USER EVALUATION OF MULTI-EPISTEME VIDEO SUMMARIES

Itheri Yahiaoui, Bernard Merialdo, Benoit Huet
Multimedia Communication Department
Institut Eurécom
2229 Route des Crêtes,
06904 Sophia-Antipolis, France
{itheri.yahiaoui, bernard.merialdo, benoit.huet}@eurecom.fr

Video Summaries

- A summary is a subset of the video
 - Identify important information
 - Constrained duration

- A summary can be good or bad
 - Depends on task
 - Movie Trailer, Informative or Descriptive, etc…
 - Quality is generally difficult to evaluate

Content

- Video summaries
- Multi-Episode Video Summaries
- Optimal summaries
- Maximal Recall Automatic Summarization
- Experiments
- User Evaluation
- Conclusion and Future work.
Multi-Episode Summaries

- Independently created summaries may contain redundant information
- Specific requirements to construct multi-episode summaries
- Identification of:
 - What is common to several episodes
 - What is specific (unique) to each episode
- Typical applications:
 - TV series, Set-Top-Box, etc…

Optimal Summaries

- What is the best summary for a video?
- Many proposals, two basic approaches:
 - User-based evaluation (qualitative)
 - Smith and Kanade [CBAIVL 1998]
 Informedia Project: video skims.
 - Mathematical criterion (quantitative)
 - Gong and Liu [ICME 2000]
 Use of SVD over a feature frame matrix.
 - Uchihashi and Foote [ICASSP 1999]
 Definition of a shot importance measure.

Ideal summary evaluation

- User \(u \) without summary performs task \(T \):
 - performance \(p_T(u) \)
- User \(u \) with summary \(S \) performs task \(T \):
 - performance \(p_T(u | S) \)
- Ideal summary efficiency:
 - average(\(p_T(u | S) - p_T(u) \))
- But:
 - users are different (many users required)
 - users learn (cannot compute \(p_T(u | S) \) after \(p_T(u) \))
 - evaluation is very expensive (often not feasible)

Maximal Recall Task

- Idea: Identify a movie from a picture from a magazine
- Formalization:
 - User \(u \) knows summaries \(S_i \) of video \(V_i \)
 - User \(u \) is shown an excerpt \(E \) (from video \(V_j \))
 - User \(u \) is asked to guess \(j \)
- Optimal summaries:
 - Should maximize the performance over all \(E \)
 - Evaluation can be automated if the behavior of \(u \) can be reasonably simulated
Maximal Visual Recall

- User chooses video \(j \) if (s)he recognizes similar images in both excerpt \(E \) and summary \(S_j \)
- In case of ambiguity: no decision
- This process can be automated based on similarity measure
- Similarity based on color histograms

Intuitive Idea

- Consider videos:

 \[
 \begin{array}{cccc}
 V1 & \text{red frame is good for } V1, \text{ but will generate ambiguities with } V2 \text{ and } V3 \\
 V2 & \text{green frame is good for } V2, \text{ but will generate ambiguities with } V1 \text{ and } V4 \\
 V3 & \text{blue frame is good for } V3, \text{ but will generate ambiguities with } V1 \text{ and } V4 \\
 \end{array}
 \]
- Summary should contain frames:
 - frequent in one video
 - unfrequent in others

Evaluation Criterion

- User Performance
 - Number of excerpts with correct unambiguous answers

 \[
 \text{Card}\left\{(i, v) : \exists j \in E_i \exists f'_m \text{ similar to } f_j \text{ and } f_m \in S_v\right\}
 \]
 - Computed using all excerpts of fixed duration \(d \) from all the videos
 - Note: performance vary with \(d \).

Summary construction

- Iterative process
 - Greedy algorithm
 - Selection based on frame coverage
- In-place refinement
 - Try to replace each frame individually to improve quality
 - Repeat until no change
Experiments

- Six episodes from the TV serie «Friends»
- Total videos duration 83150 frames (≈ 99 min)
- Summary of six key-frames per video
- Key-frames are selected according to method described earlier
- Video processing
 - Elimination of jingle and credits
 - Feature Vectors construction

Video Summary Evaluation

Experiment based on visual recall capabilities

- Show summaries S_1.....S_k of videos V_1.....V_k to the user
- For example a grid of images, where each line represent a Video
- Show an excerpt E of a video V_i to the user, then ask the user to guess i

User answers:

- Don’t Know
 - Unknown case when no similar image between E and any summary S_i
- Confused
 - Ambiguous case when similar images between E and summaries S_i and S_j
- Sure
 - Unambiguous case when similar images between E and a single summary S_i

- Two opposite approaches
 - User based evaluation: difficult to set-up, possible bias, ...
 - Mathematical criterion: (easy to set-up, difficult to interpret)
- Simulation of user behavior based on Maximal Recall
- Real experimentation
 - User simulated performance measure
 - Limitation of image similarity measure
 - Single and Multi-episode videos
Experimental results

Coverage over the original videos

<table>
<thead>
<tr>
<th>Excerpt duration</th>
<th>% correct</th>
<th>% ambiguous</th>
<th>% incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 sec</td>
<td>25.25</td>
<td>1.27</td>
<td>3.53</td>
</tr>
<tr>
<td>6 sec</td>
<td>28.87</td>
<td>1.81</td>
<td>4.79</td>
</tr>
<tr>
<td>8 sec</td>
<td>33.36</td>
<td>2.51</td>
<td>6.38</td>
</tr>
<tr>
<td>10 sec</td>
<td>36.82</td>
<td>2.86</td>
<td>6.54</td>
</tr>
<tr>
<td>20 sec</td>
<td>46.70</td>
<td>7.02</td>
<td>9.54</td>
</tr>
<tr>
<td>40 sec</td>
<td>54.06</td>
<td>15.47</td>
<td>13.14</td>
</tr>
</tbody>
</table>

Evaluation of summaries

Evaluation Results

Average Real User Performance = 82.9%

People with high score (89%) are fan of the serie

What makes our Simulated User perform so poorly (36%)?

Evaluation Results Analysis

- Idea: Look precisely at the difference between the system’s evaluation method and the user’s answers.
 - Count the number of correct and wrong answers
 - Discuss the reason of the choice made by the users
 - Results based on 100 excerpts for 10 users

42 excerpts have been correctly identified by all real users but incorrectly by the system

5 excerpts have been correctly identified by 9 real users but incorrectly by the system
Results Analysis

- Objective: Improve the performance of our automatic summarization scheme
- Major factors:
 - Person
 - Object
 - Action
 - Location
 - Time

Improvements

- Recognize Objects and Persons in various environments, 34
- Face detection and recognition, 23
- Object detection and recognition, 18
- Identification of a group of Persons and their clothing, 32
- Person and its Clothing Identification, 47

Conclusion

- Novel approach to automated video summary creation (inc. Multi-Video case)
- New method for evaluation
 - Use of Maximal Recall
 - Performance levels are easy to understand
- New method for summary creation
 - Suboptimal automatic construction
 - Summary duration is user definable
- Work on Region Matching/Recognition

Nb of excerpts for which the system could be correct depending on methodology employed.
(out of the 47 incorrectly identified excerpts)