. This comes from its distance parameter
in the electing criterion. Since KADER always tries to create a link
between nearby neighbors, neither density nor the number of nodes
have a big impact on the zone’s diameter. This shows another in-
teresting property of KADER that is its suitability for dense and
sparse networks on non-evenly distributed nodes.

Finally, Figure 9(d) illustrates KADER’s average node power as-
signment ratio while keeping the graph connected. We can see that
on average, KADER is able to lower the power assignment by 75%.
The most important asset of a reduced power assignment is the in-
creased battery lifespan. Yet, reducing the transmission range also
causes less contention and interference for concurrent communi-
cations. This is even amplified for dense networks, where inter-
ferences reduce broadcasting efficiency. Therefore, KADER’s low
power assignment not only being energy efficient, also helps im-
prove unicast and broadcast communications.

6. CONVERGENCE AND OVERHEAD COM-
PLEXITY OF KADER’S TOPOLOGY

It is important to compute the communication complexity of KA-
DER for topology creation. The communication complexity de-
scribes the average number of messages required to perform a pro-
tocol operation. Note that this comparison does not include the
complexity of route discovery 9. This issue is not covered in this
paper.

6.1 Message Complexity (MC)
In KADER, the network is partitioned into m zones on the av-

erage, and each zone has an average number of nodes of n
m

. The
amount of communication overhead to build and maintain the for-
est is n since by sending n PN election messages, a forest will be
constructed. To construct a zone, each node generates (d-1) mes-
sages to forward the learned PN or removed PN, where d is the
hop-wise zone diameter. Therefore, each zone generates (d− 1) n

m

messages. Since there exists m zones in the network, the overall
number of generated forward messages becomes (d− 1)n. In con-
clusion, the message complexity is O(β · n · d),where d < 3 (see
Figure 9(c)).

6.2 Time Complexity (TC)
In order to obtain the time complexity induced by KADER, we

need to analyze the broadcasting overhead in mobile ad-hoc net-
work. Authors in [16] showed that Ω(n) rounds are required by
any broadcasting protocol when the network nodes are mobile.
Accordingly, the broadcasting overhead does not change whether
nodes are arranged in lines or in mesh, but only depends on the
number of nodes in the network. Therefore, since KADER con-
verges when a Learn PN message has reached every nodes in a
zone, and that KADER’s zones have on the average n/m nodes,
the time complexity of KADER is Ω(n/m).

9KADER being zone-wise proactive, it is able to obtain intra-zone
paths at no extra cost.

7. BENEFIT OF KADER’S TOPOLOGY ON
ROUTING ALGORITHMS

KADER is able to derive the most stable links from a network
topology such that full connectivity is always guarantied. It then
becomes interesting to analyze the benefits routing protocols may
obtain from it.

7.1 Efficient Routing
KADER is able to group nodes into a set of zones, which proac-

tively maintains routes between every node belonging to the same
zone. Therefore, any routing protocol using KADER may perform
Intra Zone routing at no extra cost. For Inter Zone routing, a pro-
tocol still needs to be determined. It could be imagined that a re-
active approach, such that AODV [13], may take great help of the
topology created in KADER by reducing the overhead of its route
discovery procedure. This creates an hybrid routing protocol, us-
ing proactive intra-zone routing, and on-demand zone-level rout-
ing. On the other hand, similar to OLSR [12] using MPR [11], a
proactive protocol takes benefit from KADER to improve its scala-
bility and its end-to-end delay.

7.2 Energy Efficiency
In KADER, during the construction of the forest, every node

elects its Preferred Neighbor partly depending on the energy needed
to reach it. Indeed, the transmission range of the Intra zone routing
is always adapted to reach only the desired PN. Hence, by using the
power assignment, KADER performs topology control and makes
proactive Intra Zone routes optimal in terms of energy data flow
generated and forwarded by each node, further reducing the energy
used for routing and increasing the channel capacity. It also im-
proves concurrent communications by reducing interferences and
contentions. Since KADER does not use beacons, routing proto-
cols using KADER reach routing energy efficiency.

8. CONCLUSION
In this paper, we have presented a novel approach to topology

control protocols, called Kinetic Adaptive Dynamic topology con-
trol for Energy efficient Routing (KADER). It employs nodes’ tra-
jectory knowledge to get rid of periodic beacons and to fit its struc-
ture to nodes mobility patterns. The major properties of KADER
are Linear Complexity, Scalability, and Energy Efficiency.

We showed that by using trajectory knowledge to predict nodes
future positions, KADER is able to dynamically create and main-
tain a connected backbone without using periodic beacons. Results
pointed out that the structure created and maintained by KADER
was composed of only 45% of nodes, and 65% of links compos-
ing the original network, while always being able to keep a full
connectivity between every node. KADER also lowers the power
assignment at each node by 75%. Then, KADER is also able to
provide each node with the next hop node to reach any neighbor
belonging to the same zone. Therefore, best intra-zone paths with
respect to the link cost using in 3.2.1 are obtained at no extra cost.

Finally, using a similar denomination than those in routing proto-
cols, KADER can be classified as the first totally reactive topology
control protocol, since it is only triggered when an event occurs.
Therefore, by initiating topology maintenance only when a node
is changing course and not periodically, KADER reaches energy
efficiency and scalability for topology control.

9. REFERENCES
[1] P. Gupta and P. R. Kumar, ”The capacity of wireless

networks”, in IEEE Trans. Inform. Theory, vol. 46, no. 2, pp.
388-404, March 2000.

[2] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R.
Kumar, ”Power control in ad-hoc networks: Theory,
architecture, algorithm and implementation of the compow
protocol”, in Proc. of the European Wireless’02, , pp.
156-162, Florence, Italy, February 2002.

[3] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R.
Wattenhofer, ”Analysis of a cone-based distributed topology
control algorithm for wireless multi-hop networks”, in Proc.
ACM Symposium on Principles of Distributed Computing,
pp. 264-273, Newport, Rhode Island, United States, August
2001.

[4] R. Ramanathan and R. Rosales-Hain, ”Topology control of
multihop wireless networks using transmit power
adjustment”, in Proc. IEEE INFOCOM 2000, pp. 404-413,
Tel Aviv, Israel, March 2000.

[5] V. Rodoplu and T. H. Meng, ”Minimum energy mobile
wireless networks”, in IEEE J. Select. Areas Commun., pp.
1333-1344, vol. 17, no. 8, August 1999.

[6] Li Li and Joseph Y. Helpern, ”A Minimum-energy
Path-preserving Topology-control Algorithm”, in IEEE
Transactions on Wireless Communications, pp. 910-921, vol.
3, no. 3, 2004.

[7] Navid Nikaein, Houda Labiod , and Christian Bonnet,
“Distributed Dynamic Routing Algorithm for Mobile
Ad-Hoc Networks,” Proc. MobiHOC 2000, USA/Boston.

[8] C. Gentile, J. Haerri, and R. E. Van Dyck, “Kinetic
minimum-power routing and clustering in mobile ad-hoc
networks,” IEEE Proc. Vehicular Technology Conf. Fall
2002, pp. 1328-1332, September 2002.

[9] R.J. Fontana and S.J. Gunderson, ”Ultra-wideband precision
asset location system”, IEEE Conf. on Ultra Wideband
Systems and Technologies, pp. 147-150, 2002.

[10] C. Gentile and Luke Klein-Berndt, ”Robust Location using
System Dynamics and Motion Constraints”, in Proc. of the
IEEE International Conference on Communications
(ICC’04), Paris, June 2004.

[11] A. Laouiti et al, ”Multipoint Relaying: An Efficient
Technique for Flooding in Mobile Wireless Networks”, 35th
Annual Hawaii International Conference on System Sciences
(HICSS’2001), Hawaii, USA, 2001.

[12] T. Clausen et al, ”Optimized Link State Routing Protocol”,
IEEE INMIC, Pakistan, 2001.

[13] C.E. Perkins et al. ”Ad Hoc On-Demand Distance Vector
Routing”,
http://www.ietf.org/rfc/rfc3561.txt.

[14] N. Li, J.C. Hou, L. Sha, ”Design and analysis of an
MST-based topology control algorithm”, in Proc. of the
IEEE Infocom Conference, pp. 1702-1712, Vol. 3, San
Francisco, 2003.

[15] J. Haerri and Christian Bonnet, ”A Lower Bound for
Vehicles’ Trajectory Duration”, in Proc of the IEEE 62nd
Semiannual Vehicular Technology Conference (VTCFall’05),
Dallas, USA, September 2005.

[16] Ravi Prakash et al., ”A Lower Bound for Broadcasting in
Mobile Ad Hoc Networks”, in EPFL Technical Report
IC/2004/37, EPFL, Switzerland, 2004.

[17] Xiang-Yang Li et al., ”Applications of k-local MST for
topology control and broadcasting in wireless ad hoc
networks”, in IEEE Transactions on Parallel and Distributed
Systems, pp. 1057-1069, vol. 15, no. 12, December 2004.

[18] F.J. Ovalle-Martinez, I. Stojmenovic, F. Garcia-Nocetti, J.
Solano-Gonzalez, ” Finding minimum transmission radii and
constructing minimal spanning trees in ad hoc and sensor
networks”, in Journal of Parallel and Distributed
Computing, pp. 132-141, vol. 65, no. 2, February 2005.

[19] Roger Wattenhofer, Aaron Zollinger ”XTC: A Practical
Topology Control Algorithm for Ad-Hoc Networks”, in 4th
IEEE Workshop on Algorithms for Wireless, Mobile, Ad Hoc
and Sensor Networks (WMAN), Santa Fe, April 2004.

[20] P. Santi, D. M. Blough, and F. Vainstein, A probabilistic
analysis for the range assignment problem in ad hoc
networks, in Proc. ACM Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC 2001), pp. 212-220,
Long Beach, California, United States, August 2000.

[21] S. Basagni, D. Turgut, and S. K. Das, ”Mobility-adaptive
protocols for managing large ad hoc networks”, in Proc.
IEEE International Conference on Communications (ICC
2002), pp. 1539-1543, Helsinki, Finland, June 2001.

APPENDIX
DEFINITION 1. An arbitrary undirected time dependent graph

G(t) is defined as G(t) = (V, E(t)), where V is the set of vertice,
and E(t) is the set of edges at time t.

THEOREM 1. For any graph G(t), let G′(t) = (V, E′(t)) be
the subgraph obtained by connecting each vertex V to its preferred
links E′(t). Then G′(t) is a forest.

PROOF. Let G(t) be the original graph at time t, and let G′(t)
be the graph obtained by executing the KADER algorithm for each
vertex v ∈ V at time t. We first recall that the main idea is to select
for each node v ∈ G(t), a neighbor that has the maximum link
function W. In order to prove that G′(t) does not contain any cycle
C = vi, vi+1, . . . , vi−1, vi, let us suppose the contrary, and let vi

be the vertex of C with the biggest W .

vi

vi−1

vi−2

vi+1

vi−3

vi+2

Figure 10: The proof of theorem 1

Let us consider two vertice of vi−1 and vi+1 adjacent to vi in C
(Figure 10). Without loss of generality, assume that the algorithm
on vi chosen an adjacent vertex vi+1 (if neither vi−1 nor vi+1 had
been chosen, C is not a cycle). Consider now the execution of the
algorithm on vi−1. We will show that such node will not choose
vi, thus implying that C is not a cycle.

Lets define f(vi, vi+1) as the weight function W between vi and
vi+1. Since vi chooses vi+1, f(vi, vi+1) > f(vi, vi−1). And by
vi−2’s decision to choose vi−1, f(vi−2, vi−1) > f(vi−2, vi−3) >
f(vi, vi+1), f being an monotone increasing function. Therefore,
f(vi, vi−1) < f(vi−1, vi−2). This proves that vi−1 will not choose
vi as PN, and C will not be a cycle.

THEOREM 2. For any PN activation act(vi, vi+1)[t1, t2], and
any graph G′(t1, t2) = (V, E′(t1, t2)) obtained by connecting
each vertex to its preferred links E′(t1, t2) activated during [t1, t2],
G′(t1, t2) is then always a forest at every time instant included in
[t1, t2].

PROOF. When a node vi elects a PN vi+1 during an activation
act(vi, vi+1)[t1, t2], it means that ∀t ∈ [t1, t2], f(vi, vi+1)(t) >
f(vi, vk)(t), ∀k. Since nodes share a common clock, all their cur-
rent left activation are equal to the current time and will thereafter
be considered as 0, past activations being irrelevant.

If a node vi elects a PN vi+1 during an activation act(vi, vi+1)
[0, t1], without loss of generality, vi+1 can elect a node vi+2 as
PN during an activation act(vi+1, vi+2)[0, t2]. Since the algorithm
prunes the activation between vi and vi+2 as ([0, t1]

�
[0, t2]), we

must consider two cases. In the first case, the initial activation
act(vi, vi+1) [0, t1] is less or equal than act(vi+1, vi+2)[0, t2],
thus it is kept unaltered during the forwarding steps. In the sec-
ond case, the algorithm prunes the initial activation.The forwarded
activations are two separated and mutually exclusive activations.

Let us consider t2 smaller or equal to t1. Then, following the de-
velopment in the proof of Theorem 1, at some point, node vi−1

could elect node vi during an activation act(vi, vi−1)[0, t3], as
t3 <= t1. [0, t3] is the remaining activation after multiple pruning
at each node in the path. Then, it means that ∀t ∈ [0, t3], vi−1

could elect vi as PN, thus creating a cycle during this time. The-
orem 1 prove that this situation is not possible, since ∀t ∈ [0, t3],
we obtain a stable tree which is not a function of t. Then, during
the activation act(vi, vi−1)[0, t3], C does not contain any cycle.

Since the initial activation has been pruned, we still need to con-
sider the case of the remaining activation ([t3, t1]). Without loss
of generality, let us consider that this activation has been pruned at
a single node vi+2. This node has the possibility to elect vi+1 as
PN (mutual election), updating the mutual activation as the union
of their respective ones. Note that this case does not create a cy-
cle. vi+2 can otherwise elect another node, say vi+3. Since [t3, t1]�

[0, t3] = ∅, vi+2vi+3 is then a branch of a different and inde-
pendent tree and the situation is independent to the previous one.
Therefore, this neither creates a cycle, which concludes the proof.

THEOREM 3. ∀ G, let G’ be the subgraph obtained by connect-
ing each node to its preferred links during their respective activa-
tions. Then G’ is a forest at every time instant.

PROOF. ∀ node vi, since all its PNs activation intervals are mu-
tually exclusive (

�
(act(v, v1), . . . , act(v, vn)) = ∅), from The-

orem 2, we can conclude that KADER always yield to a forest at
every time instant.

THEOREM 4. For any complete graph G(t), the subgraph
G′(t) = (V, E′(t)) created by connecting each vertex to its pre-
ferred neighbor creates a set of connected zones.

PROOF. Let us consider the contrary and take two unconnected
zones A and B. At any time instant, a neighbor of a node either be-
longs to its Intra Zone table or to its Inter Zone table. The former
means both nodes belong to the same zone, and the latter means
both nodes belong to two adjacent zones which they are connect-
ing. Therefore, if a link between two nodes do not exist between
two zones in G′(t), it also could not exist in the original graph
G(t). This is a contradiction to the hypothesis of a complete graph
G(t).

