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Abstract

Real-time frauds can be applied against numerous zero-knowledge or
minimal disclosure identification schemes that protect physical ser-
vices, be it opening a door or verifying attributes of a certified device.
In [4], Brands and Chaum proposed distance-bounding protocols to
forbid mafia fraud attacks and let the terrorist fraud attack as an open
issue. In this paper, we describe an extension of the initial scheme in
order to forbid both mafia and terrorist fraud attacks.

Keywords: terrorist fraud, mafia fraud, distance-bounding, proof of
knowledge

1 Introduction

The impressive development in the areas of web technologies, wireless net-
works, mobile computing, and embedded systems in the past decade has
lead to an increasing interest in the topics of pervasive computing and open
environments computing. In these topics, the trustworthiness of the com-
municating entities should be carefully addressed. In this paper, we focus
on applications combining physical proximity and cryptographic identifi-
cation schemes. Typical ones are those where digital identification is re-
quired to access a building or, more generally, to enter in a given area.
Our research is applicable to other application areas such as those described
in[6, 9, 17, 1, 13].
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Figure 1(a) shows a possible real-world application scenario. In this scenario,
a researcher carries around a mobile device (a mobile phone with extended
functionalities or a PDA enhanced with communication capabilities) that
takes care of computing, storage and communication on his behalf in the
research laboratory environment. Whenever the researcher approaches the
door of a confidential research area, a communication is established between
his mobile device and a lock device installed at the door. If the researcher is
authorized to access the research area, the device lock is unlocked. Whenever
the combination of the physical proximity and the cryptographic identifica-
tion is not carefully addressed, some frauds could be performed such as the
one depicted in Figure 1(b). In this fraud, a distant researcher (prover) that
is allowed to access the confidential research area helps a friend (intruder)
that is close by to access the area. A radio link could be used, for instance,
to establish the communication between the prover and the intruder.

Unlocking

Prover Verifier

(a) Legitimate Access

Unlocking

Prover

Verifier
Intruder

(b) Fraudulent Access

Figure 1: Access to a Confidential Research Area

The scenario described above falls under a quite recurring family of appli-
cations in cryptography where a prover tries to convince a verifier of some
assertion related to his private key. The assertion in our case is that the
prover is within a certain physical distance. Brands and Chaum [4] were the
first to specifically address this problem. They introduced distance-bounding
protocols that allow to determine a practical upper bound on the distance
between two communicating entities. This is performed by timing the delay
between sending out a challenge bit and receiving back the corresponding
response bit. The number of challenge-response interactions being deter-
mined by a defined security parameter. This approach is feasible if and only
if the protocol uses very short messages (one bit) on a dedicated communi-
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cation channel (e.g. wire, IR) and if no computation is required during each
challenge-response exchange (few logical operations). This allows having
round-trip times of few-nanoseconds.

The protocols given in [4] allow to prevent the mafia frauds where an intruder
sits between a legitimate prover and a verifier and succeeds to perform the
distance-bounding process. In this paper, we provide an extension of those
protocols. Our solution allows preventing terrorist frauds that have not been
addressed so far. In these frauds the prover and the intruder collaborate to
cheat the verifier. However, even if the prover helps the intruders, the prover
does not want to reveal his valuable private key.

The remainder of this paper is organized as follows. Section 2 defines the
frauds being addressed and gives some related work. Section 3 presents
a general scheme for distance-bounding proof of knowledge protocols and
gives the main security requirements. Section 4 contains a description of
our protocol which security analysis is given in Section 5. At the end, we
conclude and describe further work.

2 Problem Statement

In this section, we define the three attacks we tackle in this paper, namely
distance fraud, mafia fraud, and terrorist fraud. Next, we present related
work and we show why the existing approaches are not satifactory.

2.1 Definitions

Distance-bounding protocols have to take into account the three real-time
frauds that are depicted in Figure 2. Those frauds are not called man-in-
the-middle attacks because the intruder does not deal with security protocol
but transparently forwards challenges and responses.

The first fraud is called the distance fraud and is defined in the following
(Figure 2(a)).

Definition 1 (Distance Fraud). A distance fraud is a real-time fraud that
can be applied in location schemes. In the fraud two parties are involved,
one of them (V the verifier) is not aware of the fraud is going on, the other
one (P the fraudulent prover) performs the fraud. The fraud enables P to
convince V of a wrong statement related to its physical distance to V .

The distance fraud has been discussed in [4]. This fraud consists on the
following: if there’s no relationship between the challenge bits and the re-
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Prover Verifier

(a) Distance Fraud

Prover Intruder
(mafia) 

Verifier

(b) Mafia Fraud

Prover Intruder
(terrorist)

Verifier

(c) Terrorist Fraud

Figure 2: Three Real-Time Frauds

sponse bits during the distance-bounding protocol and if the prover P knows
at what times the challenge bits are sent by the verifier V , he can make V
compute a wrong upper-bound of his physical distance to V by sending
out the response bits at the correct time before receiving the challenge bit,
regardless of his physical distance to V .

The second fraud is called the mafia fraud and is defined in the following
(Figure 2(b)).

Definition 2 (Mafia Fraud). A mafia fraud is a real-time fraud that can
be applied in zero-knowledge or minimal disclosure identification schemes by
an intruder I. In the fraud three parties are involved, two of them (P the
honest prover and V the verifier) are not aware of the fraud is going on,
the third party (I the intruder) performs the fraud. The fraud enables I to
convince V of a statement related to the private key of P .

The mafia fraud has been first described by Desmedt in [9]. In this fraud,
the intruder I is usually modeled as a couple {P̄ , V̄ } where P̄ is a dishonest
prover interacting with the honest verifier V and where V̄ is a dishonest
verifier interacting the dishonest prover P . Thanks to the collaboration of
V̄ , the fraud enables P̄ to convince V of a statement related to the private
key of P . This fraud was also called Mig-in-the-middle attack in [2].

The third fraud is called the terrorist fraud and is defined in the following
(Figure 2(c)).

Definition 3 (Terrorist Fraud). A terrorist fraud is a real-time fraud
that can be applied in zero-knowledge or minimal disclosure identification
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schemes by fraudulent prover P and Intruder I cooperating together. In the
fraud three parties are involved, one of them (V the verifier) is not aware
of the fraud is going on, the two others (P the dishonest prover and I the
intruder or terrorist) collaborate to perform the fraud. Thanks to the help
of P , the fraud enables I to convince V of a statement related to the private
key of P .

The terrorist fraud has been first described in [9]. In this fraud, the prover
and the intruder collaborate to perform the fraud whereas in the mafia fraud,
the intruder is the only entity that performs the fraud.

2.2 Related Work

In this section we review different techniques that have been proposed and
show why they are not sufficient when it is necessary to verify that someone
is indeed physically present:

• Constrained Channels [14] aim at exchanging some secret between
two physical entities and thus assure the proximity of two devices.
An obvious implementation is to have a physical contact [17] between
both artifacts.

This scheme only works when the attacker is not physically present.
It can only protect a system against distance frauds.

• Context Sharing is a straightforward extension of constrained chan-
nels where some contextual data is used to initiate the key exchange.
For instance, in [10], the pairing mechanism is done by shaking arti-
facts together in order to create a common movement pattern that is
subsequently used to bootstrap the security of communications.

This approach forbids distance frauds and can partially avoid mafia
frauds when the context is difficult to reproduce.

• Isolation [3] is a widely deployed solution to check whether a physical
entity holds a secret. The device is isolated in a Faraday cage during a
challenge response protocol. This approach is used in ATMs to check
whether a smart card embeds a private key corresponding to a given
public key.

This solution forbids distance frauds, mafia frauds, as well as terrorist
frauds. However, it is difficult to deploy, it is not userfriendly, and
does not allow mutual authentication.

6



• Unforgeable Channel aims at using communication media that is dif-
ficult to forward without knowing some secret. For instance, channel
hopping [1] or RF watermarking [11] makes it difficult to transfer data
necessary to create the signal in another place.

This scheme protects against distance frauds and [1] protects against
mafia frauds when it is not possible to identify communication sources.

• Time of Flight relies on the speed of sound and/or light. Sound and
especially ultra-sound [16] is interesting to measure distance because
it is slow enough to authorize computation without reducing the ac-
curacy of the measure.

Sound-based approaches cannot protect against physically present at-
tackers and thus only forbid distance frauds.

Some works also rely on the speed of light when measuring the round
trip time of a message to evaluate the distance to the prover. However,
one meter accuracy implies responding within few nanoseconds and
thus it cannot be done through standard communication channels and
cannot implies cryptography [18].

Protection against distance fraud and even mafia fraud [4].

2.3 Our Contribution

Only isolation and distance bounding protocols are sure and precise enough
to defeat an intruder who is in front of the verifier (i.e. mafia and terrorist
frauds). Isolation is not user-friendly enough and cannot ensure mutual
authentication. Thus this paper focuses on an extension of the distance
bounding protocol proposed by Chaum in [4]. In our solution, we keep the
same constraints: one bit exchanges and no cryptography during the rapid
bit exchange.

We introduce distance-bounding proof of knowledge protocols that are ad-
equate combinations of distance-bounding protocols [4], bit commitment
schemes and zero-knowledge proof of knowledge protocols [12]. Our con-
struction allows preventing the three frauds described above.
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3 The General Scheme

In this section, we present a general scheme that is considered as the basis
for distance-bounding proof of knowledge protocols. The described scheme
will be denoted DBPK.

3.1 Description

The DBPK protocol is depicted in Table 1. This scheme relies on a set
of global settings that have to be performed before the execution of any
interaction between the prover and the verifier. Besides the cryptosystem’s
public parameters, these global settings allow the prover to have a valuable
private key and a certificate on the corresponding public key. That is, before
any interaction with the verifier, the prover holds a private key x which
importance is so high that the prover should not reveal it to any other
party. In addition, the prover holds a certificate (generated by a globally
trusted authority) on its public key y = Γ(x).

The first stage of the DBPK protocol is called the Bit Commitment stage.
During this stage the prover first picks a random key k ∈R {0, 1}∗ and uses
it to encrypt its private key x according to a publicly known symmetric
key encryption method E : {0, 1}∗ → {0, 1}∗. This leads to e = Ek(x) ∈
{0, 1}∗. Note that as in every encryption scheme, the knowledge and only
the knowledge of both e and k allows to compute the private key x = Dk(e).
Once the encryption performed, the prover commits to each bit of both k
and e according to a secure bit commitment scheme commit. For each bit
k[i] (resp. e[i]), a string vi (resp. v′

i) is randomly chosen by the prover to
construct the commitment blob c(k,i) (resp. c(e,i)).

Once the Bit Commitments stage is completed, the actual distance-bounding
interactions are executed during the Distance Bounding stage. Basically, m
interactions are performed between the prover and the verifier. In the ith

interaction, the prover releases either k[i] or e[i] depending on whether the
challenge bit is equal to 0 or to 1. Note that k[i] (resp. e[i]) denotes the ith

bit in the binary representation of k (resp. e) where k[0] (resp. e[0]) is the
least significant bit of k (resp. e).

After the execution of the m challenge-response bit exchanges, the verifier
asks the prover to open the commitments on the released bits of k and e.
The Commitment Opening stage consists on sending the string vi if k[i] has
been released and v′[i] otherwise. Note that only some of the bits of k and
e are released to the verifier. This should not allow the verifier or any other
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P V
Prover Verifier

private key x
public key y = Γ(x)

Bit Commitments
secret key k ∈R K where K ⊂ {0, 1}∗
m = dlog2(|K|)e , M = {0, . . . , m− 1}

e = Ek(x) ∈ {0, 1}∗
for all i ∈M vi, v

′
i ∈R {0, 1}∗

for all i ∈M c(k,i) = commit(k[i], vi)
for all i ∈M c(e,i) = commit(e[i], v′i)

for all i ∈M c(k,i), c(e,i) -

Distance Bounding for all i = 0, 1, . . . , m− 1
ai ∈R {0, 1}

�

bi = k[i] if δ(ai) = 0
bi = e[i] if δ(ai) = 1

bi ∈ {0, 1}
-

Commitment Opening
for all i ∈M

vi (if δ(ai) = 0) v′i (if δ(ai) = 1)
-

c(k,i)
?
= commit(bi, vi) if δ(ai) = 0

c(e,i)
?
= commit(bi, v

′
i) if δ(ai) = 1

Proof of knowledge
{c(k,i), c(e,i)}0≤i≤m−1 _ z = Ω(x, v)

PK[(α, β) : z = Ω(α, β) ∧ y = Γ(α)]
� -

Table 1: A general scheme for DBPK[α : y = Γ(α)]
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party sniffing the interactions between the prover and the verifier to get any
significant information about the valuable private key x. In the case where
the verification of c(k,i) (resp. c(e,i)) fails, the verifier sends back an error
notification of the form error(k, i) (resp. error(e, i)).

The last step in the DBPK protocol is the Proof of Knowledge stage. Dur-
ing this stage, the prover convinces the verifier in a zero-knowledge inter-
action that he is the party who performed the three previously described
stages. That is, the prover proves that he has generated the different com-
mitments, that the generated commitments correspond to a unique private
key, and that this private key corresponds to the public key y that is used
by the verifier to authenticate the prover. Note that before the proof of
knowledge process can be performed, the verifier must compute z = Ω(x, v)
where v is known only by the prover. As z depends on and only on the
commitments on the bits of k and e, it may even be computed just after
the Bit Commitments stage. The proof of knowledge we use is denoted
PK[(α, β) : z = Ω(α, β) ∧ y = Γ(α)] where the Greek letters denote the
quantity the knowledge of which is being proved, while all other parameters
are known to the verifier.

To sum up, we point out, in the following, the major principles behind the
general scheme described above. We define by DBPK[α : y = Γ(α)] the
distance-bounding proof of knowledge of a secret x so that y = Γ(x). The
principle of the scheme can be sketched as follows:

(1) Distance bounding phase implies that someone knowing k′ and e′ is
close.

(2) Bit commitments on bits of k and e can be transformed into z that is
the result of a collision-free one-way function applied to the decryption
of e: z = Ω(Dk(e), v′).

(3) Opening bit commitments shows that k′ = k and e′ = e.

(4) Proof of knowledge shows that z is the result of a collision-free one-way
function applied to x: z = Ω(x, v)

And thus:

(4),(2): Because it is not possible to have the same result z when the
collision-free one-way function is applied to two different values, x = Dk(e).

(4),(2),(3): x = Dk(e) = Dk′(e′).

(4),(2),(3),(1): Someone knowing x is close.
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3.2 Security Requirements

The first security requirement for distance-bounding proof of knowledge pro-
tocols is a correct computation of an upper-bound of the distance between
the prover and the verifier. This is expressed in the following.

Requirement 1. If the distance-bounding proof of knowledge protocol is
performed correctly, then the distance fraud has a negligible probability of
success.

In Requirement 1, the correct execution of the protocol means that each
party performs exactly and correctly the actions specified in the different
steps of the protocol. Concerning the DBPK protocol, the following propo-
sition holds.

Proposition 1. The DBPK protocol is conformant to requirement 1.

Proof. Assume that the prover P knows at what times the verifier V will
send out bit challenges. In this case, he can convince V of being close by
by sending out the bit response bi at the correct time before he receives the
bit ai. The probability that P sends correct responses to V before receiving
the challenges is:

P1 =
m∏

i=1

(P [bi = k[i]|δ(ai) = 0] + P [bi = e[i]|δ(ai) = 1]) = 2−m

The second security requirement for distance-bounding proof of knowledge
protocols consists in preventing terrorist frauds. This is expressed in the
following.

Requirement 2. If the distance-bounding proof of knowledge protocol is
performed correctly, then the terrorist fraud has a negligible probability of
success.

Before analysing the DBPK protocol with respect to Requirement 2, we
introduce the following properties.

Property 1. Let Γ : {0, 1}∗ → {0, 1}∗ be the function such that y = Γ(x),
then the following holds:

• Given y, it is hard to find x such that y = Γ(x).
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• It is hard to find x 6= x′ such that Γ(x) = Γ(x′).

Property 2. Let Ω : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be the function such that
z = Ω(x, v), then the following holds:

• Knowing z and Ω, it is hard to find (x, v).

• It is hard to find (x, v) 6= (x′, v′) such that Ω(x, v) = Ω(x′, v′).

Property 3. Let E : {0, 1}m × {0, 1}m → {0, 1}m be the function such that
e = Ek(x). then the following holds:

• Knowing e and Ek, it is hard to find x without knowing k.

• Given e, k, x = Dk(e) is efficiently computable.

• Is is efficient to compute z = Ω(x, v) from the commitments on the
bits of k[i] and e[i].

Proposition 2. If Property 1, Property 2, and Property 3 are respected,
then the DBPK protocol is conformant to requirement 2.

Proof. A successful execution of the Proof of Knowledge stage proves that
the entity knowing the private key corresponding to the public key y have
performed the Bit Commitments stage. Assume that the latter has been
performed using k and e. Then, the probability for an intruder to perform
the Distance-Bounding stage successfully using (k′, e′) 6= (k, e) is: P2 =∏m

i=1(P [k[i] = k′[i]|δ(ai) = 0] + P [e[i] = c′[i]|δ(ai) = 1]) = 2−m. This shows
that without knowing (k, e) such that e = Ek(x), the probability of success
of a terrorist fraud is negligible.

The third requirement for distance-bounding proof of knowledge protocols
consists in preventing any significant information about the prover’s private
key to be deduced from the protocol’s transcripts. This requirement is
expressed in the following.

Requirement 3. If the DBPK protocol is performed correctly, then no
significant information about x can be found.

Property 4. Showing either k[i] or e[i] for all i ∈ {0, . . . ,m − 1} ensures
perfect secrecy of x.

Proposition 3. If Property 4 is respected, then the DBPK protocol is
conformant to requirement 3.

The fact that revealing bits of the ciphertext and bits of the key does not
reveal any information on x is mandatory to enable that the whole protocol
be zero-knowledge.
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4 Our Scheme

This section presents a distance-bounding proof of knowledge protocol that
consists of exactly the same building blocks of the DBPK protocol. The
described protocol will be denoted DBPK1.

The two first phases of the DBPK1 protocol are global settings. In the
Initialization stage, a trust authority (TA) provides the public parameters
of the system.

Initialization:
TA sets up the system’s global parameters

– TA chooses a large enough strong prime p, i.e. there exists a large
enough prime q such that p = 2q + 1

– TA chooses a generator g of Z∗
p

– TA chooses an element h ∈R Z∗
p

The randomly chosen element h will be used by the commitment algorithm.
The only requirement is that neither of the prover and the verifier knows
logg(h). This either can be achieved by letting the trusted authority generate
this element or by making the prover and the verifier jointly generate h. The
two alternatives rely on the intractability of the discrete logarithm problem.

In the Registration stage, a user chooses a private key and registers at the
trust authority so to get a certificate on the corresponding public key.

Registration:
The following steps are taken by P to get a certified public key corre-
sponding to a valuable private key

– P selects an odd secret x ∈R Zp−1 \ {q}, then computes y = gx.
The public key of P is y and his private key is x

– P registers his public key with TA so TA publishes a certificate
on this public key

Assuming that the global settings have been performed, the actual distance-
bounding proof of knowledge protocol can be performed by the prover P and
the verifier V . In the Bit Commitments stage, P chooses a randomization
factor u and splits the randomized private key into two secret parts k and
e. Then, P performs a secure commitment on each bit of k and e.
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Bit Commitments:
The following steps are performed

– P chooses u ∈R {0, 1, . . . , p− 2} and , then sends u to V

– P chooses k ∈R Zp−1 and let e = ux− k

– For all i ∈ {0, . . . ,m − 1} where m = dlog2(p)e, P chooses vk,i,
ve,i ∈R Zp−1, computes ck,i = gk[i] · hvk,i and ce,i = ge[i] · hve,i ,
then sends ck,i and ce,i to V

Once the verifier V receives all the commitment blobs corresponding to the
bits of k and e, the Distance-Bounding stage can start. Thus, a fast single
challenge bit and rapid response bit exchange is performed. A challenge
corresponds to a bit chosen randomly by V while a response corresponds
either to a bit of k or to a bit of e.

Distance-Bounding:
The following iterations are performed m times and P reveals half bits
of k and e. For all i ∈ {0, . . . ,m− 1},

– V sends a challenge bit ai ∈R {0, 1} to P

– P immediately sends the response bit bi = āik[i] + aie[i] to V

At the end of the Distance-Bounding stage, the verifier V is able to compute
an upper-bound on the distance to P . In order to be sure that P holds the
secrets k and e, the prover P is invited, during the Commitment Opening
stage, to open the commitments on the bits of k and e released during the
Distance-Bounding stage.

Commitment Opening:
The commitments of the released bits are opened. If all the checks
hold, all the bit commitments on k and e are accepted, otherwise they
are rejected

– For all i = 0, . . . ,m− 1, P sends āivk,i + aive,i to V

– For all i ∈ {0, . . . ,m− 1}, V performs the following verification:
āick,i + aice,i

?= gāik[i]+aie[i] · hāivk,i+aive,i

The Proof of Knowledge allows the verifier V to be sure that the sum of the
secrets k and e is equal to the valuable private key of the prover P . From
the bit commitments, V can compute:
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z =
m−1∏
i=0

(ck,i · ce,i)
2i

=

g
∑m−1

i=0 (2i·k[i]+2i·e[i]) · h
∑m−1

i=0 (2i·(vk,i+ve,i)) =
gk+e · hv = gu·x · hv mod p

Indeed,

k = k[0] + 2k[1] + 4k[2] + · · · =
m−1∑
i=0

(
2i · k[i]

)
mod p− 1

e =
m−1∑
i=0

(
2i · e[i]

)
mod p− 1 , and u · x = k + e mod p− 1

Note that V is able to compute z as soon as all the commitments on the
bits of k and e are received.

Proof of Knowledge:
Given z = gu·x · hv, the following proof of knowledge is performed by
P and V :
PK[(α, β) : z = guαhβ ∧ y = gα]. A possible execution of such proof
of knowledge is described in the following:

1. P −→ V : w1 = gur1 · hr2 and w2 = gr1 where r1, r2 ∈R Zp−1

2. V −→ P : c ∈R {0, 1}
3. P −→ V : s1 = r1 − cx and s2 = r2 − cv

4. Verification :
if c = 0: w1

?= gus1 · hs2 and w2
?= gs1

if c = 1: w1
?= z · gus1 · hs2 and w2

?= y · gs1

As long as the verifications succeed, the interactions above are repeated
t times.
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5 Security Analysis

In this section we discuss the relevant security properties of the DBPK1
protocol. First, requirements 1 and 2 are shortly analyzed and their proofs
rely mainly on those of the DBPK (see Section 3.2). Next, properties of the
encryption scheme that is used to hide the prover’s private key are studied.

5.1 Preventing Distance-Bounding and Terrorist Frauds

Proposition 4. The DBPK1 protocol is conformant to requirement 1.

Proof. The DBPK1 protocol is a implementation of the DBPK protocol
where the function δ corresponds to the identity, i.e. ∀i δ(ai) = ai. This
makes the proposition straightforward. (see Proposition 1)

The second security property of the DBPK1 protocol is expressed in the
following.

Proposition 5. The DBPK1 protocol is conformant to requirement 2.

Proof. The DBPK1 consisting of the same building blocks than those of
the DBPK protocol, then it is sufficient to prove that Property 1 and
Property 2 are respected in DBPK1. (see Proposition 2)

(1) The function Γ : x 7→ gx respects Property 1 thanks to the intractabil-
ity of the discrete logarithm problem.

(2) The function Ω : (x, v) 7→ gx · hv respects Property 2 thanks to the
intractability of the representation problem.

The function z = Ω(x, v) is implemented as z = gx · hv mod p that is a
representation of a value z with respect to a generator tuple (g, h). It can
be shown that it is not feasible to generate two representations of the same
value (see Appendix A).

5.2 Encryption of the Private Key

We now evaluate the security of the encryption scheme E that is used to
encrypt the secret x, i.e. e = Ek(x). First we study whether one-time pad
can be used and next we describe extensions of this basic scheme to fit the
requirements.
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Property 4 states that during the ith distance bounding phase, the prover has
to reveal the ith bit of the encryption of the secret x: e[i] where e = Ek(x);
or the ith bit of the key: k[i]. Of course revealing either e[i] or k[i] should
not reveal anything about x.

Property 3 implies that the proof of knowledge links the knowledge of k and
e to the knowledge of x. Because k and e cannot be revealed, this proof has
to be based on the commitments on each bit of k and e, i.e. c(k,i), c(e,i).

Proposition 6. One-time pad encryption respects Property 4

Proof. One-time pad assure perfect secrecy: e = Ek(x) = x⊕ k where k is a
m bit random string that is randomly chosen for each encryption.

PX|E(X = x | E = e) = PX(X = x) = 2−m for all x, e

Revealing either bit i of k or bit i of e is done by choosing a random m-bits
string: s ∈R {0, . . . , 2m − 1}

For all i ∈ {0, . . . ,m− 1}, r[i] =
{

k[i] if s[i]=0
e[i] if s[i]=1

r′[i] =
{

e[i] if s[i]=0
k[i] if s[i]=1

Bits r are revealed and bits r′ are kept secret. Like this, r = x⊕ r′ is a new
one-time pad and thus perfect secrecy of x is still ensured.

Unfortunately, exclusive-or does not suit modulo operations that seems
mandatory when dealing with string commitments and thus does not re-
spect Property 3. Indeed, x = e⊕k mod p 6= (e mod p)⊕ (k mod p). For
instance, 10⊕ 13 = 7 mod 11 but (10 mod 11)⊕ (13 mod 11) = 8. Thus,
another type of encryption is necessary.

Proposition 7. One-time pad like encryption based on group addition p−1
respects Property 3.

Proposition 8. One-time pad like encryption based on addition modulo 2m

respects Property 4.

Proof. Addition modulo can be used to implement perfect secrecy. For
instance, let x be a secret in Zn that is encrypted as e = x − k mod n
where k ∈R Zn. c ensures the perfect secrecy of x:

PX|E(X = x | E = e) = PX(X = x) =
1
n

for all x, e

When r, r′ are computed as previously and when n = 2m, perfect secrecy of
x is ensured when revealing r. In this specific case, e, k, r, r′ ∈ Zn.
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However, when n is not a power of two, perfect secrecy of x is no more
ensured when revealing r. In this case, e, k ∈ Zn and r, r′ ∈ {0, . . . , 2k − 1}.
For instance, choosing randomly bits of k = 0111b ∈ Z10 and c = 1011b ∈ Z12

can possibly result in r = 1111b /∈ Z12. Figure 3 shows an example of the
distribution of r for different choices of x.

r with x=k+c (mod 2 )
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Figure 3: Distribution of r when e = x− k mod p− 1, (p = 73, 2m = 128,
x = {1, 6, 51}).

Even when the key is randomly chosen before each encryption, a statistical
attack aiming at retrieving x is possible (no perfect secrecy) but it is expen-
sive. However, it is possible to get information on x (e.g. most significant
bit of x). A straightforward approach to make the statistical attack more
difficult is to increase the noise, i.e. define k and e in a larger set of values.
Unfortunately there is an important cost in terms of number of rapid bit
exchanges during the distance bounding.

Proposition 9. One-time pad like encryption based on addition modulo a
Fermat prime p respects Property 3 and Property 4.

Proof. A Fermat prime [15] p = 2m + 1 combines Propositions 7 and 8
and thus could solve our problem. Unfortunately there are less Fermat
primes than Mersenne primes (i.e. p = 2m − 1). Fermat primes can al-
ways be described as Fn = 22n

+ 1 and only five Fermat primes are known:
{F0, F1, F2, F3, F4}. It seems unlikely that any more will be discovered soon.
Anyway, F0 to F4 are too small to be used in the context of this paper and
the next Fk prime, does it exist, would be too large (i.e Fk >> 21024).

Encryption without Perfect Secrecy

Having not found an encryption scheme respecting Property 3 and Prop-
erty 4, we replace Property 4 by:
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Property 5. Showing either k[i] or e[i] for all i ∈ {0, . . . ,m− 1} discloses
minimal information on x.

Here we propose an approach that makes the statistical attack more difficult
without increasing the size of e and k. However, it still does not ensure
perfect secrecy.

The ciphertext e = Ek(x) = u · x− k mod p where u ∈R {0, . . . , p− 2} and
the secret key k ∈R Zp−1 are randomly chosen before each encryption of
the secret x. The parameter u is public but makes statistical analysis more
difficult.

In order to ensure that r reveals minimal information on x, it is necessary
that the order of subgroups created by different x be the same. In other
words, it is necessary to use a strong prime: p = 2q + 1 where p and q are
primes. It means that φ(p) = p− 1 = 2q and φ(φ(p)) = q − 1.

Efficient algorithms for finding strong primes exist. The chance of a random
integer p being prime is about 1/ln(p) and thus the probability that p be a
strong prime is about 1/(ln(p) · ln((p−1)/2)) ∼= 1/ln(p)2 when p is a m bits
value, the probability that p be a strong prime is about 1/(ln(2)2 ·m2). In
other words, finding a 1024 bits strong prime requires half a million primality
verifications.

r with ux=k+c (mod p-1) and p=73 (not a strong prime)
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Figure 4: Distribution of r when e = u ·x−k mod p and p is a strong prime
(p = 83, 2m = 128, x = {1, 6, 51}).

Using strong primes, the distribution of r does not reveal any information
on x (see Figure 4). In fact, the distribution only depends on p− 1 and 2m

when x is odd and different from q. In practice, it is only necessary to avoid
subgroups with very small cardinality (i.e. x 6= q).

Proposition 10. One-time pad like encryption based on addition modulo
p − 1 and multiplicative factor u respects Property 3 and Property 5 when
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e = Ek(x) = u · x − k mod p − 1 and p is a strong prime, i.e. p = 2q + 1
where q is prime.

Proof. The number of sample necessary to retrieve information on x from
r when e = x − k mod p − 1 is difficult to evaluate because it depends on
the effect of modulo operation and random selection of bits (see Figure 3).
However, we can show that at least two different r are necessary to get some
information on x.

And thus, when x is encrypted as e = u ·x− k mod p− 1, it is necessary to
collect at least two r for the same u. The birthday paradox shows that 2m/2

samples are necessary and thus the probability of disclosing information on
x is smaller than the probability of using twice the same key k:

Pinfo on x < 2−m/2 where m is the size of r, x, k

Defeating Intruders with Partial Knowledge

The security of the scheme relies on the fact that a prover that is able to
participate to the distance-bounding bits exchange has to know e and k and
thus can retrieve x. However a malicious prover P could provide all bits of
e and k but j random bits. For instance, ẽ = {e0, e1, . . . , ēi, . . . , em−1} and
k̃ = {k0, k1, . . . , k̄i′ , . . . , km−1} where two bits ei and ki′ have been changed.
Because the verifier selects randomly half bits during the distance bounding,
the probability of undetected use of ẽ, k̃ is:

Pundetected ẽ,k̃ = 2−j

and the probability of I finding x is:

PI gets x = (2 ·m)−j

For instance, with m = 1024 bits and j = 6, 32 tries are necessary to let
I impersonate P and the probability that I discovers x is 2−66. This is a
marginal attack but we propose that V returns an error message when a bit
is false in order to help a potential intruder to find out x. Thus, P avoids
to provide e and k or even ẽ and k̃ to another party.
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Conclusion and Further Work

In this paper, we addressed the problem of terrorist frauds in application
scenarios where cryptographic identification requires the physical proximity
of the prover. Our solution consists in distance-bounding proof of knowledge
protocols that extend Brands and Chaum’s distance-bounding protocols. We
first presented a general scheme that shows the main components of such
protocols. We then presented a possible implementation of such protocols
and analyzed its security properties. Even though we have not reached
perfect zero-knowledge, our solution remains secure in the statistical zero-
knowledge security model.

The general scheme presented in this paper (DBPK) could be used with any
public key scheme Γ if adequate commitment scheme commit, encryption E ,
and representation Ω exist. We proposed a solution relying on a public key
scheme based on the discrete log problem, bit commitment based on discrete
log, group addition one-time pad, and representation problem: DBPK1 =
DBPK[α : y = gα]. This scheme could directly be used with ElGamal’s and
Schnorr’s identification schemes that both rely on the discrete log problem.

The integration of distance bounding with Fiat-Shamir identification scheme
is not straightforward. The public key x is chosen in Zn where n = pq and
the public key is x2 mod n. It is necessary to define DBPK[α : y = α2].
And, using the commitment scheme presented in this paper, the following
proof of knowledge is required: PK[α, β : z = gα · hβ ∧ y = α2]. In other
words, g has to be a generator of a cyclic group of order n.

We are also studying whether such a scheme can be used in a privacy preserv-
ing way. For instance, it could be integrated in a group signature scheme.
For instance [8] could be used as follows:

DBPK[α | z̃ = g̃(aα)]
PK[β | z̃g̃ = g̃(βe)]

The verifier can thus verify that he is in front of a member of some group.
However the verifier does not get any information on the identity of this
group member. In this case, the encryption has to be done modulo n. A
next step will be the integration of distance bounding protocols in unlinkable
and/or pseudonymous credential schemes such as Idemix [7].

Even if the proof of knowledge is zero-knowledge, the whole scheme cannot
be done zero knowledge because the same k could appear twice (with prob-
ability 2−m/2) and thus V could get all bits of k and e and compute x. In
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other words, even with an encryption scheme ensuring perfect secrecy of x
and a zero knowledge proof of knowledge, only statistical zero knowledge can
be achieved. We are still working on other approaches based on probabilistic
encryption of x to ensure that the whole protocol be zero knowledge.

Terrorist fraud attacks can be forbidden by using Chaum’s distance bound-
ing protocol combined with a tamper-resistant hardware that is certified [6].
In this case, the verifier can check that k and e were generated by a trust-
worthy (i.e. certified by a TTP) hardware that will not disclose those secrets
to an intruder. Thus it is equivalent to our DBPK protocol. However, our
scheme is more general and is easier to deploy because it does not rely on
tamper-resistant hardware or device certification.
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A The Representation Problem

This section proves that it is not possible to generate two representation of
a value z with respect to a generator tuple (g, h), i.e. two pairs (a1, a2) and
(a′

1, a
′
2) so that ga1ha2 = ga′1ha′2 . Generator g and h are chosen randomly so

that the logarithm of h to the base g cannot be computed. In our scheme,
it means that g and h cannot be chosen by the prover. The remaining of
this section is a simplification of the proof that can be found in [5].

Proposition 11. The following statements are equivalent.

(1) There exists a polynomial-time algorithm A(1) which, on input a gen-
erator tuple (g, h), output a number z and two different representing
index tuple of z: A(1)(g, h) → z, (a1, a2), (a′

1, a
′
2) with z = ga1ha2 =

ga′1ha′2.

(2) There exists a polynomial-time algorithm A(2) which, on input a gen-
erator tuple (g, h), output a nontrivial representing index tuple of 1:
A(2)(g, h) → (a1, a2) with 1 = ga1ha2.

(3) There exists a polynomial-time algorithm A(3) which solves the Dis-
crete Log problem.

Proof. We only need to show probabilistic polynomial-time transformations
of 3) to each of 1) and 2), since we can come up easily with feasible algorithms
A(1) and A(2) if we have A(3).
(1) ⇒ (2) Algorithm A(2) proceeds as follows:

1. Feed the generator tuple (g, h) into A(1) and receive z and two repre-
senting index tuples (a1, a2) and (a′

1, a
′
2) of z.

2. Output (a1 − a′
1, a2 − a′

2). Like this, ga1−a′1 · ha2−a′2 = z/z = 1.

(2) ⇒ (3) Algorithm A(3) proceeds as follows:

1. Generate a 2-tuple (u1, u2) at random, and compute the generator-
tuple (g, h) according to g = au1 , h = bu2 .

2. Receive an index-tuple (a1, a2) from A(2).

3. Compute and output logb(a): ga1 · ha2 = 1 = b0 or au1a1 · bu2a2 = b0

and thus logb(a)u1a1 + u2a2 = 0

logb(a) = −u2a2

u1a1
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