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ABSTRACT

For a transmitter that has a perfect knowledge of the MIMO chan-
nel, the maximum achievable capacity corresponds to the water-
filling solution. In practice, the available knowledge may only be
partial due to the time selectivity of the channel, and delay or ab-
sence of the feedback from the receiver. However, exploiting the
partial knowledge leads to a significant improvement when com-
pared to the capacity without any channel knowledge. In this pa-
per we analyze the MIMO capacity with various types of partial
knowledge of the channel under practical frequency flat channel
models.

1. INTRODUCTION

The introduction of Multi Input Multi Output (MIMO) systems
leads to a significant increase in communication capacity. To take
advantage of the use of MIMO systems, various space-time coding
schemes have been proposed. These techniques assume the ele-
ments of the channel matrix to be i.i.d. In practice this assumption
may not always be valid, since for physical reasons the channel
components may be correlated [1]. This correlation corresponds
to partial knowledge that can be fed back to the transmitter. When
the partial channel knowledge is present at the transmitter, it is ad-
vantageous to use this information to optimize the precoder at the
transmission [2, 3]. This precoder will basically be a cascade of
space-time coder and a decorrelating beamformer.

In this paper, we investigate the achievable capacity given the
available channel state information at the transmitter. We consider
two different cases: MIMO pathwise channel model, and MIMO
channel in the case of limited reciprocity. In the case of path-
wise model we assume that the transmitter has information about
slowly varying channel parameters, which may be used to calcu-
late the channel correlations. In the case of limited reciprocity the
transmitter knows the channel up to the amplitude and phase shifts
that arise when the roles of transmitter and receiver are reversed.
We demonstrate how the partial knowledge of the channel leads to
an improvement of the communication capacity when compared to
the capacity without any channel knowledge. However, the addi-
tional improvement when compared to knowing only the channel
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correlations is demonstrated to be small. We note that similar re-
sults (for different channel models) have also been published in
[2].

Throughout this article scalar quantities are denoted by regular
lowercase letters. Lower case bold type faces are used for vectors
and regular uppercase letters for matrices. Superscripts � and �
denote the transpose and conjugate transpose, respectively. We use
diag ����� to denote the diagonal matrix of the diagonal elements
of the matrix � and tr �	��� (det �	�
� ) for the trace (determinant) of
the matrix � .

2. CHANNEL MODELS AND ASSUMPTIONS

We consider a MIMO communication system with � receive and�
transmit antennas. The received ���� signal vector is given

by � ����������� (1)

where � is an �� �
random channel matrix, � is an

� ��
transmitted signal vector and � is an ���� noise vector, which is
assumed to be complex circular Gaussian with covariance matrix� �!	" . The channel covariance matrix at the transmitter is defined
as # ��$ � �&%'� � . We use normalization tr �	#(� � � .

The ergodic capacity for the channel (1) is given by [5]) ��$ %+*-,/.	021436587:9 �+;<��=>� %2?A@ � (2)

where ;B�DCEGFH is the SNR and I = is the covariance matrix of
the transmitted Gaussian signals maximizing the above expression,
under the power constraint tr � = �KJ�� .
2.1. Pathwise channel model

The pathwise model [4] for the channel matrix in the case of fre-
quency flat fading is

�L�NMO P/Q�R-S PUT�PWVYXP � (3)

where Z is the number of multipaths and
S P

, [ � � �]\^\^\_� Z denote
the complex multipath amplitudes. We assume that the amplitudesS P

are i.i.d. circular symmetric complex Gaussian distributed with
mean ` and variance � . The �aB� vectors

T�b
are the steering

vectors of the receive antenna array and the
�

-vectors

V<P
are the

steering vectors of the transmitting antenna array. Due to the i.i.d.
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assumption of the complex amplitudes, it is assumed that the mul-
tipath variances are included in the vectors

V b
. We also normalize���

T�b
��� � � ��� [ . Generally all

S P
,

T P
and

VYP
are random variables.

The complex amplitudes
S P

model the fast fading channel param-
eters and the steering vectors model the slowly fading channel pa-
rameters.

The channel matrix may also be given as� � ���	� � (4)

where � ��
 T R �^\]\^\ � T M � , � �
 V R �^\^\]\ V M �
X

and � � diag � S R �\^\]\ � S M � . If for every channel usage the receiver knows the re-
alization of the channel and the slowly fading parameters remain
constant over a sufficient time interval, the slowly fading parame-
ters may be obtained at the receiver [6], and fed back to the trans-
mitter. This information then corresponds to partial channel state
information at the transmitter. We investigate the ergodic capacity
of the channel given in (4) when � and � are fixed.

2.2. Channel models for limited reciprocity

Assume that the physical channel is reciprocal between uplink and
downlink, and the transmitter knows the uplink channel �

X
. The

overall channel in downlink including the cabling and electronic
devices for both ends is therefore� ��� R

� � � �
where �

R
and � � are diagonal matrices. These matrices reflect

the amplitude and phase shifts that arise when the roles of trans-
mitter and receiver are reversed in case of no or limited calibration.
We use three different models for the matrices �

R
and � �

Model 1 Only phase shifts: Diagonal elements contain i.i.d.
phases ( �

R � diag ���������� �^\^\^\_� �������� � and � � � diag ������� F � �\^\^\_� � ��� F � � , where �

bP
are i.i.d. and uniformly distributed

on 
 ` ����� � )
Model 2 Case of complete absence of calibration: Diagonal ele-

ments of  
R

and  � are i.i.d. zero mean complex circularly
symmetric Gaussian with variance 1.

Model 3 Case of imperfect calibration: The diagonal matrices
are given by �

R �"! �$#&% � R " � % R �(' R
and � � �

! �$#&% �� " � % � �(' � , where %
b

are small and �('
R

and�(' � are diagonal matrices with i.i.d. diagonal elements
that are zero mean complex circularly symmetric Gaussian
with variance 1.

3. RESULTS FOR PATHWISE CHANNEL MODEL

In the case of pathwise model, the ergodic capacity for a given
transmit covariance matrix I = is) ��$*) * ,/. 0 143]5 7 9 � ; �+�	� = � % � % � % ?A@ \ (5)

For arbitrary SNR , ;.- , the optimal = can be given by direct nu-
merical solution as described later in this paper. In what follows,
we first give approximations for low and high SNR scenarios [7].

3.1. Low SNR

: for ;+/0/ � , the optimal transmit covariance matrix maximizing
(5) is given by = ��121 % � (6)

where 1 is the eigenvector corresponding to the maximum eigen-
value of the channel covariance matrix# � � % � �43+563 % \ (7)

The optimal covariance matrix thus depends only on the channel
covariance matrix at the transmitter.

3.2. High SNR

: for ;8707 � , giving a general solution is not possible, because
the optimal covariance matrix = depends on the dimensions � � �
and Z , more specifically on the minimum dimension. The solution
for two different possibilities for the minimum dimension is:

1. When ZBJ:9<;�= � � � � � , the solution is given by= � �Z 3>3 % � (8)

where 3 is the matrix of the eigenvectors of # correspond-
ing to the nonzero eigenvalues.

2. If
� J:9<;�= � � � Z2� , the solution is given by= � �� " (9)

3.3. Waterfilling solution for the channel covariance matrix

Since ,/. 021<3]5 is a concave on the set of positive definite matrices,
the ergodic capacity for any transmit covariance matrix = may be
upper bounded by) ��$?) * ,/. 021<3]587:9 � ; �@�	� = � % � % � % ?A@J ,/. 0 143]5 7 9 �+;4= � % $?) ��� % � % ������� ?� ,/. 0 143]5 7 9 �+;4= � % � ? \
The optimal = maximizing this upper bound corresponds to the
waterfilling solution applied to ; # [5]. It can be shown that the
waterfilling solution for ;A/0/ � and ;B707 � matches the solu-
tions given in equations (6),(8) and (9).

3.4. Optimal solution

As mentioned above, ,:.	021<3]5 is concave on the set of positive def-
inite matrices. The set of positive semidefinite matrices with trace
equal to 1 is a convex set. Therefore, the optimum transmit co-
variance matrix may be found by using numerical methods. In
practice, the object function has to be formed by averaging over
sufficient number of Monte Carlo realizations. Note that the av-
eraging preserves the concavity of the objective function. The ap-
plied method is based on projected gradient descent algorithm [8].



4. RESULTS FOR CHANNEL MODELS WITH LIMITED
RECIPROCITY

In the case of limited reciprocity, the ergodic capacity for transmit
covariance matrix I = is) � $ * ,:.	021<3]5 7 9 �+; � R

� � � =	� %� � % � % R ?A@ � (10)

where the expectation is calculated with respect to �
R

and � � .
We first show that in the case of Model 1 or Model 2 (only

phases or Gaussian zero mean diagonal entries), the optimal trans-
mit covariance matrix has to be diagonal: = � � � . Let � �
diag ��� ��� � � � ��� F � \^\^\_� � ��� � � with �

b
i.i.d. and uniformly distributed

on 
 ` ����� - . Since for Models 1 and 2 the distribution of � � is the
same same as the distribution of � � � , the ergodic capacity may
also be written as$ � $��

� � � F ,:.	021<3]5 7 " ��; � R
� � � � = � % � %� � % � % R ? \

Since ,/.	0214365 is concave,$ � $ �
� � � F ,/.	0214365 7 " �+; � R

� � � � = � % � %� � % � % R ?J $��
� � � F ,/.	021436587 " � ; � R

� � � $ � ��� = � % � � %� � % � % R ?��$��
� � � F ,/.	0214365 7 " � ; � R

� � � diag � = � � %� � % � % R ? \
The equality is achieved if and only if = is a diagonal matrix, and
the result follows.

For the Model 1, the optimum solution may hence be derived
by numerically maximizing) � ,/. 0 143]5 7 9 �+; � � � � %2? � (11)

which is a concave on � � . We note that for given � � , (11) is an
upper bound of the ergodic capacity for Model 2.

For Model 2, the optimal solution can be found by using nu-
merical methods described in Section 3.4, but the optimization is
simpler because it has to be done only for diagonal matrices. For
Model 3, optimization is performed as described in Section 3.4.

In addition to the optimal solutions, sub-optimal solutions may
be derived by considering the upper bound on ergodic capacity as
was done in the case of pathwise model in Section 3.3. For Models
1 and 2, this leads to waterfilling on; diag ��� % � � �
when for Model 3, it leads to waterfilling on;�� , ��#&% � R - � % � � % � R diag � � % � �
	 \
For Model 2, a tighter upper bound is given by (11). Therefore, a
better solution may be given by applying the optimal solution for
Model 1. For Model 3, waterfilling on ; � % � can also be used.

4.1. Min-Max Problem

In the previous section we assume implicitly that the transmitter
can see different realizations of �

R
and � � (and therefore code

on different realizations), without this assumption considering the
ergodic capacity is meaningless. Below we assume that the trans-
mitter can see only one realization of the channel, and depending

on the way of encoding this leads to either a success or failure
of the transmission. In a deterministic point of view (one realiza-
tion, non-statistic problem), the transmitter should encode in such
a manner as to be sure that the receiver will decode with success,
this corresponds to an infinite failure cost. The problem then, can
be solved in a deterministic manner by maximizing the worst case
of the capacity over all possible values of �

R
, � � . The formula-

tion of the Min-Max Problem is then:

9��
��� ��������� C 9<;�=�
� � � F ,/. 0 143]5 7 9 �+; � R

� � � =	� %� � % � % R ? \
(12)

As � is a possible value for �
R
, � � in Models 2 and 3, it is there-

fore easy to see that the minimum capacity is zero for all values of= , and the Min-Max Problem formulation is not useful for Models
2 and 3. Below let’s focus on the case of Model 1 (diagonals of
phases).

We will derive Upper and Lower Bounds on (12) ( Z�� J
, � � - J���� ), and shows that we obtain equality between the UB
and LB (and therefore with (12) ), which leads to the optimality of
the LB (equivalently UB) solution.
The UB is obtained by:

, � � - � 9��
��� ��������� C 9<;�=� F ,/. 021<3]5 7 9 �+; � � � =	� %� � % ?
J 9��
��� ��������� C $ � F ,/.	0214365 7 9 � ; � � � =	� %� � % ?
J 9�� ��� �����"! b$#&%&' �)(�� C ,/. 0 143]5 7 9 �+; �+*Y[-,�.A� = ��� % ? � ���

the expectation $ � F , is done over the all possible values of � � ,
this give a larger capacity than 9<;�= � F ,/.	02143650/ 9 � ; � � � =	� %� � %�1
and hence shows the first inequality. The second inequality follows
from the concavity of ,/. 0 143]5 .
The LB is obtained by maximizing over the subset of diagonals
( = ��� � ):

, � ��-�2 9��
��� ����� �43 � C 9<;�=� F ,/.	021436587:9 ��; � � � � � � %� � % ?2 9��
��� ����� �43 � C ,:.	021<3]5 7 9 �+; � � � � % ? � Z5� \
It is easy to see that the expressions of the upper and the lower
bounds are the same. We conclude then that Z5� � ��� � , � ��- ,
and that the solution of (12) matches the solution of LB, hence it
is diagonal and corresponds to the same solution of the outage ca-
pacity optimization (11).

Models 2 and 3 can be adapted to the Min-Max Problem by
modifying the distributions of �

R
and � � in a way that leads to

a meaningful problem, for example by choosing a truncated Gaus-
sian distribution that takes into account the most likely values or
by choosing other bounded distributions.

5. SIMULATION RESULTS

Simulations were done in the case of limited reciprocity when us-
ing � � � �76 . The presented results are averaged over 100
realizations for � , for which every element was generated inde-
pendently from

)98 , ` � � - distribution. For every realization of �
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Figure 1: Results for limited reciprocity, � � � � 6 . From left to right: Model 1, Model 2 and Model 3.

the capacities were averaged over 1000 Monte-Carlo realizations
for �

R
and � � . For Model 3, we use % � R � % �� � ` \ � .

Simulation results are presented in Figure 1. It can be seen that
for Model 1 and Model 2, approximated waterfilling gives near op-
timal results. Therefore, waterfilling on the covariance matrix seen
from the transmitter is almost sufficient. The same observation can
be made also from the results for Model 3. Furthermore, the use
of the solution of the Min-Max Problem for Model 1, achieves the
optimal performance with Model 1 and very close to optimal for
Model 2.

6. CONCLUSION

We studied the ergodic capacity of two models for partial chan-
nel knowledge: the pathwise channel model with knowledge of
the slow varying parameters at the transmitter and the limited reci-
procity channel model. The simulation studies and the theoretical
results show that waterfilling on the channel covariance matrix at
the transmitter leads to almost optimal capacity. We also intro-
duced the Min-Max Problem for the limited reciprocity model, the
solution of this problem in case of phases ambiguities leads to the
same solution as the ergodic capacity maximization problem.
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