Low complexity semi-blind channel estimation with a Pseudo Random Postfix OFDM modulator

Markus Muck*, Marc de Courville*, Merouane Debbah†, Pierre Duhamel‡

*Motorola Labs, Espace Technologique, 91193 Gif-sur-Yvette, France, Email: Markus.Muck@crm.mot.com
†Institut Eurecom, Sophia Antipolis, France
‡CNRS/LSS Supelec, Plateau de moulon, 91192 Gif-sur-Yvette, France

Abstract—This contribution details a new OFDM modulator based on the use of a Pseudo Random Postfix (PRP-OFDM) and low complexity equalization architectures. The main advantage of this new modulation scheme is the ability to estimate and track the channel variations blindly using order one statistics of the received signal. This scheme is thus very well suited in presence of large Doppler spreads where channel tracking becomes essential. Moreover, the proposal of various equalization structures derived from the zero padded transmission schemes, allows implementations ranging from low-complexity/medium performance to increased-complexity/high performance.

I. INTRODUCTION

Nowadays, Orthogonal Frequency Division Multiplexing (OFDM) seems the preferred modulation scheme for modern broadband communication systems. Indeed, the OFDM inherent robustness to multi-path propagation and its appealing low complexity equalization receiver makes it suitable either for high speed modems over twisted pair (digital subscriber lines xDSL), terrestrial digital broadcasting (Digital Audio and Video Broadcasting: DAB, DVB) and 5GHz Wireless Local Area Networks (WLAN: IEEE802.11a and ETSI BRAN HIPERLAN/2) [2]–[5].

All these systems are based on a traditional Cyclic Prefix OFDM (CP-OFDM) modulation scheme. The role of the cyclic prefix is to turn the linear convolution into a set of parallel attenuations in the discrete frequency domain. Recent contributions have proposed an alternative: replacing this time domain redundancy by null samples leads to the so called Zero Padded OFDM (ZP-OFDM) [6]–[9]. This solution relying on a larger FFT demodulator, has the merit to guarantee symbol recovery irrespective of channel null locations in absence of noise when the channel is known (coherent modulations are assumed).

Channel coefficients estimation is usually performed using known training sequences periodically transmitted (e.g. at the start of each frame), implicitly assuming that the channel does not vary between two training sequences. Thus in order to enhance the mobility of wireless systems and cope with the Doppler effects, reference sequences have to be repeated more often resulting in a significant loss of useful bitrate. An alternative is to track the channel variations by refining the channel coefficients blindly using the training sequences as initializations for the estimator.

Semi-blind equalization algorithms based on second order statistics have already been proposed for the CP-OFDM and ZP-OFDM modulators [8]–[10].

In this contribution we introduce a new OFDM modulator that capitalizes on the advantages of ZP-OFDM. It is proposed to replace the null samples inserted between all OFDM modulated blocks by a known vector weighted by a pseudo random scalar sequence: the Pseudo Random Postfix OFDM (PRP-OFDM). This way, unlike for the former OFDM modulators, the receiver can exploit an additional information: the prior knowledge of a part of the transmitted block [11]. This paper explains how to build on this knowledge and perform an extremely low complexity order one semi-blind channel estimation and tracking. Moreover, several PRP-OFDM equalization architectures derived from the zero padded transmission scheme, are proposed allowing implementations ranging from low-complexity/medium performance to increased-complexity/high performance.

Note that a similar idea has been proposed in the single carrier context in [12], but the exploitation of the training data is not detailed and no efficient equalization scheme is presented. Moreover spectrum wise, it is important to avoid the insertion of the same training sequence at each block otherwise this generates peaks in the transmitted signal spectrum: the pseudo-random sequence weighting used in this contribution deals efficiently with this issue.

This paper is organized as follows. Section II introduces the notations and presents the new PRP-OFDM modulator. Then a blind channel estimation method is presented section III exploiting only the portion of the received vector corresponding to the postfix location. Section IV details the receiver including several equalization schemes (Zero Forcing, ZF and Minimum Mean Square Error, MMSE) and decoding strategies in presence of bit interleaved convolutional coded modulation. Some considerations for designing a suitable postfix are discussed section V from a spectral and envelope point of view. Finally, simulation results in the context of 5GHz IEEE802.11a and ETSI BRAN HIPERLAN/2 illustrate the behavior of the proposed scheme compared to the standardized CP-OFDM systems in section VI.

†This work is supported by the European Commission in the scope of the IST BroadWay project IST-2001-32686 [1].
II. NOTATIONS AND PRP-OFDM MODULATOR

Figure 1 depicts the baseband discrete-time block equivalent model of a N-carrier PRP-OFDM system. The 1st N × 1 input digital vector \(\hat{s}_N(i) \) is first modulated by the IFFT matrix \(F_N^H = \frac{1}{\sqrt{N}} \left[W_N^{ij} \right]^{H}, 0 \leq i < N, 0 \leq j < N \) and \(W_N = e^{-j \pi \frac{N}{2}} \). Then, a deterministic postfix vector \(c_P = (c_0, \ldots, c_{D-1})^T \) weighted by a pseudo random value \(\alpha(i) \in \mathbb{C} \) is appended to the IFFT outputs \(s_N(i) \). With \(P = N + D \), the corresponding \(P \times 1 \) transmitted vector is \(s_P(i) = F_N^H \hat{s}_N(i) + \alpha(i)c_P \), where

\[
F_N^H = \left[\begin{array}{ccc}
I_N & 0_{D,N} & F_N^H \end{array} \right] \quad \text{and} \quad c_P = (0_1,N c_D^T)^T
\]

The samples of \(s_P(i) \) are then sent sequentially through the channel modeled here as an L-order FIR \(H(z) = \sum_{n=0}^{L-1} h_n z^{-n} \) of impulse response \((h_0, \ldots, h_{L-1}) \). The OFDM system is designed such that the postfix duration exceeds the channel memory \(L < N \).

Let \(H_{ISI}(P) \) and \(H_{IBI}(P) \) be respectively the Toeplitz inferior and superior triangular matrices of first column: \([h_0, h_1, \ldots, h_{L-1}, 0, 0, \ldots, 0]^T \) and first row \([0, 0, \ldots, 0, h_{L-1}, \ldots, h_0] \). As already explained in [13], the channel convolution can be modeled by \(r_P(i) = H_{ISI} s_P(i) + H_{IBI} s_P(i-1) + n_P(i) \). \(H_{ISI}(P) \) and \(H_{IBI}(P) \) represent respectively the intra and inter block interference. Since \(s_P(i) = F_N^H \hat{s}_N(i) + \alpha(i)c_P \), we have as illustrated by figure 2:

\[
r_P(i) = (H_{ISI} + \beta_z H_{IBI}) s_P(i) + n_P(i)
\]

where \(\beta_z = \frac{\alpha(i-1)}{\alpha(i)} \) and \(n_P(i) \) is the \(i \)th AWGN vector of variance \(\sigma_n^2 \). Note that \(H_{\beta_z} = (H_{ISI} + \beta_z H_{IBI}) \) is pseudo circulant: i.e. a circular matrix whose \((D-1) \times (D-1)\) upper triangular part is weighted by \(\beta_z \).

The expression of the received block is thus:

\[
r_P(i) = H_{\beta_z} \left(F^H N \hat{s}_N(i) + \alpha(i)c_P \right) + n_P(i)
\]

Please note that equation (1) is quite generic and captures also the CP and ZP modulation schemes. Indeed ZP-OFDM corresponds to \(\alpha(i) = 0 \) and CP-OFDM is achieved for \(\alpha(i) = 0, \beta_z = 1 \) and \(F_N^H \) is replaced by \(F_{CP}^H \), where

\[
F_{CP}^H = \left[\begin{array}{ccc}
0_{D,N-D} & 1_N & F_N^H \end{array} \right]_{p \times N}
\]

III. AN INHERENT ORDER ONE SEMI-BLIND CHANNEL ESTIMATION

As mentioned in the introduction, PRP-OFDM allows an order one and low-complexity channel estimation. For explanation sake let assume that the Channel Impulse Response (CIR) is static.

Define \(H_{CIR}(D) = H_{ISI}(D) + H_{IBI}(D) \) as the \(D \times D \) circular channel matrix of first row \(row_0(H_D) = [h_0, 0, \ldots, 0, h_{L-1}, \ldots, h_1] \). Note that \(H_{ISI}(D) \) and \(H_{IBI}(D) \) contain respectively the lower and upper triangular parts of \(H_{CIR}(D) \).

Denoting by \(s_0(i) = [s_0(i), \ldots, s_{N-1}(i)]^T \), splitting this vector in 2 parts: \(s_0(i) = [s_0(i), \ldots, s_{D-1}(i)]^T, s_1(i) = [s_{N-D}(i), \ldots, s_{N-1}(i)]^T \), and performing the same operations for the noise vector: \(n_P(i) = [n_0(i), \ldots, n_{D-1}(i)]^T, n_{D,i} = [n_0(i), \ldots, n_{D-1}(i)]^T \), the received vector \(r_P(i) \) can be expressed as:

\[
r_P(i) = \left(\begin{array}{c}
H_{ISI}(D) s_0(i) + \alpha(i-1) H_{IBI}(D) c_D + n_{D,0} \\
H_{IBI}(D) s_1(i) + \alpha(i) H_{ISI}(D) c_D + n_{D,1} \\
\vdots
\end{array} \right)
\]

As usual the transmitted time domain signal \(s_N(i) \) is zero-mean. Thus the first \(D \) samples \(r_{P,0}(i) \) of \(r_P(i) \) and its last \(D \) samples \(r_{P,1}(i) \) can be exploited very easily to find back
the channel matrices relying on the deterministic nature of the postfix as follows:
\[
\hat{h}_{c,0} = E \left[\frac{r_{P0}(i)}{\alpha(i-1)} \right] = H_{B1}(D)c_D, \quad (2)
\]
\[
\hat{h}_{c,1} = E \left[\frac{r_{P1}(i)}{\alpha(i)} \right] = H_{S1}(D)c_D. \quad (3)
\]

Since \(H_{S1}(D) + H_{B1}(D) = H_{CIRC}(D) \) is circular and diagonalizable in the frequency domain combining equations (2) and (3) and using the commutativity of the convolution yields:
\[
\hat{h} = \hat{h}_{c,1} + \hat{h}_{c,0} = H_{CIRC}(D)c_D
\]
\[
= C_D\hat{h}_D = F_D^H C_D F_D \hat{h}_D,
\]
where \(C_D \) is a \(D \times D \) circulant matrix with first row \(row_0(C_D) = [c_0, c_{D-1}, c_{D-2}, \ldots, c_1] \) and \(\hat{C}_D = \text{diag}\{F_Dc_D\}. \) Thus, an estimate of the CIR \(R_D \) can be retrieved that way:
\[
\hat{h}_D = C_D^{-1}\hat{h} = F_D^{H} C_D^{-1} F_D \hat{h}_c.
\]

Note that \(c_D \) is designed such that \(\hat{C}_D \) is full rank. We have detailed in this section a very simple method

Once the channel is known, in order to retrieve the data two steps are usually performed: i) equalization of the received

Several equalization strategies can be proposed for the received vector \(r_F(i) \):

- one can first reduce (1) to the ZP-OFDM case by simple subtraction of the known postfix convolved by the pseudo-circulant channel matrix: \(\hat{r}_{ZF}^F(i) = r_F(i) - \alpha(i)\hat{H}_{P}c_F, \) with \(\hat{H}_P \) being derived from the current channel estimate. In that case all known methods related to the ZP-OFDM can be applied. Among others let quote the corresponding ZF and MMSE equalizers provided in [8], [9]:
\[
G_{ZF}^{PRP} = F_N [I_0N,D] H_{B1}^{-1}
\]
\[
= F_N [I_0N,D] V_F^H(i) D_i^{-1} V_F(i),
\]
\[
G_{MMSE}^{PRP} = F_N [I_0N,D] R_{sp,sp} H_{B1}^H Q^{-1}
\]
\[
= F_N [I_0N,D] R_{sp,sp} V_F^H(i) D_i^H Q^{-1} V_F(i),
\]

where \(Q = \sigma_n^2 I + H_{B1}^H R_{sp,sp} \) and \(R_{sp,sp} = E(s_F(i) s_F^H(i)) \).

For allowing an easier implementation, the following assumption is usually made:
\[
G_{MMSE}^{PRP}(i) \approx F_N [I_0N,D] V_F^H(i) D_i^H (\sigma_n^2 I + D_i^H)^{-1} V_F(i)
\]

This amounts to approximate \(E(s_F(i) s_F^H(i)) \) by \(\sigma_n^2 I \) and yields to nearly identical results up to 10^-3 BER targeted for usual wireless systems.

Further improvements of the BER performance can be achieved by using unbiased MMSE equalizers as proposed by [15], [16]. As a conclusion to this section, it shall be pointed out that PRP-OFDM leads to a very simple modulation scheme on the transmitter side. In the receiver, a variety of demodulation and equalization approaches are possible, each characterized by different complexity/performance trade-offs.

B. Viterbi metric derivation for PRP-OFDM

In this subsection we assume that a bit interleaved convolutionally coded modulation is used at the emitter and explain how to derive the Viterbi metrics. For example for IEEE 802.11a a rate \(R = \frac{1}{2} \) constraint length \(K = 7 \) Convolutional Code (CC) (o171/o133) is applied before bit interleaving
over a single OFDM block followed by QAM mapping. Note
that the approach detailed below is quite general and can be
extended to other coding schemes.

According to (1), after equalization by any of the \(N \times P\)
matrices \(G\) presented above, the vector to be decoded can
generally be expressed by:

\[
\hat{s} = G_{p}(i) = G_{d}s_{N}(i) + \hat{n}_{N}
\]

where \(G_{d}\) is a diagonal weighting matrix and \(\hat{n}_{N}\) the total noise
plus interference contribution which is assumed here Gaussian
and zero-mean.

For maximum-likelihood decoding, usually a log-likelihood
approach is chosen based on a multivariate Gaussian law
where \(\hat{d}\) contains an estimation of the original uncoded
information bits, \(\hat{d}(i)\) gathers the corresponding bits after
encoding, puncturing, etc. within the \(i\)th OFDM symbol. \(s\) is
the number of OFDM symbols in the sequence to be decoded,
\(m_{N}(\cdot)\) is an operator representing the mapping of encoded
information bits onto the \(N\) constellations, one for each carrier
of the OFDM symbol.

Thus all what is needed for performing the decoding is an estimation of the noise covariance matrix \(R_{\hat{n},\hat{n}}\) which requires the following derivations:

\[
\hat{s} = G_{p}(i) = G H_{p} \left(\frac{F_{N}^{H}}{0_{D,N}} \right) = G_{d}s_{N}(i) + \hat{n}_{N}
\]

where \(G_{d}\) is a \(N \times N\) diagonal matrix and \(G_{f}\) a \(N \times N\) full
matrix with the main diagonal being zero such that:

\[
G_{d} + G_{f} = G H_{p} \left(\frac{F_{N}^{H}}{0_{D,N}} \right) = G H_{p} \left[\frac{I_{N}}{0_{D,N}} \right] = G H_{p}
\]

\(G_{p}\) is a \(N \times D\) matrix containing the last \(D\) columns of the matrix \(G H_{p}\) and \(G_{f}s_{N}(i)\) represents the inter-symbol interference. Thus, the total noise plus interference vector is

\[
\hat{n}_{N} = G_{f}s_{N}(i) + G_{n}(i) + \alpha(i)G_{p}c_{D} + G_{n}(i),
\]

where \(G_{d}\) is a diagonal matrix containing the last \(D\) columns of the matrix \(G H_{p}\) and \(G_{f}s_{N}(i)\) represents the inter-symbol interference. Thus, the total noise plus interference vector is

\[
R_{\hat{n},\hat{n}} = \sigma_{n}^{2}G_{f}G_{f}^{H} + \sigma_{n}^{2}G_{p}G_{p}^{H} + \sigma_{n}^{2}G_{p}c_{D}G_{p}^{H}G_{p}
\]

The trouble is that the overall noise covariance is not
diagonal which yields to a very high complexity decoding
scheme if no approximations are applied. One way to achieve a reasonable decoding complexity is to approximate \(R_{\hat{n},\hat{n}}\) by a matrix only containing its main diagonal elements. Then, standard OFDM VITERBI decoding is applicable with the modified proposed metrics.

V. CONSIDERATIONS FOR A PROPER DESIGN OF THE
POSTFIX

This sections provides recommendations on the design the
PRP-OFDM postfix and the choice of the pseudo random
weighting sequence.

First it is desirable to provide a flat spectrum without
rays. In order to analyze the spectral properties of the PRP-
OFDM signal since the signal is obviously not stationary but
cyclostationary with periodicity \(P\) (duration of the OFDM
block) [18], the order 0 cyclostream of the transmitted time
domain sequence \(s(k), k \in \mathbb{N}\) has to be calculated:

\[
S_{s,s}(z) = \sum_{k \in \mathbb{Z}} z^{-k} \sum_{l=0}^{P-1} R_{s,s}(l,k),
\]

with \(R_{s,s}(l,k) = E[s_{l+k+1}s_{l}]\). Hereby, \(R_{s,s}(l,k)\) is given for the
symbol \(s(k = 0 \ldots P - 1)\) as

\[
R_{s,s}(l,k) = \begin{cases} E[s_{l+k+1}s_{l}] & \text{for } k + l \geq 0 \text{ and } k + l < P \\ E[\alpha(i) \alpha(i)] & \text{for } k + l \geq mP \text{ and } k + l < mP + D, d, m \in \mathbb{Z}/\{0\} \\ 0 & \text{otherwise.} \end{cases}
\]

with \(E_{\alpha} = E[\alpha(\lfloor \frac{z}{P} \rfloor)]\). Now it is clear that it is
desirable to choose \(\alpha(i), i \in \mathbb{Z}\) such that \(E_{\alpha} = 0\) in order to
clear all influence of the deterministic postfix in the second
order statistics of the transmitted signal. This is achievable by
choosing \(\alpha(i)\) as a pseudo-random value.

In order to specify the content of \(D\) samples composing the
postfix we can consider the following criteria:

i) minimize the time domain peak-to-average-power ratio
(PAPR);

ii) minimize out-of-band radiations, i.e. concentrate signal
power on useful carriers and

iii) maximize spectral flatness over useful carriers since the
channel is not known at the transmitter (do not privilege
certain carriers).

The resulting postfix is obtained through a multi-dimensional
optimization involving a complex cost function. For concision
sake, the complete procedure is not detailed in this paper. Note
that if the PAPR criterion is not an issue, the solution is given
by the Kaiser-window [19].

VI. SIMULATION RESULTS AND CONCLUSION

In order to illustrate the performances of our approach, simulations have been performed in the IEEE802.11a [2] or HIPERLAN/2 [3] WLAN context: a \(N = 64\) carrier 20MHz
bandwidth broadband wireless system operating in the 5.2GHz
band using a 16 sample prefix or postfix. A rate \(R = \frac{1}{2}\),
constraint length \(K = 7\) convolutional Code (CC) (o171/o133)
is used before bit interleaving followed by QPSK mapping.

Monte carlo simulations are run and averaged over 2500
realizations of a normalized BRANA [20] frequency selective
channel without Doppler in order to obtain BER curves.

Fig.3 presents results where the CP-OFDM modulator
has been replaced by a PRP-OFDM modulator. The curves
compare the classical ZF CP-OFDM transceiver (standard
IEEE802.11a) and PRP-OFDM with the ZF, ZF-OLA (low complexity decoding) and MMSE equalizers over the $P = N + D$ carriers. Each frame processed contains 2 known training symbols, followed by 72 OFDM data symbols.

For the PRP-OFDM, after initial acquisition, the channel estimate is then refined by a MMSE based semi-blind procedure using an averaging window of 72 and 20 OFDM symbols. In the case of MMSE equalization, semi-blind refinement brings respectively a 1.5 dB and 0 dB gain for a BER of 10^{-3} over the reference CP-OFDM curve still 0.75 dB (averaging over 72 OFDM symbols) and 2 dB (averaging over 20 OFDM symbols) from the optimum performance reached with a perfect CIR knowledge. This gap can further be reduced by increasing the averaging window. ZF equalization performs poorly due to the occasional amplification of noise on certain carriers that is then spread back over all the carriers when changing the resolution of the frequency grid from $P = 80$ carriers back to $N = 64$. The ZF-OLA approach, however, avoids the noise correlation and leads to a acceptable performances: An averaging window of 72 OFDM symbols leads to nearly IEEE802.11a like performances which are achieved at a considerably reduced complexity compared to the MMSE approach. It hence is a suitable trade-off for low-cost hardware implementation.

Note that the merit of PRP-OFDM is not mainly to gain in SNR, but rather the ability to maintain the BER performance of the system quasi-constant in the presence of Doppler by postfix-based channel estimation.

In this contribution a new OFDM modulation has been presented based on a pseudo random postfix: PRP-OFDM, using known samples instead of random data. This multicarrier equalization approaches have been proposed with the same arithmetical complexity efficient Viterbi decoding metrics have also been detailed.

REFERENCES

