Linear Space-Time Coding at Full Rate and Full Diversity

Abdelkader Medles, Dirk T.M. Slock
Eurecom institute
2229 route des Crêtes, B.P. 193
06994 Sophia Antipolis Cedex FRANCE
e-mail: {medles,slock}@eurecom.fr

Abstract — The use of multiple transmitter and receiver antennas allows to transmit multiple signal sub-streams in parallel and hence to increase communication capacity. In order to distribute the multiple signal sub-streams over the MIMO channel, linear space-time codes have been shown to be a convenient way to reach high capacity gains with a reasonable complexity. The space-time codes that have been introduced so far are block codes, leading to the manipulation of possibly large matrices. To reduce complexity, this work introduces convolutive codes, associated with MIMO filters. The proposed approach also constitutes an alternative to OFDM based approaches for frequency fading channels.

I. LINEAR PREFILTERING APPROACH

The assumptions we shall adopt for the proposed approach are: no channel knowledge at TX, perfect channel knowledge at RX, and a matrix channel impulse response spanning L symbol periods. We consider the case of full rate transmission ($N_r = N_t$) (N_t, N_r, and N_z are the number of sub-streams, transmit and receive antennas). A general ST coding setup is sketched in Fig. 1. The incoming stream of bits gets transformed to N_z symbol sub-streams through a combination of channel coding, interleaving, symbol mapping and demultiplexing. The result is a vector stream of symbols b_k containing N_z symbols per symbol period. The N_z sub-streams then get vector sequence a_k gets transmitted over a MIMO channel H with N_{tx} receive antennas, leading to the symbol rate vector received signal y_k after sampling. As in [1], we assume the entries of the channel impulse response samples to be mutually independent zero mean complex Gaussian variables with unit variance (Rayleigh flat fading MIMO channel model). Then to avoid ergodic capacity loss, the prefilter $T(z)$ is required to be paraunitary ($T(z)\bar{T}(z) = I$). The solution proposed for this problem is the following (spatial spreading + delay diversity):

$$T(z) = \mathbf{D}(z) Q$$
$$\mathbf{D}(z) = \mathrm{diag}\{1, z^{-L_1}, \ldots, z^{-(N_{tx}-1)L}\}, \quad Q^H Q = I$$

$$Q = \begin{bmatrix} 1 & \ldots & \theta_1^{N_{tx}-1} \\ 1 & \ldots & \theta_2^{N_{tx}-1} \\ \vdots & \ddots & \vdots \\ 1 & \ldots & \theta_{N_z}^{N_{tx}-1} \end{bmatrix}$$

where the θ_k are the roots of $\theta^{N_{tx}} - j = 0, j = \sqrt{-1}$. The Matched Filter Bound (MFB) given by this precoding for substream $n (1 \leq n \leq N_z)$ is:

$$\text{MFB}_n = \rho \frac{1}{N_{tx}} \|H\|_F^2, \quad \rho = \frac{\sigma_b^2}{\sigma_e^2} = \frac{SNR}{N_{tx}},$$

hence this $T(z)$ provides the same full diversity $N_{tx}N_rL$ for all substreams. A larger diversity order leads to a larger outage capacity. It was shown in [2] that the proposed precoding maximizes the diversity gain, and when $N_{tx} = 2^n + 1 (n \in \mathbb{N})$ and for a finite QAM constellation with $(2M)^2$ points, the matrix Q maximizes the coding gain (G_C) among all matrix with normalized columns, and achieves: $G_C = \left(\frac{d^2}{N_{tx}g_{\text{min}}^2}\right)^{N_{tx}}$, where d is the minimum distance between two points in the constellation. For the receiver, SIC approaches have been shown in [2] to correspond to a capacity decomposition and to benefit from the $T(z)$ in the sense that substreams can be treated in any order (as opposed to VBLAST). However, to exploit the full diversity, PIC-based turbo detection should be performed.

REFERENCES
