
Institut EURECOM
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)

Research Reporta No 77 — RR-03-077

One-Time Authorization for off-line Interactions

Laurent Bussard and Refik Molva

May 15, 2003

a Eurecoms research is partially supported by its industrial partners: Bouygues Tele-
com, Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Telecom,
Hitachi, ST Microelectronics, Swisscom, Texas Instruments, and Thales

One-Time Authorization for off-line Interactions

Laurent Bussard and Refik Molva

Institut Eurecom
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)
{bussard,molva}@eurecom.fr

Abstract. Ubiquitous application environments are characterized by
lack of on-line access to communication facilities and lack of a priori
trust among parties. In this paper we present an access control scheme
suited to these environments that allows a user to get authorized access
to a service based on the one-time credential concept. In this scheme, the
user and the service provider do not need to be part of the same orga-
nization or to trust one another. The verification of the user’s credential
can be performed without any communication with a third party sys-
tem, since the validity of each one-time credential can be locally checked
by each service provider. The one-time property of credentials further
prevents double use of an access right by the user subsequently attempt-
ing to access several service providers. The one-time property and the
resulting double use prevention rely on a penalty mechanism whereby
a cheating user looses some money he/she deposited as a guarantee of
his/her loyalty prior to a serie of service accesses. The one-time prop-
erty does not require a common trust structure encompassing clients and
servers in that it only has recourse to a universal enforcement mechanism
based on money.

1 Introduction

The ubiquitous computing paradigm is exploding in popularity as one of the
main applications taking advantage of advanced mobile and wireless communi-
cation technologies. Large scale deployment of pervasive computer applications
still heavily depends on the assurance of essential security properties for users
and service providers. Apart from security exposures due to the underlying mo-
bile and wireless communications, ubiquitous computing applications inherently
bring up some issues that are relevant to security:

1. Lack of infrastructure or off-line operation with respect to the infrastructure.
2. Lack of organization or self-organization, hence lack of a priori trust among

parties.

New solutions addressing these issues are required both for the protection of
users, including privacy measures, and for controlling the access to valuable

3

resources like commercial services. In this paper we tackle the latter of these
problems through the design of an access control scheme suited to ubiquitous
computing. The suggested access control scheme allows a user to get authorized
access to a service based on the one-time credential concept. As stated in require-
ment 2, using this access control scheme, the user and the service provider do
not need to be part of the same organization or to trust one another. In line with
requirement 1, the verification of the user’s credential can be performed without
any communication with a third party system, since the validity of each one-time
credential can be locally checked by each service provider. The one-time property
of credentials further prevents double use of an access right by the user subse-
quently attempting to access several service providers. The one-time property
and the resulting double use prevention rely on a penalty mechanism whereby
a cheating user looses some money he/she deposited as a guarantee of his/her
loyalty prior to a series of service accesses. The one-time property also meets
requirement 2 in that it only has recourse to a universal enforcement mechanism
based on money.

We first give a precise description of the application scenario with respect
to the application problem and analyze the limitations of existing access control
solutions in the light of this scenario. Our solution based on the one-time ca-
pability concept is then introduced first with a high level sketch of the idea. A
detailed description is given in terms of a protocol in three phases. The security
of the protocol, its complexity and possible extensions for privacy are discussed
in the last sections of the paper.

2 Ubiquitous Application Scenario

The application scenario envisioned in this paper consists of several pervasive
computing environments (PCE) as shown in Figure 1. Each PCE includes a set
of appliance servers (S1, S2 · · · , Sz) and an Access Control Authority (ACA). A
dynamic user population called visitors (V1, , V2, · · · , Vv) randomly visits each
PCE and requests services from appliance servers. The ACA of each PCE is in
charge of providing visitors rights to access servers. Due to the possibly large
coverage of each PCE and the limited transmission capabilities of pervasive
servers, no on-line connectivity between the servers and the ACA is required.
However, servers periodically exchange some data with the ACA. For instance,
once a day, vending machines provide data to the ACA via the support personnel.
Since servers cannot communicate with the ACA in a timely and interactive way,
we qualify the interactions between the ACA and the servers of a PCE as off-
line. Each user on the other hand can establish interactive exchanges with the
server he/she is in touch with. Another characteristic of this environment is the
lack of a priori trust between servers and visitors. Servers do not trust visitors
and possibly are not even able to identify them. Within a PCE, servers trust
the ACA with respect to the authorization scheme in that each access request
bearing a valid authorization proof delivered by the ACA is granted access by
the server to which it is destined. The policy according to which the ACA grants

4

access rights is out of the scope of this paper. Moreover the ACA is only in charge
of enforcing access control within a PCE and the fact that there is a single ACA
in each PCE does not necessarily imply that all servers of the PCE belong to
the same administrative domain. Furthermore, multiple servers might offer the
same type of service like printing, vending food and beverages, or opening doors.

Fig. 1. Ubiquitous Application Scenario

The access control in the ubiquitous application scenario can be illustrated
by an example as follows.

2.1 Example

A visitor arrives at the gate of a shopping mall (PCE). Once he/she is through
the registration he/she passes near a wireless sensor acting on behalf of the ACA.
The sensor loads the visitor’s personal device (e.g. cell-phone, PDA, or smart
card) with a set of rights based on the visitor’s attributes (e.g. role, identity, or
location) and the services the visitor has subscribed to during the registration.
Using the rights he/she thus obtained, the visitor can access various services like
vending machines. The ACA is operated by the shopping mall but the services
to which access is granted by means of the authorization scheme can be managed
by independent service providers. The main security goal in this context is to
prevent the visitor from unauthorized access to services even when the services
are provided by off-line devices. For instance, if the visitor is only authorized
to get one coffee and tries to use his right with two different coffee machines
that cannot communicate with one another or with the ACA, the access control
mechanism should detect and prevent the duplicate access attempt.

2.2 Security Requirements

The ubiquitous application scenario described in Section 2 requires access con-
trol in order to properly validate each visitor request based on the corresponding

5

server’s security policy. Apart from the support of classical access control func-
tions, the access control mechanism should address some specific requirements
raised by the ubiquitous application scenario:

– Security Requirement 1: lack of a priori relationship between visitors and
servers. Since there is no organization governing servers and visitors, access
control decisions cannot refer to a security policy governing both servers
and visitors; since there is no naming space encompassing both servers and
visitors either, servers and visitors cannot reliably identify one another.

– Security Requirement 2: off-line servers. Due to the limited communication
capabilities of the servers and the lack of a communication infrastructure,
access control mechanisms should not rely on timely interaction between
servers and the ACA and among the servers whereas one-way batch data
transfers from the servers to the ACA can take place with a low periodicity.
The lack of timely interaction between servers directly or through the ACA
prevents servers from being able to detect multiple use of a one-time right
with several servers.

– Security Requirement 3: privacy. Taking into account the possibly large cov-
erage of PCEs, private information concerning the identity, attributes and
behavior of each user is exposed to widespread dissemination. Hiding part
or all of this information during visitor-server interaction is an essential re-
quirement for the acceptance of ubiquitous applications by users.

2.3 Existing Approaches

A straightforward solution to access control consists of access control lists (ACL)
that would be supported by the servers of the ubiquitous application scenario.
Whereas ACLs satisfy Requirement 2 by allowing each server to be able to locally
take the access control decision pertaining to its resources, because of require-
ment 1, the ubiquitous application scenario does not allow for the authentica-
tion of visitors by servers prior to the access control decision. Not only visitors
and servers do not belong to the same security domain but there is not even
a common naming convention for all visitors and servers on which to build an
authentication mechanism. The simple public key infrastructure (SPKI/SDSI)
[8] proposes authorization certificates to deal with unknown entities. The draw-
back of this approach is the complexity of revocation: the only revocation so-
lution during off-line interactions is based on short-term certificates that would
require the visitors to frequently communicate with the ACA to get new certifi-
cates and that would not allow detection of duplicate access with several off-line
servers. Addressing the privacy requirement [1] presents digital credentials with
selective disclosure. Idemix [4, 5] offers an interesting approach to create non-
transferable anonymous multi-show credentials. Unlinkability is ensured: each
user has different pseudonyms that cannot be correlated across various access
attempts. Capabilities cannot be transferred because the transfer thereof would
require sharing a pseudonym with another entity. Even though perfectly suit-
able for privacy concerns like unlinkability and non-transferability, Idemix would

6

not meet off-line revocation requirements of the ubiquitous application scenario.
Tamper-proof hardware (TPH) like the Trusted Computing Platform Alliance
or a downgraded version thereof such as a smartcard could be viewed as a vi-
able alternative for building a trusted reference monitor in each server but the
access control mechanism implemented by the TPH would still suffer from the
limitations of requirements 1 and 2. Chaum’s electronic cash [3] offers a one-time
credential that suits the off-line nature of the servers in the ubiquitous appli-
cation scenario. In this scheme, unlinkability is assured by blind signatures [2].
When an electronic coin is used twice, it is possible to retrieve the identity of
the cheater and the bank that issued the coin can act against this cheater. An
access control scheme suitable for the ubiquitous application scenario could be
envisioned based on an extension of electronic cash whereby the amount in the
electronic cash is replaced by the encoding of some rights. A strong requirement
is the existence of a shared banking organization that issues electronic coins to
users and performs compensation for merchants. The main deterrent to double
spending in this scheme is thus based on the disclosure of cheaters’ identity by
the shared banking organization. The ubiquitous application scenario does not
allow for a shared organization within a PCE or across several PCEs.

3 Solution: One-time capabilities for off-line interactions

In order to come up with an access control solution that meets the requirements
of the ubiquitous application scenario, we introduce the concept of one-time
capabilities (OTC). The OTC issued by the ACA represents the right to perform
a single access to a resource. A OTC can be verified by a server off-line, that is,
without any interaction with another server or with the ACA. The validation
of the access right encoded in the OTC does not require the authentication of
the visitor that issued the request including the OTC; the visitor only needs to
prove that it is the party to whom the OTC was granted. The ultimate issue
in this context is the assurance of the one-time property with off-line servers.
Our solution to this problem is based on the postponed punishment principle,
inspired by electronic cash, that if a visitor uses an OTC more than once then
the violation of the one-time property will necessarily be detected later and
cause the punishment of the cheating visitor with a penalty mechanism. Unlike
electronic cash whereby the penalty consists of the disclosure of the cheater’s
identity and compensation of double spending by a banking organization that is
trusted both by the payers and the payee, the OTC penalty mechanism does not
require a unique banking organization or access control authority for all visitors
and servers. The OTC penalty mechanism is based on a universal payment order
or an electronic check (e-check). The payment order or the e-check do not need
to be issued by a unique banking organization, any order issued by a financial
organization recognized by the ACA is suitable for the purpose of the OTC
mechanism. Since visitors mutually distrust both the ACA and the servers, the
payment order (called the e-check for the sake of simplicity) embedded in an
OTC has to be protected against possible misbehavior as follows:

7

– The ACA or the server should not be able to cash the e-check if the OTC is
properly used (only once) by the visitor.

– The ACA should be able to verify that a valid e-check is embedded in the
OTC.

Even though privacy is stated as an important requirement for ubiquitous
applications, the OTC mechanism presented in this paper does not properly
address privacy. The OTC mechanism offers a simple version of anonymity in
that the access control mechanism does not require servers to know the identity
of the visitors. Advanced privacy objectives like unlinkability are not pursued by
the basic OTC approach (the ACA can link capabilities to visitors). The basic
solution can however easily be enhanced with unlinkability based on Chaum’s
blind signature technique at the expense of increased computational complexity.

Fig. 2. Capability withdrawal

The solution consists of three phases: First, during the capability withdrawal
phase (Figure 2) the ACA provides a set of OTC to a visitor entering the PCE.
Apart from the classical access control operations through which access rights
will be granted in terms of capabilities, the main purpose of the protocol in this
phase is twofold: to prove the ACA that it will be able to cash the e-check if
the visitor misbehaves (uses the OTC more than once within the PCE) and to
assure that the ACA cannot cash the e-check if the visitor properly behaves.
These purposes are fulfilled by a new mechanism that allows the ACA to verify
that the contents of the e-check are valid and that the e-check includes a valid
signature that can be revealed only in case of misbehavior by the visitor. In the
next phase the visitor uses the OTCs to access resources kept by various servers
(Figure 3). The resource access takes place off-line, that is, the server cannot
rely on the ACA to verify the OTC. When the visitor proves that it knows the
secret corresponding to the capability, part of the information to retrieve the
signature is provided to the server. This information is not sufficient to get a
valid signature but prevents double use of the OTC.

Finally, detection of double use is necessary to identify and punish visitors
that use an OTC more than once (Figure 4). This phase is postponed as long
as the servers are not on-line. With off-line servers, visitor access logs will be
provided in batch by servers to the ACA (for instance through a daily data

8

Fig. 3. Access

collection by service personnel. When the use of the same OTC appears in more
than one server’s log, the ACA will be able to retrieve the signature of the e-check
embedded in the OTC and to cash the e-check.

Fig. 4. Detection of double use

4 One-Time Capability Protocols

This section presents the OTC protocols for capability withdrawal, service ac-
cess, and detection of double use using the notations of Table 1.

4.1 Penalty without Hierarchical Relationships

In the OTC mechanism an electronic check serves as a deterrent against double
use of a one-time capability. Common electronic checks [10] are not sufficient
in this context because it is not possible to verify that they have been signed
without revealing the signature that allows one to cash them. A new signature
scheme thus has to be used when V signs the e-check, when ACA verifies the
signature, and when ACA cashes the e-check. This mechanism can replace sig-
nature of on-line as well as off-line e-checks. For the sake of simplicity this paper

9

PKA public key of entity A.
SKA private key of entity A.
EK(m) plaintext m encrypted with key K.
h(m) digest of m, cryptographic hash function h applied to data m.

h : (0, 1)∗ → (0, 1)l where l is the size of the digest.
m1 ‖ m2 the concatenation of m1 and m2.
SIGNA(m) m signed with the private key of the entity A.

SIGNA(m) = {m, ESKA(h(m))}.

Table 1. Protocol notations

only presents a basic scheme where e-checks are on-line payment orders: V orders
his bank to transfer some amount from his account to ACA’s account.

During the withdrawal of a one-time capability, V can prove to ACA that
a secret K | h(K) ∈ HK where HK = {h(K1),h(K2), · · · ,h(Kn)} will be
revealed in case of double use (Section 4.2). A filled e-check is defined as
fc = SIGNbank(V,ACA, amount,number) where ACA and V could be replaced
by information on respective accounts. This filled e-check is created during
an on-line interaction with the bank. V provides as deposit a signed e-check
sc = SIGNV(fc,HK). This deposit can only be cashed by ACA when one of
the secret K | h(K) ∈ HK is known. A valid e-check is the combination of a
deposit and one of the corresponding secrets: vc = {sc, K}. It can be endorsed
and cashed by ACA. Table 2 summarizes those steps.

fc filled e-check (filled by V and signed by the bank).
fc = SIGNBank(payer, beneficiary, amount, number)
For instance, fc1 = SIGNBank(PKV , PKACA, 10$, 001)

sc signed e-check (also called deposit).
ec = SIGNpayer(fc, HK) where HK = {h(K1), h(K2), · · · , h(Kn)}
For instance, ec1 = SIGNV(fc1, HK1)

vc valid e-check (that can be directly cashed).
vc = {ec, K} where h(K) ∈ HK.

Table 2. E-checks notations

4.2 Phase 1: Capability Withdrawal

One-time capabilities are created by the access control authority. Visitors receive
rights and can be authenticated. ACA can verify that a penalty (i.e. an e-check)
is embedded within the capability. However, the ACA cannot obtain a valid
electronic check during this process (see Figure 2).

Authentication is optional in this protocol. Any entity able to provide an e-
check can receive some rights. However, some authorizations can be restricted to

10

visitors having some attributes (e.g. employee of a partner company, identity).
In this case authentication is required. For instance, attributes certificates and
challenge-response protocols can be used. The following protocols do not address
this point.

The granted rights and the deposit have to be negotiated. The ACA proposes
some authorizations to the visitor and asks for a corresponding e-check. At the
end of this phase, V and ACA have agreed on the authorization (rights) that will
be provided to V and the penalty (e-check) that will be released if the capability
is used twice. A filled e-check is generated: fcV = SIGNBank(V,ACA, amount)

Let V define a set N = {1, 2, · · · , n} that will be used in two cut and
choose protocols [3] during the creation and the use of one-time capabilities.
The set size n is a security parameter that is determined by the probability of
undetected double use (see Section 5.1).

1.1) V generates Ki ∈ (0, 1)l ∀i ∈ N
V computes HKN = {h(K1),h(K2), · · · ,h(Kn)}

K1, · · · ,Kn are kept secret by V and the set HKN will be disclosed by V during
further steps of the protocol.

1.2) V generates mN = h(m1‖m2‖ · · · ‖mn)
where mi = h(ai‖bi) ∀i ∈ N
where ai = h((ci ⊕ datai)‖di) ∀i ∈ N
and bi = h(ci‖ei) ∀i ∈ N
where datai = {Ki,number} ∀i ∈ N

This construction is necessary for avoiding double use of capabilities. It ensures
that datai can only be revealed when ci and (ci ⊕ datai) are known, i.e.
when the capability has been used twice (see Step 3.2). ci, di, and ei are
random numbers: di, ei ∈ (0, 1)l and ci ∈ (0, 1)2·l. In electronic cash, a similar
mechanism is used to reveal the identity of cheaters. Here, because of the lack of
organization, the identity is useless and a valid e-check is directly available when
V cheats: datai contains a secret Ki | i ∈ N and a reference to a deposit (check
number). A valid e-check is obtained when combining this secret and this deposit.

1.3) V → ACA HKN , mN , fcV

V sends data necessary to create the one-time capability. Before releasing the
one-time capability, ACA verifies the e-check.

1.4) ACA → V R ⊂ N where |R| = |N |
2

The ACA chooses randomly a subset R (half of the set N) for verification
purposes and requests V to send details on how each mi | i ∈ R is constructed.

1.5) V → ACA ci, di, ei,Ki ∀i ∈ R
mi ∀i ∈ R̄ where R ∪ R̄ = N

V discloses the details to construct each mi | i ∈ R for verification purposes.

11

1.6) ACA computes mi from ci, di, ei,Ki,number ∀i ∈ R

ACA verifies h(Ki)
?
∈ HKN ∀i ∈ R

ACA verifies mN
?= h(m1‖m2‖ · · · ‖mn)

Verify the results. When all mi | i ∈ R are well-constructed, there is a high
probability (see Section 5.1) that other mi | i ∈ R̄ contain a secret Ki|i ∈ R̄
usable to generate a valid e-check from the deposit.

1.7) ACA computes mR̄ = h(mr̄1‖ · · · ‖mr̄n/2) | r̄1, · · · , r̄n/2 ∈ R̄
ACA computes HKR̄ = {h(Kr̄1), · · · ,h(Kr̄n/2)} | r̄1, · · · , r̄n/2 ∈ R̄

Both V and ACA suppress verified secrets (R ⊂ N) and keep unrevealed secrets
(R̄ ⊂ N) to build the one-time capability and the deposit. The ACA requests
the deposit.

1.8) V → ACA scV = SIGNV(fcV ,HKR̄)
V signs the set of unrevealed secrets. This is the deposit that has to be combined
with one of the secrets Ki | i ∈ R̄ to be a valid e-check. However, the protocol
ensures that Ki | i ∈ R̄ can only be revealed when V cheats.

1.9) ACA → V capability = SIGNACA(mR̄, rights, validity)
The ACA stores the deposit and provides the one-time capability to V . This
capability is anonymous, i.e. does not refer to the identity or public key of V .
However, the ACA can recognize the capability and thus unlinkability is not
ensured (see Section 5.2). As in the simple public key infrastructure, authoriza-
tions are application specific and thus defining right format is out of the scope
of this paper.

4.3 Phase 2: Service Access with Capability

Visitor V shows his capability to one of the servers S1, S2, · · · , Sz in order to
get access to resources or services (see Figure 3). Servers cannot rely on the
ACA during this phase.

2.1) V → S resource, capability
V interacts with a server S that trusts ACA. V requests a resource and provides
the one-time capability to prove it is an authorized operation. S verifies that
the resource is part of the rights, checks that the capability is signed by the
ACA and that the capability is still valid.

2.2) S → V T ⊂ R̄ where |T | = |R̄|
2

S starts a challenge-response based on cut and choose: The server chooses
randomly a subset T (half of the set R̄) and sends it to V . This step has two
goals: it verifies that the visitor knows the secret corresponding to the capability
and forces him to reveal some information that are not sufficient to get a valid
e-check but that forbid double use.

12

2.3) V → S (ci ⊕ datai), di, bi ∀i ∈ T
ci, ei, ai ∀i ∈ T̄ where T ∪ T̄ = R̄

V reveals half the information for the set R̄ to prove that it can construct mR̄.
However, S has no way to get any datai | i ∈ R̄ and thus cannot collude with
ACA to cash the e-check.

2.4) S computes mi from (ci ⊕ datai), di, bi ∀i ∈ T
S computes mi from ci, ei, ai ∀i ∈ T̄

S verifies mR̄
?= h(mr̄1‖ · · · ‖mr̄n/2) | r̄1, · · · , r̄n/2 ∈ R̄

S verifies that the visitor knows the secret corresponding to the capability. V
can be authorized to access the resource.

4.4 Phase 3: Detection of Double Use

Servers S1, S2, · · · , Sz are periodically on-line and thus able to send data to the
ACA. If a one-time capability has been used twice, there is a high probability
that ACA can retrieve the embedded penalty (i.e. a valid e-check) and use it.

3.1) S1 → ACA ci ⊕ datai ∀i ∈ TS1

ci ∀i ∈ T̄S1 where TS1 ∪ T̄S1 = R̄
Periodically, when the server S1 is on-line, it sends relevant data to the ACA
(dotted star of Figure 4). The set TS1 has been randomly chosen by S1 and is
different for each server and for each capability. As long as V does not cheat,
those data are useless.

3.2) Sz → ACA ci ⊕ datai ∀i ∈ TSz

ci ∀i ∈ T̄Sz
where TSz

∪ T̄Sz
= R̄

If the same one-time capability has been used with servers S1 and Sz, there is
a high probability that ∃i such that ci and (ci ⊕ datai) are known. Thus ACA
can retrieve datai and the secret Ki. This secret combined with the deposit is
a valid e-check: vcV = (scV ,Ki) where h(Ki) ∈ HKR̄. The ACA can send the
e-check to the bank in order to cash it.

5 Discussion

5.1 Security Evaluation

Sections 3 and 4 defines a solution to avoid double use of one-time capabilities
in off-line context. When a capability is used more than once, there is a high
probability that an electronic check is revealed. Two security parameters have
to be evaluated:

- n is the number of steps in the cut and choose protocol. It defines the proba-
bility that a double use is not detected. Acceptable probability of successful
attack depends on the application.

- l is the size of the one-way function outputs. It leads to the probability of
revealing a penalty without misbehavior.

13

Probability of Undetectable Double-Use: Attacks against this scheme re-
quire that the visitor can obtain a valid capability embedding a faked e-check.
The capability withdrawal protocol ensures that the secrets of half the set are
verified. Thus, when an attacker tries to generate a capability that will never
reveal a valid e-check, he has to provide n/2 invalid secrets. The probability that
the ACA does not verify one of those invalid data is:

p2use =
n
2

n︸︷︷︸
valid m1

·
n
2 − 1
n− 1︸ ︷︷ ︸

valid m2

· · · · · 1
n
2 + 1︸ ︷︷ ︸

valid mn/2

=
n
2 !
n!
n
2 !

=
(n
2 !)2

n!

It is possible to choose a probability of successful attack as small as required.
For instance, if n = 100, pattack

∼= 2−96

Impact of Multiple Use: Since each server keeps trackof capabilities it already
received, double use attempts performed with the same server will be detected by
the server itself. Double use of an OTC with different servers on the other hand
will be detected by the ACA based on the protocol and the penalty mechanism.
But when the same OTC is used more than twice with different servers, only
one e-check can be cashed as part of the penalty mechanism. The degree of the
penalty (the amount of the e-check) should thus be set sufficiently high in order
to eliminate possible advantages of multiple uses beyond the double use.

Probability of Penalty Disclosure: It is important to protect the visitor
against a malicious service provider trying to get a valid signature for an existing
deposit in order to retrieve a valid e-check. The attacker has to find a valid Ki

corresponding to an embedded h(Ki) where i ∈ R̄. The birthday attack is not
relevant in this case and the probability of a successful brute force attack against
the hash function is:

pdisclose =
n

2︸︷︷︸
|R̄|

· 2−l︸︷︷︸
hash

where l is the size of the hash output.

For instance, using n = 100 and hash function SHA-1 (l = 160 bits), pdisclose
∼=

2−154

Protection of the Visitor: It is important to assure that a visitor’s capabilities
and corresponding secrets cannot be disclosed by intruders since based on this
information an intruder could get a valid e-check. It is also necessary to prevent
any operation that could cause unintended double use by the visitor. A tamper-
resistant module such as a smart card could be used to protect a visitor’s secrets.

A rogue server could perpetrate a pervasive computing denial of service at-
tack by getting a one-time capability without delivering the requested service.
Even though this type of attack does not provide any benefit to the attacker, it
would prevent further legitimate access to the service by the visitor.

14

5.2 Computation Complexity and Cost of Privacy

In a pervasive computing environment, it is reasonable to assume that visitors
and servers have limited computational power. Since it can be implemented
by a powerful workstation, the ACA is on the other hand not impacted by
such limitations. In step 1.8 of the protocol the visitor has to sign the de-
posit using computationally expensive asymmetric cryptography. To suit the
limited computational power of the visitor’s device, the asymmetric signature
in this phase can be substituted by a one-time signature [6] whereby instead of
SIGNV(fcV ,HKR̄), the visitor generates a private one-time key OTSK and the
corresponding public key OTPK, he then signs the one-time public key with his
private key SIGNV(OTPK) and uses the one-time private key to sign the e-check
SIGNOTSK(fcV ,HKR̄). The one-time signature is efficient but it does not re-
place asymmetric cryptography that still is required. For instance, when using an
efficient scheme such as the one proposed by [6], l+log2(l) hash functions and one
asymmetric signature are required. Even though the total complexity increases
with this scheme, the overall result is more efficient than with the straightforward
use of digital signatures because signatures can be pre-computed. Table 3 shows
the impact of this scheme on computation requirements. With both alternatives,
the ACA has to verify the signature of the e-check and sign the capability.

Protocol Entity Asymmetric cryptography hash functions

Withdrawal V 1 signature︸ ︷︷ ︸
e-check 1)

l + log2(l)︸ ︷︷ ︸
OTS 1)

+ 4 · n︸︷︷︸
mN ,HKN

ACA 1 verif. sig.︸ ︷︷ ︸
e-check

+ 1 signature︸ ︷︷ ︸
capability

(l + log2(l))/2︸ ︷︷ ︸
verify OTS

+ 2 · n︸︷︷︸
mN ,HKN

Access S 1 verif. sig.︸ ︷︷ ︸
capability

n︸︷︷︸
mR̄,HKR̄

(cut and choose)

1) : can be pre-computed

Table 3. Cryptographic operations of withdrawal and access phases.

The one-time capabilities presented in this paper assure the anonymity of
visitors: no server or eavesdropper can get any information on the visitor’s iden-
tity or public key. However, the ACA authenticates the user during the first
phase and thus, in phase 3, ACA can know who owns a capability returned by
a server. Thus, the ACA can trace visitors: unlinkability is not ensured. It is
possible to offer unlinkability by defining capabilities based on Chaum’s blind
signature technique [2] as used in electronic cash [3]. In this case, the privacy
of the user is fully protected as long as he does not cheat. Unfortunately, the
combination of cut-and-choose protocols and blind signature requires more com-

15

putational power: during the withdrawal phase, n asymmetric operations are
required. We are currently working on possible substitutes to this scheme.

5.3 Validity End

In off-line scenarios, it is not possible to rely on a certificate revocation list to
verify the validity of long-term capabilities. The alternative to revocation, which
still does not suit the off-line nature of the ubiquitous application scenario, con-
sists of short-term certificates that in turn require frequent interaction between
the holder of the certificate and the issuer for the renewal of certificates. As
opposed to these alternatives, the validity of one-time capabilities presented in
this paper does not rely on time. However, it can be interesting to introduce a
lifetime for the deposit in order to limit the storage of deposits in time. When
the appliances S1 · · ·Sz cannot afford a real-time clock, the ACA can act as a
trusted time server to synchronize the servers when getting in touch with them
to collect the access logs. The ACA can thus discard deposits that are no more
required by any server.

6 Conclusion

This paper proposes a solution for access control in pervasive computing environ-
ments. The major characteristics of pervasive computing environments are lack
of infrastructure requiring part of the interactions to be performed off-line with
respect to the communication infrastructure and lack of trust between actors
requiring new enforcement techniques to prevent misbehavior. Timely valida-
tion of authorizations in pervasive environments is not always feasible due to
the off-line nature of communications. As a solution we suggest in this paper
one-time capabilities whose validation does not require any on-line communica-
tion with a security infrastructure. Each capability is one-time in that it can be
used only once. The one-time property of the capability is assured by a strong
deterrent: if a user misbehaves by showing more than once a one-time capability,
he/she will undeniably incur a penalty. Due to the lack of organizational pressure
mechanisms in the pervasive environment the solution has recourse to money as
a universal penalty mechanism. When a user withdraws a one-time capability,
he/she has to prove that an electronic check will be available for payment in
case of misbehavior, i.e. double use of the capability. Conversely, the user has
the guarantee that the electronic check cannot be cashed if he/she correctly be-
haves. These properties are assured based on a new scheme that allows electronic
checks embedded in capabilities to be verified without revealing their signature.

From the computational complexity point of view this solution is comparable
to the simple public key infrastructure and it thus can efficiently be deployed in
mobile environments offering restricted computational power.

Privacy of users is a major concern in such open environments. The scheme
presented in this paper ensures that servers and eavesdroppers cannot know the
identity of authorized users. However, the security infrastructure, which is in

16

charge of delivering authorizations and controlling double use, can trace visitors.
Unlinkability could be assured by enhancing the one-time capability scheme with
the blind signature technique proposed by Chaum [2] but the computational re-
quirement of this approach would be too high to suit the limitations of pervasive
devices. Further work will focus on more efficient solutions for privacy.

References

1. Stefan Brands. A technical Overview of Digital Credentials. Research Report,
February 2002

2. D. Chaum, R.L. Rivest, Blind Signatures for Untraceable Payments, Advances in
Cryptology, Proceedings of Crypto 82, pp. 199-203.

3. D. Chaum, A. Fiat, M. Naor, Untraceable Electronic Cash, Proceedings of
Crypto’88, LNCS 403, Springer Verlag, pp. 319-327.

4. J. Camenisch and A. Lysyanskaya. Efficient Non-transferable Anonymous Multi-
show Credential System with Optional Anonymity Revocation. In Advances in Cryp-
tology - Eurocrypt 2001. v 2045 of LNCS, pages 93–118, 2001.

5. J. Camenisch and E. Van Herreweghen. Design and Implementation of the idemix
Anonymous Credential System In ACM CCS 2002.

6. R. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology (CRYPTO’87), volume 293 of Lecture Notes in Computer
Science, pages 369–378. Springer-Verlag, 1987.

7. S. Micali, R. Rivest, Micropayments revisited. In Progress in Cryptology, volume
2271 of LNCS, February 2002.

8. Network Working Group, Request for Comments 2693: SPKI Certificate Theory,
September 1999.

9. A. Pfitzmann, M. Köhntopp, Anonymity, Unobservability, and Pseudonymity - A
Proposal for Terminology, Workshop on Design Issues in Anonymity and Unob-
servability (2000).

10. M.H.Sherif, Protocols for Secure Electronic Commerce. Advanced and Emerging
Communications Technologies Series, CRC Press, March 2000.

