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Abstract

In multiuser MIMO networks, the spatial degrees of freeddfered by multiple antennas can be
advantageously exploited to enhance the system capagisgh®duling multiple users to simultaneously
share the spatial channel. This entails a fundamental jggmashift from single user communications,
since multiuser systems can experience substantial bé&oafithannel state information at the transmit-
ter and, at the same time, require more complex scheduliagegtes and transceiver methodologies. This
paper reviews multiuser MIMO communication from an alduoriic perspective, discussing performance
gains, tradeoffs, and practical considerations. Sevemiaches including non-linear and linear channel-
aware precoding are reviewed, along with more practicaitéidhfeedback schemes that require only
partial channel state information. The interaction betwaecoding and scheduling is discussed. Several
promising strategies for limited multiuser feedback desige looked at, some of which are inspired

from the single user MIMO precoding scenario while othersfally specific to the multiuser setting.
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. INTRODUCTION

The last ten years have witnessed the transition of muidtidat multiple-output (MIMO)
communication from a theoretical concept to a practicdinepe for enhancing performance of
wireless networks [1]. Point-to-point (single user) MIM@nemunication promises large gains
for both channel capacity and reliability, essentiallyia use of space-time codes (diversity gain
oriented) combined with stream multiplexed transmissiaite( maximization oriented). In such
a traditional single user view of MIMO systems, the extratigppalegrees of freedom brought
by the use of multiple antennas are exploited to expand theemsions available for signal
processing and detection, thus acting mainly as a physiidi] layer performance booster.
In this approach the link layer protocols for multiple accéaplink and downlink) indirectly
reap the performance benefits of MIMO antennas in the fornredtgr per-user rates, or more
reliable channel quality, despite not requiring full awsess of the MIMO capability.

The recent development of cross-layer techniques, aimetieajoint design of the PHY
layer's modulation and link layer’s multiple access pratigdas begun to shatter this view. This
is especially true in MIMO networking where the positiveaglayed by the spatial dimension
on multiple access and scheduling is now being recognizgalacing the simplistic view of
MIMO as a pure PHY technology. A better understanding of tin@dct of MIMO antennas
on multiuser communications is, by large, due to progregtenfield of multiuser information
theory [2]. Fundamental recent results in this area havetiat how deeply connected PHY layer
modulation/coding and link layer resource allocation actiesluling can be, at least when having
overall optimum system design as objective. One intergsitample of this is the conflict and
degradation that may arise from certain uncoordinatedydssat the PHY and link layer when
both layers attempt to extract diversity (e.g. use of chehaslening [3] single-user space-time
codes at the PHY combined with multiuser diversity schetduht the link layer).

Multiuser MIMO (MU-MIMO) information theory advocates fahe use of spatial sharing
of the channel by the users. Such a multiple access protowolies an extra hardware cost
(antennas and filters) but does not involve any bandwidtlaesion, unlike say time-division
(TDMA) or code-division (CDMA) multiple accessIn spatial multiple access, the resulting

multiuser interference is handled by the multiple antenmbigh in addition to providing per-
IClassical multiple access protocols such as TDMA, CDMA, barused on top of spatial multiple access.
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link diversity also give the degrees of freedom necessargpatial separation of the users (see
e.g. [1] Part IV). In practice, MU-MIMO schemes with good colexity/performance tradeoffs
can be implemented to realize these ideas. On the uplink @irpleuaccess channel (MAC), the
development of MU-MIMO techniques appears as a generalizaf known single user MIMO
concepts to the multiuser case. As usual in informationrihebe downlink or broadcast channel
(BC) case is by far the most challenging one. Informatiorothereveals that the optimum
transmit strategy for the MU-MIMO broadcast channel ineslva theoretical pre-interference
cancellation technique known as dirty paper coding (DPQnlwoed with an implicit user
scheduling and power loading algorithm. In that respeat, ble played by seminal papers
such as [4] was fundamental. In turn, several practicatesiras have recently been proposed to
approach the rates promised in the MU-MIMO channel invgvaoncepts such as linear and
non-linear channel-aware precoding, channel state fe&dlaad multiuser receivers. A number
of corresponding scheduling and user selection algorithave also been proposed, leveraging
features of different MU-MIMO strategies.

Multiuser MIMO techniques and performance have begun totemnsely investigated because

of several key advantages over single user MIMO commuminati

« MU-MIMO schemes allow for a direct gain in multiple accespaeity (proportional to the
number of base station (BS) antennas) thanks to so-calldiiusar multiplexing schemes.

« MU-MIMO appears more immune to most of propagation limaa# plaguing single user
MIMO communications such as channel rank loss or antennalation. Although increased
correlation still affects per-user diversity, this may beta major issue if multiuser diversity
[5] can be extracted by the scheduler instead. Additionaitlg of sight propagation, which
causes severe degradation in single user spatial multigiexhemes, is no longer a problem
in multiuser setting.

« MU-MIMO allows the spatial multiplexing gain at the baseti&ta to be obtained without
the need for multiple antenna terminals, thereby allowing tlevelopment of small and
cheap terminals while intelligence and cost is kept on tifastructure side.

The advantages above unfortunately come at a price. Pethapsiost substantial cost is

due to the fact that MU-MIMO requires (although benefits fjozhannel state information at

transmitter (CSIT) to properly serve the spatially multigdd users. CSIT, while not essential in
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single user MIMO communication channels, is of critical mn@ance to most downlink multiuser
precoding techniques. The need for CSIT feedback placeméisant burden on uplink capacity
in most systems, exacerbated in systems with wideband @&=®M) communication or high
mobility (such as 3GPP-LTE [6], WiMax [7], etc.). Finallynather challenge related to MU-
MIMO cross-layer design lies in the complexity of the scHeduprocedure associated with the
selection of a group of users that will be served simultasgoWptimal scheduling involves
exhaustive search whose complexity is exponential in tbemsize, and depends on the choice
of precoding, decoding, and channel state feedback tegéniq

Inspection of recent literature reveals several diffesaitools of thought on the MU-MIMO
downlink, each advocating a different combination of prbng, feedback, and scheduling
strategies. Precoding strategies include linear minimueammsquare error (MMSE) or zero-
forcing (ZF) techniques and non-linear approaches. Exesyidithe latter are vector perturbation,
DPC technigues and Tomlinson-Harashima precoding (a nuoflreferences are listed below).
Many different feedback strategies have been suggestkaling vector quantization, dimension
reduction, adaptive feedback, statistical feedback, goobdunistic spatial division multiple
access (SDMA). Finally, a number of scheduling disciplim@ve been suggested including
max-rate techniques, greedy user selection, and randornrseteetion.

Paper organization and contributions: The goal of this article is to provide a unified view of
the state-of-the-art in MU-MIMO communication, with patlar emphasis on the fundamental
differences with single user MIMO communication as well astbe cross-layer implications
of MU-MIMO. We give an overview of some of the key promises aitdllenges of multiuser
MIMO communications for use in tomorrow’s high efficiencylla&ar networks, focusing on the
more interesting MU-MIMO downlink. We focus on the paradigift occurring for MIMO
techniques when transitioning from a traditional singleruBHY layer modulation/coding design
approach to a multiuser, cross-layer design view of wisetssnmunications. We first emphasize
lessons learned from multiuser information theory in teahg capacity bounds and ii) multiple
access/resource allocation design for MIMO networks. Bsmm signal processing techniques
are reviewed and their complexity/performance tradeatésdascussed. Different algorithms for
dealing with channel state information feedback are dsedisn detail including reciprocity,
guantization, and opportunistic approaches. Connectaitis user scheduling techniques are

highlighted and some joint MIMO transmission and schedujmocedures are presented. Per-
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formance plots are shown for the most promising combinatibmprecoding, feedback, and

scheduling strategies. Finally we briefly describe systesnes pertaining to MU-MIMO.

[I. PROMISES AND CHALLENGES OF MULTIUSERMIMO NETWORKS
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Fig. 1. Downlink of a multiuser MIMO network: A BS communieat simultaneously with several multiple antenna terminals

A. Lessons learned from multiuser information theory

As often with important discoveries within the field of commications, the initial impulse
responsible for attracting today the attention of a wideeaesh community toward multiple
antenna multiuser systems has not been of theoreticalemdnstead, current MU-MIMO ideas
can be seen as the heirs to a long series of engineering advatarted back in 1970s and 1980s
in the area of antenna array-based communications. In fdws been known for over three
decades that making use of antenna arrays could enablentiétasieous communications with
multiple users solely separated from their spatial sigestuThis concept early on was labeled
as SDMA, and is very closely related to that of today’s MIMGasal multiplexing, which can
be interpreted as multiplexing the data streams of "vittuakrs.

Nonetheless, progress in the field of multiuser informatiogory has been instrumental in
understanding the fundamental nature and limits of thesgagsociated with exploiting multiple
antennas in wireless networks, often also suggesting ideatual algorithms. We now review

some aspects of multiuser MIMO information theory, with §a &r the key lessons learned from
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this field towards practical system design. A complete stafiynultiuser MIMO information
theoretic progress is beyond the scope of this paper. Gdecerees on the topic include [8],
and [1], Chap. 18 and 19.

We focus on the communication between a BS or an access mpimgped withN antennas,
and U active terminals, where each active uskris equipped withM, antennas. Among
all terminals, the set of active users is roughly defined by $let of users simultaneously
downloading or uploading packets during one given scheduWwindow. The length of the
window is arbitrary but should not exceed the maximum lageexpected by the application
(likely as small as a few tens of ms to several hundred ms).IBm@ans the active users over
one given window will be asmall subset of the connected users, themselves forming a small
subset of the subscribers. We consider both the uplink amaldtk but will emphasize on the
challenges associated with the downlink for several reagomplained later.

In the uplink, the received signal at the BS can be written as

U
y=)Y Hlxi+n 1)
k=1

where x;, is the M, x 1 user signal vector, possibly encompassing power-corttplinearly
combined, constellation symbolH,;, € C*" represents the flat-fading channel matrad n

is the i.i.d, unit-variance, additive Gaussian noise veatadhe BS. We assume that the receiver
k has perfect and instantaneous knowledge of the chadpel

In the downlink, illustrated in Fig.1, the received signatlze k-th receiver can be written as
Yi = H;x + ny, for k =1,....U (2)

whereH;, € CM+*N represents the downlink channel ang € CM+*! is the additive Gaussian
noise at receivek. We assume that each receiver also has perfect and instantaknowledge
of its own channeH,. The transmitted signat is a function of the multiple users’ information

data, an example of which takes the superposition form

X = Zxk 3)
k

2\We focus on the flat-fading model here for the sake of expmsitiVideband models, using e.g. OFDM, can be accommodated
by using a dependency on a frequency index. The transpogatopés simply used by convention for consistence with the

downlink notation and does not presume a reciprocal link.
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wherex;, is the signal carrying, possibly non-linearly encodedy d&message, with covariance
Qi = E(xxx/), with E(-) the expectation operator. The power allocated to @sisrtherefore
given by P, = Tr(Qx), where Tr is the trace operator. Under a sum power consiaitite BS,
the power allocation needs to maintgin, P, < P.

In contrast to single user systems where the capacity is glesmumber, the capacity of a
multiuser system witl/ users is characterized bytadimensional rate region, where each point
is a vector of achievable rates by all theusers simultaneously. Although the characterization
of general broadcast capacity region is a long standingl@noiunlike that in the MAC/uplink),
substantial progress has been made for Gaussian MIMO clsaiiespite not being degraded,
the Gaussian MIMO BC channel offers significant structued ttan be exploited to characterize
its capacity region. Considering full CSIT, the particutate played by the dirty paper coding
(DPC) in achieving points in the region was revealed by thmisal work [4]. Assuming a
unit variance for the noise, it is now known that the capacgyion for a given matrix channel

realization can be written as [9]:

(4)

H

Cop— U (Ry..Ry) € ®*. R, < log, det [I + Hi(ZjZi Q;)H; ]

PPy st. 3, Pi=P det [I +Hi(> -, Qj)HiH]
where the above expression should in turn be optimized oseh gossible user ordering.
Although difficult to realize in practice, the computatiohtbe region above is facilitated by
exploiting the so-callediuality results between the BC and the much simpler-to-obtain MAC
capacity region, which stipulate that the BC region can beutated through the union of regions
of the dual MAC with all uplink power allocation vectors miegt the sum power constrairt
[10], [11].

The fundamental role played by the multiple antennas a¢ettie BS or the users in expanding
the channel capacity is best apprehended by examining hewuin rate (the point yielded by
the maximum}_, R, in the region) scales with the number of active users.

Assuming a block fading channel model and an homogeneowsorietvhere all users have
the same signal-to-noise ratio (SNR), the scaling law oftina rate capacity of MIMO Gaussian
BC, denoted aRP"?, for M, = M, fixed N and P, and largel is given by [12]

' E(RPFC)
M N log Tos (0 M)

— 1. (5)
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The result in (5) indicates that, with full CSIT, the systeancenjoy a multiplexing gain of
N, obtained by the BS sending data A6 carefully selected users out éf. Since each user
exhibits M independent fading coefficients, the total number of degyoddéreedom for multiuser
diversity isU M, thus giving the extra gaitog log(UM).

In contrast with (5), the capacity obtained in a situatiorevehthe BS is deprived from the

users’ channel information is reduced to (in the high SNRmey

E(RNCSITY ~ min(M, N)log SNR. (6)

1) Design lessons: Information theory highlights several fundamental aspeift multiuser
MIMO systems, which come in much contrast with the converdisingle user MIMO setting.
First the results above advocate for serving multiple usemiltaneously in a SDMA fashion,
with a suitably chosen precoding scheme at the transmitdrough the multiplexing gain is
limited by the number of transmit antennas, the number olukameously served users is in
principle arbitrary. How many and which users shoefféctively be served with non zero power
at any given instant of time is the problem addressed by s&uree allocation algorithm. Unlike
in the single user setting, the spatial multiplexing of eliffint data streams can be done while
users are equipped with single antenna receivers, thudimgabe capacity gains of MIMO
while maintaining a low cost for user terminals. Having nplé antennas at the terminal can
thus be viewed as optional equipment allowing extra ditgighin for certain users or giving the
flexibility toward interference canceling and multiplegiof several data streams to such users
(but reducing the number of other users served simultamgouis addition to yielding MIMO
multiplexing gains without the need for MIMO user terminalse multiuser setup presents the
advantage of being immune with respect to the possibleefidvior of the propagation channel
which often plagues single user MIMO communications, iankrloss due to small spacing
and/or the presence of strong line of sight component. Inntéiuser case, the full rank of
the global channel matrix is almost surely guaranteed thdakthe wide physical separation
between the users.

Finally, also in contrast with the conventional single uS#MO setting, the multiplexing
factor N in the downlink comes at the condition of channel knowledgtha transmitter. In the

uplink this multiplexing gain is more easily extracted hesmthe BS can be safely assumed to
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have uplink channel knowledge and simply implements a idaksultiuser receiver to separate
the contributions of the selected users in (1).

In the downlink, in the absence of CSIT, user multiplexingénerally not possible, as the BS
just does not know in which ‘direction’ to form spatial bearmibus, the complete lack of channel
state information (CSI) knowledge reduces the multiplgx@ain to unity. The exception lies in
scenarios with terminal devices having enough antennasn@ve co-stream interference at the
receiver (\/, > N). In the latter case, the base may decide to either multipéeral streams
to a single user or spread the streams over multiple usdrgvaieg an equivalent multiplexing
gain in both cases. This is conditioned however on the idd&i user channels to be full rank.
Hence, the advantage of having CSIT in MU-MIMO lies in the gibgity of not only serving
single antenna users but also relaxing the dependence gle-siser channel full rank.

Providing CSIT at the base poses serious challenges inigabsettings where the channel
information needs be conveyed via a limited feedback cHanrke uplink. The often unrealistic
assumption of close to perfect CSIT, as well as the condiler@apacity gap between full and
no CSIT, have motivated research work on schemes emplo@r@pCSIT. Partial CSIT refers
to any possible form of incomplete information on the chanobtained by any of several
means detailed later. Fortunately, work like [13] demaatsts that the optimal capacity scaling
of capacity for the MIMO Gaussian BC, i.8/log(SN Rlog U) assumind/ single antenna users,
can be achieved fob/ — oo even though the transmitter has only partial channel kndgéde
Finding the information theoretic optimum strategy for lkexging partial channel knowledge
at the transmitter is still an open and intriguing questidespite the many proposals in the
literature, some of them being presented later in this paper

2) MU-MIMO and resource allocation: One of the fundamental lessons learned from informa-
tion theoretic studies is that resource allocation tealeschelp to exploit the gains of multiuser
MIMO systems. From a multiuser information theoretic pexdve, the capacity region boundary
is achieved by serving alll active users simultaneously, wheleis possibly a large number,
the resource that should be allocated to each one, in the dbreng. P, is surely dependent
on the instantaneous channel conditions and may vary greath user to user. The fact that
the multiplexing gain is limited taV also suggests that the number of useffectively served
with non-zeroP, at any given instant of time is directly related to the numbkantennas at

the BS, which is considerably less than the number of actleusers. Studies show in fact
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that the optimal number of users with non zero allocated pdeeany given realization of
the channel is upper bounded B¥? [14]. In the remainder of the paper we shall refer to this
subset of users as the "selected" users. When restrictihgetar precoding techniques such as
ZF, the number of served users is directly limited by the nendf degrees of freedom at the
BS, N. This motivates the need to pick a good set of users, whichdsatm of the resource
allocation algorithm. In particular, the scheduler sedesmhong all possible active users, for each
channel realization, an optimal subgroup of terminals aspective power levels within the
subgroup, so as to maximize a given performance metric. Suuletric can be the sum rate or
the realization of per-user rate targets while minimizirgnsmit power. To maximize the sum
rate, the scheduler algorithm looks for users that exhilmbmpromise between a high level of
instantaneous SNR (to maximize multiuser diversity @j)l a good separability of their spatial
signatures to facilitate user multiplexing. Practical dod¢ complexity algorithms to solve the

user scheduling problem are presented later in this paper.

1. MU-MIMO SCHEMES WITH PERFECT CHANNEL KNOWLEDGE AT THE TRANSMITTER

We now turn to signal processing approaches to the MU-MIM&hgmission problem. We
choose to emphasize the downlink as it offers the most isti@gechallenges to a system designer.
In the uplink, the signal model in (1) is clearly reminiscerita classical multiuser detection
problem [15] as far as receiver design is concerned and ischditessed here further.

As mentioned earlier, the maximum sum rate in the broaddastrel can be achieved by
DPC at the BS [9]. The key idea of DPC is to pre-cancel interfee at the transmitter using
perfect CSI and complete knowledge of the transmitted $sgdPC, while theoretically optimal,
is an information theoretic concept that has proven to bicdif to implement in practice. In
this section we expand our study to a wider range of schentss,ralying on full CSIT, yet
allowing a compromise between complexity and performaliée.summarize several practical

transmission techniques using either linear or non-liggacoding [16]—-[19].

A. Linear precoding

Linear precoding is a generalization of traditional SDMAexe users are assigned different
precoding matrices at the transmitter. The precoders aigmd jointly based on CSI of all the

users, based on any number of designs including ZF and MMSE.
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From a practical point of view, the relevant criteria areoerprobability and sum rate,
maximizing SINR etc. The difficulty of designing capacitgtonal downlink precoding, mainly
due to the coupling between power and beamforming and threandering, has lead to several
different approaches ranging from transmit power minirigawhile maintaining individual
SINR constraints to worst case SINR maximization under aguowonstraint. Duality and
iterative algorithms are often used in order to provide ohs [20].

To explain the concept of linear precoding, consider thenage where this times, and
n, denote thek-th transmit symbol vector (for beamforming scenasip,is a scalar symbol),
and the additive white Gaussian noise vector. The actuabmnédted signal vector for user
is then given byW s, where W, denotes the precoding matrix for theth user. We assume
that service will be provided to a set &f selected users (among all active ones). Scheduling
algorithms as discussed in the sequel can be applied torpetfus selection across possible

subsets. The received signal vector at ke user is

K
yr = HpyWysy, + Hy, Z Wis; + ny, (7)
I=1,1£k

We assume that each user hdgs antennas and will decode tisg < M, streams that constitute
its data. The goal of linear precoding is to desi§Ww,}~ , based on the channel matrix
knowledge, so a given performance metric is maximized feohesiream.

One of the simplest approaches for finding the precoder isrémpltiply the transmitted
signal by a suitably normalized ZF or MMSE inverse of the mugkr matrix channel [21], [22].
In this case, it can be assumed for simplification thgt = S, = 1. ThusH, = h,, is a row
vector andW,, (the precoding vector for the-th user) is chosen as theth column of the right
pseudo-inverse (or MMSE inverse) of the composite charthél hg,...,hf(}T. In the case
when the selected users are not sufficiently separableapipgoach may result in inefficient use
of transmit power, causing a large rate loss with respedbé¢ocoptimum sum capacity solution.
This problem, however, is shown to be fixed by the schedulemwhe number of active users to
choose from is large enough so near-orthogonal users wiald GNR conditions can be found.
An additional disadvantage is that this approach does realilse extend to multiple receive
antennas or streams without further degradation.

A generalization of the ZF or MMSE beamforming is to combime&r beamforming with

a suitable power control policy set to maximize the sum rateealize individual signal-to-
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interference-plus-noise ratio (SINR) requirements factheaser. Several approaches have been
proposed including maximizing the jointly achievable SINRrgin under a total power constraint
and minimizing the total transmission power while satisfya set of SINR constraints [20]. The
authors in [20] showed that the global optimum of beamfogrian be obtained from solving a
dual uplink problem and proposed a rapidly converging fiegaalgorithm to reduce crosstalk.
Note that this approach does not maximize the achievableraterdue to the SINR constraints,
but does allow inclusion of different users’ rate requiraisen the problem formulation.
Another generalization of ZF beamforming is provided bychldiagonalization (BD), which
assumes\f, = S, > 1 and Zszl M, = N. The idea is to choos&, such thatH;W, = 0,
VI # k, thus precanceling the interference in (7) so that= H,W,s; + ny. If we defineH,,

as
~ T
o= |H[ - H[, H[, - Hf| ®)

then any suitabl@V, lies in the null space ofi,. Let the singular value decomposition (SVD)
of H, be
i = 00, [ v v ] ©)

where U, andD,, are the left singular vector matrix and the matrix of singwalues ofH,,
respectively, andv" and V!” denote the right singular matrices each corresponding e no
zero singular values and zero singular values, respegtigely precoderW, that is a linear
combination of the columns o‘f/',(f) will satisfy the null constraint. Assuming thal,, is full
rank, the transmitter requires that the number of transmi¢éranas is at least the sum of all
users’ receive antennas to satisfy the dimensionality tcain$ required to cancel interference
for each user [18]. Under the BD constraiWy,, can be further optimized based on waterfilling.
If excess antennas are available, eigenmode selectiont@nrensubset selection can be used to
further improve performance [23].

A disadvantage of BD is that it requirdg, = S;. This can be solved by including the receive
processing in the problem formulation. For example, witmadr receive combining matriyx,

for userk, the received signal can be expressed as

K
Y = V,?Hkask + VfHk Z WlSl + V]?Ilk (10)
I=1,l%k
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K
The design problem then becomes selecfifg;,, V. }/_, jointly such thatV/'H;, > W, =

1=1,l#k
0, Vk. This cannot be solved in closed form, thus several itezatolutions have been proposed,

including e.g. [17], [19]. In such approaches, the tranwnienerally computes a new effective
channel for each user using the initial receive combining vector. Using this neffeetive
channel, the transmitter recomputes the transmit fteto enforce a zero interference condition,
and the receive filtewv, for each user. The algorithm repeats this process untisfgatg a
convergence criterion. To extend this algorithm to mudtighta streams for each user, the matrix
of right singular vectors is used based on the number of dedaras and is used to calculate
the effective channel matrix [16], [17], [19]. To avoid theeuof extra feedback between the
users and the BS, the computation of all filters (transmit sewetive) normally takes place at
the BS. After this computation, either the users must aeqhie effective combined channel or

information about the transmit filters must be sent.

B. Non-linear precoding

Linear precoding provides reasonable performance but remain far from DPC-like pre-
coding strategies when the available set of active usershtmse from is small. Non-linear
precoding involves additional transmit signal procesgimgmprove error rate performance. In
this section, we discuss two representative methods, osedban perturbation [24], the other
based on a spatial extension of Tomlinson-Harashima pnegddHP) [25].

Vector perturbation uses a modulo operation at the tratesnd perturb the transmitted signal
vector to avoid the transmit power enhancement incurredfsng&thods [24]. Finding the optimal
perturbation involves solving a minimum distance type pgoband thus can be implemented
using sphere encoding or full search based algorithms.

Let H denote aK x N multiuser composite channel, assuming each user has & sexgive
antenna. The idea of perturbation is to fingesturbing vector p from an extended constellation

to minimize the transmit power. The perturbatipris found by solving
p=arg min [G(s+p)* (11)
p'EACZE

whereG is a some transmit matrix such that @’ G) < P, s is a modulated transmitted signal
vector and the scalad is chosen depending on the original constellation size,(el.g= 2 for
QPSK), andCZ¥ is the K-dimensional complex lattice. ZF or MMSE precoder can beduse
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for the transmit matrixG. A set of points is used to represent symbols which are camgru
to the symbol in the fundamental region. After pre-distortusing ZF or MMSE precoder, the
resulting constellation region also becomes distorted thnd it takes more power to transmit
the original point than before distortion. Among the eqléwa points, if the transmitter sends
the point that is the one closest to the origin to minimizeésrait power, the receiver finds its
equivalent image inside the fundamental constellationoregising a modulo operation. This
problem can be regarded &sdimensional integer-lattice least squares problem and $search
based algorithms can be implemented. There are other nmeetioogimplify the search based
methods [26].

Several algorithms have also been proposed based on easatf Tomlinson-Harashima
precoding (THP) [25], [27]. THP was originally proposed t@e with anZ point one-dimension
pulse amplitude modulation (PAM) signal as a temporal egatbn. For this constellation, THP
is the same as the inverse channel filter except that an -dfésemodulo 27 adder is used. If
the result of the summation is greater than2~7 is subtracted until the final result is smaller
than Z. Similarly, if the result of the summation is less thai¥, 27 is added until satisfying
the peak constraint. While in the original THP, a single ctens equalized with respect to
time, spatial equalization is required for MIMO channels.

So far, we reviewed linear and non-linear multiuser MIMOusioins to approximate the sum
capacity. In Fig. 2, we compare sum capacity and achievabie rates for DPC, coordinated
beamforming [19], time sharing single user closed loop MIN&Boosing only one user having
the best channel quality and applying the SVD), and zerowigr beamforming (ZFBF) with
the dimensionality constraint [28]. In this case, no schiedualgorithm is required for DPC,
coordinated beamforming and ZFBF. We will investigate skctieg issues in Section 1V. Note
that for the(7',1,7") scenario (i.e. the user has only one receive antenna wrelé8 hasT’
transmit antennas and there drective users in the network), there is the big gap between DPC
and ZFBF but this gap is decreased when the receivers hawglawntennas. For additional

tradeoff analysis between linear and non-linear precosiatggies, the reader may also see [29].

V. USER SCHEDULING INMU-MIMO NETWORKS

In this section, we consider the problem of choosing a sutfsesers for transmission in the

MIMO BC. A brute-force complete search over all possible bomations of users guarantees
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Fig. 2. Ergodic sum capacity and achievable sum rate as didancf the number of users, the nhumber of transmit/receive
antennas(71,T>,T3) denotes the number of transmit antennas at the BS, the numhlbeceive antennas at the user, and the

number of active users in the network, respectively. Comtdid BF refers to the method presented in [19].

to maximize the throughput but the computational compjeidtprohibitive when the number
of users is large. Due to the complexity of the search prodesth optimal and suboptimal
approaches are considered. A key idea for low complexitytimadr scheduling is that afreedy
search.

A. Optimal scheduling for the MU-MIMO downlink

The theoretical capacity results in Section Il illustratattin general the MIMO BC results
in transmission to more than one user at a time. The probleselgcting a subset of users
for transmission is a user scheduling problem, and the gaaclieved in a form of multiuser
diversity. In this section we summarize some schedulingrétlyns for different multiuser MIMO
solutions.

It is known that linear beamforming can achieve the sum agpadien the number of active
users in the system is large [12], [28], [30]. In [28], the ngsare equipped with only one

receive antenna and ZFBF is performed at the transmittealoyous to BD, this full search
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based user selection algorithm can be extended to the heuippam scenario. For simplicity,
in this section, we assume that the number of receive anteisn@qual to the number of data
streams, where the postcod€ris not needed in this case, and thus BD can be implemented.

Supposé/ = {1,2,---,U} is the set of all users, and,, one possible subset of selected users
in U. Let A be the set including all possibld;, i.e., A = {A;, As,---}. Then total achievable
rate with BD is given by

Rppia,(Ha, P.o?) =  max Y log|I+ i (12)

ZjeAk Tr(Qj)SPjE.Ak

whereQ; = E(x;x;)" is the input covariance matrix for the usgrW; is the precoding matrix
earlier defined, and the same noise variamtés assumed at all users. Therefore the maximum

total sum rate with BD is given by

RBD<H1,~~~,U7P7 0-2) = 2?5‘ RBD‘.A)C (HAk7P7 0-2)' (13)
k

A
DenoteS as the maximum number of users to be supported. For the caB,af < N. Thus

the cardinality ofA is 35 , C};, whereC? is the combination of choosingb. Hence, it is clear
that the exhaustive search over all possible combinatisrimputationally prohibitive when
the number of users in the system is increased and thus lowlegity user selection algorithm

is desired.

B. Greedy and iterative methods for user grouping

The complexity of the optimal scheduling is high, thus thbes been several suboptimal
algorithms that were proposed to reduce the computatia@raptexity for user group selection,
among which [28], [30]-[32].

In the capacity-based greedy user selection algorithmiréresmitter chooses the single user
with the highest channel capacity. Then, it finds the next tisa provides the maximum sum
rate from the remaining unselected users. The algorithrepsated untilK’ users are selected.
Clearly, the complexity of the capacity-based greedy uskction is no more thaty x K user
sets, which greatly reduces the complexity compared to thatestive search method explained
in the previous section. Note that the full search methoddsee consider roughly)(UX)
possible user sets. The sum rate can be obtained under a nafritensmit schemes, including

among others optimal non-linear precoders. Schedulingh®mon-linear precoders mentioned
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in Section IlI-B is an ongoing topic of research, though a fesults have appeared including
a greedy user selection for zero-forcing dirty paper coddgDPC) in [4], which has been
proposed in [30].

Apart from the sum rate under optimal precoding, severatrothetrics may be considered
for maximization at each step of the greedy scheduling #lguos, e.g. the multiuser MMSE,
or for very low complexity the Frobenius norm of the multiughannel [32]. The idea of the
Frobenius norm-based user selection algorithm is to gesdiect the set of users such that
the sum of the effective channel energy of those selecterd uses large as possible. In the
case when the network has rate requirements, the seledtioseo groups aims at minimizing
the power required to achieve the desired rate targets.

2ol —<4—DPC
=—%y— BD w/ full search

BD w/ capacity-based
20 —©— BD w/ Fro. norm-based |-
BD w/ round robin

18} : —

161

Sum Rate [bps/Hz]

14 —7
" / 7

8 | Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
Number of Users

Fig. 3. Sum rate as a function of the number of users, wherentingber of transmit antennas is 4, the number of receive
antennas is 2, and the maximum number of selected users is 2.

Fig. 3 shows the sum rate versus the number of userdfer 4 and M = 2. For simplicity,
we only considered BD. The iterative based suboptimal gwiatachieve about 95 compared
to full search based method and show significant gain agesustd robin scheduler. Although
DPC achieves higher sum capacity than BD approaches, Bxshileves significant part of the

sum capacity requiring though only linear processing botth@ BS and the user.
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V. LIVING WITH PARTIAL CHANNEL KNOWLEDGE AT THE TRANSMITTER

One of the fundamental paradigm shifts associated with iosgdt MIMO is the push of
intelligence and much of the signal processing complexigdl from the terminals to the BS.
This emphasis on the processing at the BS is accompaniedgviegwvith the requirement that
the BS be informed of the channel coefficients of all activersisn the cell, prior to user group
selection.

In frequency-division duplex (FDD) systems and time-datisduplex (TDD) systems without
calibration, often the only way for the BS to acquire charstate information from each user is
through a feedback control channel. For example, contrahiobls are used for power control or
adaptive modulation. Since the bandwidth required by tleeldack control channel is overhead
that counts against the overall spectral efficiency of th&tesy, and it grows in proportion to
the number of active users, there is a substantial intemesdmpressing the CSI and using it in
both the scheduling and the beam design algorithms.

Interestingly, although it was shown that the multiplexoan disappears in the absence of
any CSIT [33], recent findings suggest that the BS can livé Wited channel information at
the transmitter and still achieve a significant fraction led tapacity promised by the full CSIT
case, although the issues gftimally designed limited feedback for MU-MIMO transmission
techniques is still much open. MU-MIMO transmission deswth limited CSIT has in fact
evolved in a topic of research in its own right and many pdesgirategies can be pointed
out. The reader is pointed to [34] for a complete state-efdlt in this area. A few selected
approaches are briefly exposed here.

One first key idea is based on splitting the feedback betwkenstheduling and the final
beam design (or "user serving") stages, thus taking praifih fthe fact the numbers users to be
served at each scheduling slot is much less than the numhmilafsers.

In [35] it is proposed to reduce feedback during the schaduyhase, which can be performed
using rough channel estimates, while the stage of serviagstihheduled group of users is
accomplished with near-perfect feedback as this concemhs a very small number of users
compared with the number of cell users. Feedback reductisimgl the scheduling stage can
be obtained via use of threshold-based pre-selection [@8oned with any of the approaches

described below. Thresholding can be practically imple@@nsing opportunistic feedback [37],
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where users who exceed the threshold compete on a randomesafemxiback channel. The
optimal way of splitting the feedback load across the scliegistage and the beam design
stage is an interesting open problem, although design eXpbiting known rate scaling laws

and bounds give promising results [38].

A. Quantization-based techniques

Quantization is the first idea that comes to mind when deakitg source compression, in
this case the random channel matrix or the correspondingpgess being the possible sources.
The amount of feedback depends on the frequency of feedlzpkefally a fraction of the
coherence time), the number of parameters being quantretihe resolution of the quantizer.
Most research focuses on reducing the number of parametdr¢ha required resolution. The
feedback problem has been solved in single user MIMO comeation systems using a concept
known as limited feedback precoding [39]. The key idea o$ tine of research has been to
guantize the precoder for a MIMO channel and not simply ttenakel coefficients. The challenge
of extending this work to the multiuser channel is that trensmit precoder depends on the
channels of the other users in the system.

Other methods for reducing feedback in MU-MIMO channelsiass a single receive antenna
at the mobile - extensions to multiple receive antennas i®rgoing research topic. Some
of the main results on this subject are due to [40], [41], whtdre random codebook and
Grassmannian quantization ideas are used to quantize ribetidn of each user’s channhj.
The main observation in [40] is that the feedback requirdmeaale linearly both as the number
of transmit antennas grows and as a function of the SNR (in dBljke the single user case.
The reason is that quantization error introduces an SINR #owe it prohibits perfect inter-user
cancellation. Thus this error must diminish for higher SNR®rder to allow for a balancing
between the noise and the residual interference due to ehaumantizing. An improvement
can be obtained by quantizing the channel vector and a cerégieived SINR upper bound
that is a function of the error between the true and quanttethnel [42]. This increases the
performance of the system and helps in user selection. fibigss based on sum rate constraints
on the feedback channel can also be used to reduce requedbaiek, yet maintain capacity
scaling [43].
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B. Dimension reduction and projection techniques

In addition to quantization-based approaches where thenghanetric is discretized, dimen-
sion reduction techniques can be used that involve progdtie matrix channel onto one or
more basis vectors known to the transmitter and receivethdh way, the CSI matrix of size
M x N is mapped into arp-dimensional vector witht < p < M x N, thus reducing the
dimensionality of the CSI t@p complex scalars (which in turn may be quantized). Once the
projection is carried out, the receiver feeds back a metyie- f(H,) which is typically related
to the square magnitude of the projected signal. Antenmgctseh methods fall into this category.
In this case, the projection is carried out by the termirgdlit Alternatively, the projection can
be the result of using a particular precoder at the BS. A goadangle of this approach is given
by a class of algorithms using unitary precoders. We nowerewhis approach when/, = 1
and the BS served/ users. In this case, theth user channel is & x N row vector denoted
by h,. The BS designs an arbitrary unitary preco@eof size N x N, further scaled for power
constraint. Each terminal identifies the projection of iector channel onto the precoder by
h; Q, and reports an index and a scalar metric expressing the &ibsured under an optimal
beamforming vector selection:

|thi|2

= max 14
Pr N 07+ Y [y ]? (14)

whereq; denotes the-th column ofQ. The scheduling algorithm then consists in opportunisti-
cally assigning to each beamformgrthe user which has selected it and has reported the highest
SINR.

When the unitary precoder must be designed without any far@RIT a priori, a scaled
identity matrix can be used. In this case, the algorithnsfalick to assigning a different selected
user to each base antenna. In the small number of user cagegrfiormance of such scheme is
plagued by inter-user interference. Fortunately interiee tends to decrease as the number of
users to choose in the cell becomes high.

When the dynamics of the system are limited (low mobility)e tuse of a fixed set of
precoders may result in severe unfairness between the ti$gsproblem can be alleviated by the
randomization of the beamforming vectors. The so-callegpd@joinistic Random Beamforming

(ORBF) was initially proposed for single user setting [44ddater generalized in [13]. The
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performance of these methods is illustrated below. The add&3] can be recast in the context
above, assuming this time th@} is randomly generated at each scheduling period, according
to an isotropic distribution, while preserving the unitargnstraint. The intuition behind that
scheme is that the colummg, i = 1,..., N, are like orthogonal beams, and if there are enough
users in the cell, each beam will be aligned with a given gsselnannel while simultaneously
being nearly orthogonal to the other selected users’ chanwéth this scheme it is possible to
spatially multiplexN users with a level of feedback given by one scalar and onexiridethe
case of a large number of active users, opportunistic nbekim schemes are shown to yield
an optimal capacity growth aV loglog U for fixed N, which is precisely the scaling obtained
with full CSIT, as shown in (5).

C. Living with sparse networks

A limitation of fixed or random opportunistic beamformingpapaches is that the optimal
capacity scaling emerges for large, sometimes impractimaiber of simultaneously active
users in the cell. The performance degrades with decreasindper of users (sparse networks),
and this degradation is amplified when the number of tranami¢nnas increases, as intuition
also reveals. The lack of robustness of these approachesas evith small to moderate number
of users is a serious problem that can be resolved by modifyia random beams for a better
matching with the actual users’ channels. This can be dorigtlator no extra feedback cost
by one of several means. In one approach, the unitary camistsarelaxed by introducing a
power control across the beams. The SINR feedback is usedjustahe power allocated to
each beam [35] or simply to turn off certain beams [45], theducing inter-user interference
when the random beams are not well aligned with users’ chsnheFig. 4, we compare the
robustness of the single-beam ORBF [44] and multi-beam ORBFE both with SINR feedback,
with respect to the number of active users in the cell. Withr fantennas at the BS, at 10dB SNR,
simulations suggest that at least 12 simultaneously aosees are required for the multi-beam
gains to kick in. Whether this condition is met in practicenot is an interesting open research
problem whose solution is likely to depend on the considéraffic, operational scenario, and
delay constraint. With less users, the lack of CSIT destthgsbenefits of user multiplexing.
Interestingly, a strategy allowing for beam power contromulti-beam ORBF [35] allows for

a smooth transition between TDMA and SDMA regions, as shawitme figure.
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Fig. 4. The sum rate is compared for random beamforming sebemith SINR feedback. Multi-beam (SDMA) random
beamforming outperforms the single beam (TDMA) when the loeimof active users is sufficient. Power control over the
random beams allows for a smooth transition between TDMASDWMA. TDMA with full CSIT outperforms partial feedback

schemes for small number of users but fails to provide mekipg gain when this number increases.

Yet another approach is to exploit the second order stisif the channel, either in the
temporal or in the spatial domain. The time domain approaxtsists in exploiting the natural
temporal correlation of the channel to help refine the beawes ttime [46], [47]. In the spatial
domain, statistics give information about spatial sepétgbwhich is instrumental to a proper

beamforming design. Such aspect is described below.

D. Use of spatial statistical feedback

In practical, especially outdoor, networks, the i.i.d. mh@ model used so far does not hold
and each user tends to exhibit different channel statistibe advantage of statistical CSlI is
its long coherence time compared with that of the fading nkanSeveral forms of statistical
CSI are even reciprocal (i.e. holds for both uplink and damknlfrequency) such as second
order correlation matrix, power of Ricean component, etied do not necessitate any feedback.

Overall, spatial channel statistics reveal a great deatfofmation on theanacroscopic nature of
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the underlying channel, including the multipath’s meanlarmg arrival/departure and its angular
spread. More generally a substantial amount of channeltisbn information (CDI) is revealed
by channel statistics which can be used to infer knowledgenean user separability. Clearly
however, in fading channels, the CDI ought to be complentewith some form of instantaneous
channel quality information (CQI) in order to extract mutter diversity gain. Combining CDI
and CQI can yield partial CSIT which is very well suited to\dng the scheduling stage of the
MU-MIMO problem. It is an open topic for research but somedeare presented below.
Consider the downlink of a network with single antenna nexjilwhere the BS exhibits
correlated transmit antennas. The channel is modeled edated Ricean fading, i.e. the channel
vector ofk-th user satisfiek;, ~ CN'(hy, Ry), whereh;, € C**V andR;, € CV*V are the mean

value and transmit covariance matrix, respectively, knowithe BS. A general form of CQI is

e = |heQul? (15)

whereQ;, € CV*L is a training matrix containind. orthonormal vector§q;,}~,. Conditioned
on the CQI feedback, a coarse estimate of the instantandwmmel realization and channel

correlation at the transmitter can be calculated as theitondl expectations
hy, = E(hy|7) Ry = E(hf'hy|7) (16)

which can be used to provide an MMSE estimate of the instaotas SINR [48]. Note that
with Q, = I, equation (15) falls back to a channel norm feedback.

Similarly, a maximum-likelihood (ML) estimation framewomaximizing the log-likelihood
function of the probability density function (pdf) df, under the scalar constraint (15) can be
formulated [49]. LetL = 1 andh;, ~ CN (0, R;) and CQI feedback; = |h.qx|?>. The solution

to the ML problem
max th{khéi
i (17)
st |heqel” =Y
is given by
~ h; R, hi

h;, = arg max — "
b, hi(qrql’)h?

which corresponds to the (dominant) generalized eigeavessociated with the largest positive

(18)

generalized eigenvalue of the Hermitian matrix pat;(q.qi’). Once the coarse channel esti-

mation is performed by the BS, it can be used to select upy wsers according to any number
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of previously described performance metric based on CS§TaAecond stage, more complete
CSIT may be requested by the BS only to the small set of selatders for a more accurate
precoding design. The performance exceeds that of rand@mfbbeming but depends on the

level of antenna correlation, i.e. angle spregdas is shown in Fig.5.

T T T T
=P~ MMSE full CSIT - exhaustive search
-B- Statistical feedback method
=-©- Random beamforming (ORBF)

9.5

Sum Rate [bps/Hz]

75 I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Angle spread, g,/mt

Fig. 5. Sum rate as a function of the angle spreadt the BS, where the number of transmit antennas is 2, thegee3NR

= 10dB, and the number of active users in the cell is 50.

Clearly the different approaches presented here for fesdisluction represent independent
strategies, which could be combined together for more tffmress. Certain techniques will
be suited to specific deployments scenarios. For instanperymistic schemes are suited to
densely populated networks. Schemes using temporaltgtsitégse better suited to low mobility
(indoor) setting, while the exploitation of spatial stats would be more effective in outdoor
cases where the elevation of the BS above the clutter desdhe angle spread of multipath

and gives rise to Ricean models.

VI. SYSTEM ISSUES

Although it is now widely recognized that MIMO techniques their generality, will be a key

element in the evolution of broadband wireless accessmagstepplications of multiuser MIMO
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solutions have yet to emerge. While spatial diversity ansidoaingle user MIMO techniques
are available in several products and standards, adaptiearza solutions including MU-MIMO
are mostly considered for TDD systems in low and moderateiliyolivhere channel state
information can be obtained from estimation in the uplink.

Note also that codebook based precoding schemes for SU- &htINNO are emerging in
existing and future standards [6]. MU-MIMO systems may h#we potential to achieve the
spectrum efficiency requirements set by operators for tix¢ geeneration of mobile communi-
cation systems [50]. Practical MU-MIMO applications ar#l shallenging however and further
studies seem needed in order to get a deeper understandihg rélated tradeoffs and system
gains (number of antennas, choice of algorithm, etc.).

When it comes to the crucial CSIT issue, one problem withglesg feedback metrics is
that the SINR measurement depends, among others, on theenwhlother terminals being
simultaneously scheduled along with the user making thesareaent. Certain metrics (such as
those in e.g [13], [42] ) assume a fixed number of scheduled SDkkrs. However, in practice,
methods allowing fast transitions between TDMA and SDMA ewavill be required. In such
cases, the number of simultaneous users and the availabkr par each of them will generally
be unknown at the terminal. Channel quality metric desigthis scenario is one of the largely
open challenges in multiuser MIMO.

Also, opportunistic scheduling in multiuser MIMO not onlgquires feedback for CSIT but
also signaling of scheduling decisions to the terminal. Té¢etlback and control loop in MU-
MIMO introduces a non-negligible overhead and latency ia siystem, which must carefully
be weighed against the capacity gains expected from sut¢hitpes. Certain scenarios look
promising (e.g. broadband best-effort internet accedfgre are more questionable, such as
Voice over Internet Protocol (VolP), where small packets &r be delivered with tight delay
constraints. In addition a poorly designed feedback chiacaresuffer from delays and cause the
reported channel quality metrics to the transmitter to bielated, bringing further degradations
[51].

Another fundamental aspect is the impact of realistic taffiodels and system loads, es-
pecially on schemes relying on high user loads (e.g. randeamiforming). In recent wireless
systems based on MIMO-OFDMA [7], opportunistic schedulicen be performed in up to

three dimensions namely time, frequency, and space. Biffdypes of traffic are likely to have
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different constraints with respect to the available degretfreedom for the scheduler. For
example, real-time services typically have tight delaystaints and limit the flexibility of the

scheduler in the time domain. One may then wonder how neffiegtive users are available
for selection by the scheduler in each of these dimensiams,haw to take advantage of the

different degrees of freedom to satisfy the QoS constrdortslifferent types of traffic?

VII. DISCUSSION

MU-MIMO networks reveal the unique opportunities arisimgrh a joint optimization of
antenna combining techniques with resource allocatiotopats (power control, user schedul-
ing). MU-MIMO approaches are expected to provide significanltiplexing (on the order of
the number of antennas used at the transmitter) and divegyaihs while resolving some of the
issues associated with conventional single user MIMO. Nwytéorings robustness with respect
to multipath richness, allowing for compact antenna sgaairthe BS, and crucially, yielding the
diversity and multiplexing gains without the need for npliti antenna user terminals. To realize
these gains, however, the BS should be informed with thésuseannel coefficients which may
limit practical application to TDD or low-mobility settirsg To circumvent this problem and
reduce feedback load, combining MU-MIMO with opporturgéssicheduling seems a promising
direction. The success for this type of scheduler is styohgiffic and QoS-dependent however.
A number of complementary approaches geared toward fekdbdaction were proposed which
may to restore the robustness of MU-MIMO techniques withpees to a wider range of
application and environments. These results and othepipeaince studies with low feedback
schemes suggest that MU-MIMO transmitters can cope witly eearse channel information.
From a theoretical point of view, the impact and design of ptinaal form of CSIT under finite

rate feedback is still an open and exciting problem.
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