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Abstract

In multiuser MIMO networks, the spatial degrees of freedom offered by multiple antennas can be

advantageously exploited to enhance the system capacity, by scheduling multiple users to simultaneously

share the spatial channel. This entails a fundamental paradigm shift from single user communications,

since multiuser systems can experience substantial benefitfrom channel state information at the transmit-

ter and, at the same time, require more complex scheduling strategies and transceiver methodologies. This

paper reviews multiuser MIMO communication from an algorithmic perspective, discussing performance

gains, tradeoffs, and practical considerations. Several approaches including non-linear and linear channel-

aware precoding are reviewed, along with more practical limited feedback schemes that require only

partial channel state information. The interaction between precoding and scheduling is discussed. Several

promising strategies for limited multiuser feedback design are looked at, some of which are inspired

from the single user MIMO precoding scenario while others are fully specific to the multiuser setting.
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I. INTRODUCTION

The last ten years have witnessed the transition of multiple-input multiple-output (MIMO)

communication from a theoretical concept to a practical technique for enhancing performance of

wireless networks [1]. Point-to-point (single user) MIMO communication promises large gains

for both channel capacity and reliability, essentially viathe use of space-time codes (diversity gain

oriented) combined with stream multiplexed transmission (rate maximization oriented). In such

a traditional single user view of MIMO systems, the extra spatial degrees of freedom brought

by the use of multiple antennas are exploited to expand the dimensions available for signal

processing and detection, thus acting mainly as a physical (PHY) layer performance booster.

In this approach the link layer protocols for multiple access (uplink and downlink) indirectly

reap the performance benefits of MIMO antennas in the form of greater per-user rates, or more

reliable channel quality, despite not requiring full awareness of the MIMO capability.

The recent development of cross-layer techniques, aimed atthe joint design of the PHY

layer’s modulation and link layer’s multiple access protocols has begun to shatter this view. This

is especially true in MIMO networking where the positive role played by the spatial dimension

on multiple access and scheduling is now being recognized, replacing the simplistic view of

MIMO as a pure PHY technology. A better understanding of the impact of MIMO antennas

on multiuser communications is, by large, due to progress inthe field of multiuser information

theory [2]. Fundamental recent results in this area have hinted at how deeply connected PHY layer

modulation/coding and link layer resource allocation and scheduling can be, at least when having

overall optimum system design as objective. One interesting example of this is the conflict and

degradation that may arise from certain uncoordinated designs at the PHY and link layer when

both layers attempt to extract diversity (e.g. use of channel-hardening [3] single-user space-time

codes at the PHY combined with multiuser diversity scheduling at the link layer).

Multiuser MIMO (MU-MIMO) information theory advocates forthe use of spatial sharing

of the channel by the users. Such a multiple access protocol implies an extra hardware cost

(antennas and filters) but does not involve any bandwidth expansion, unlike say time-division

(TDMA) or code-division (CDMA) multiple access1. In spatial multiple access, the resulting

multiuser interference is handled by the multiple antennaswhich in addition to providing per-

1Classical multiple access protocols such as TDMA, CDMA, canbe used on top of spatial multiple access.
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link diversity also give the degrees of freedom necessary for spatial separation of the users (see

e.g. [1] Part IV). In practice, MU-MIMO schemes with good complexity/performance tradeoffs

can be implemented to realize these ideas. On the uplink or multiple access channel (MAC), the

development of MU-MIMO techniques appears as a generalization of known single user MIMO

concepts to the multiuser case. As usual in information theory, the downlink or broadcast channel

(BC) case is by far the most challenging one. Information theory reveals that the optimum

transmit strategy for the MU-MIMO broadcast channel involves a theoretical pre-interference

cancellation technique known as dirty paper coding (DPC) combined with an implicit user

scheduling and power loading algorithm. In that respect, the role played by seminal papers

such as [4] was fundamental. In turn, several practical strategies have recently been proposed to

approach the rates promised in the MU-MIMO channel involving concepts such as linear and

non-linear channel-aware precoding, channel state feedback, and multiuser receivers. A number

of corresponding scheduling and user selection algorithmshave also been proposed, leveraging

features of different MU-MIMO strategies.

Multiuser MIMO techniques and performance have begun to be intensely investigated because

of several key advantages over single user MIMO communications.

• MU-MIMO schemes allow for a direct gain in multiple access capacity (proportional to the

number of base station (BS) antennas) thanks to so-called multiuser multiplexing schemes.

• MU-MIMO appears more immune to most of propagation limitations plaguing single user

MIMO communications such as channel rank loss or antenna correlation. Although increased

correlation still affects per-user diversity, this may notbe a major issue if multiuser diversity

[5] can be extracted by the scheduler instead. Additionally, line of sight propagation, which

causes severe degradation in single user spatial multiplexing schemes, is no longer a problem

in multiuser setting.

• MU-MIMO allows the spatial multiplexing gain at the base station to be obtained without

the need for multiple antenna terminals, thereby allowing the development of small and

cheap terminals while intelligence and cost is kept on the infrastructure side.

The advantages above unfortunately come at a price. Perhapsthe most substantial cost is

due to the fact that MU-MIMO requires (although benefits from) channel state information at

transmitter (CSIT) to properly serve the spatially multiplexed users. CSIT, while not essential in
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single user MIMO communication channels, is of critical importance to most downlink multiuser

precoding techniques. The need for CSIT feedback places a significant burden on uplink capacity

in most systems, exacerbated in systems with wideband (e.g.OFDM) communication or high

mobility (such as 3GPP-LTE [6], WiMax [7], etc.). Finally, another challenge related to MU-

MIMO cross-layer design lies in the complexity of the scheduling procedure associated with the

selection of a group of users that will be served simultaneously. Optimal scheduling involves

exhaustive search whose complexity is exponential in the group size, and depends on the choice

of precoding, decoding, and channel state feedback technique.

Inspection of recent literature reveals several differentschools of thought on the MU-MIMO

downlink, each advocating a different combination of precoding, feedback, and scheduling

strategies. Precoding strategies include linear minimum mean square error (MMSE) or zero-

forcing (ZF) techniques and non-linear approaches. Examples of the latter are vector perturbation,

DPC techniques and Tomlinson-Harashima precoding (a number of references are listed below).

Many different feedback strategies have been suggested including vector quantization, dimension

reduction, adaptive feedback, statistical feedback, and opportunistic spatial division multiple

access (SDMA). Finally, a number of scheduling disciplineshave been suggested including

max-rate techniques, greedy user selection, and random user selection.

Paper organization and contributions: The goal of this article is to provide a unified view of

the state-of-the-art in MU-MIMO communication, with particular emphasis on the fundamental

differences with single user MIMO communication as well as on the cross-layer implications

of MU-MIMO. We give an overview of some of the key promises andchallenges of multiuser

MIMO communications for use in tomorrow’s high efficiency cellular networks, focusing on the

more interesting MU-MIMO downlink. We focus on the paradigmshift occurring for MIMO

techniques when transitioning from a traditional single user, PHY layer modulation/coding design

approach to a multiuser, cross-layer design view of wireless communications. We first emphasize

lessons learned from multiuser information theory in termsof i) capacity bounds and ii) multiple

access/resource allocation design for MIMO networks. Promising signal processing techniques

are reviewed and their complexity/performance tradeoffs are discussed. Different algorithms for

dealing with channel state information feedback are discussed in detail including reciprocity,

quantization, and opportunistic approaches. Connectionswith user scheduling techniques are

highlighted and some joint MIMO transmission and scheduling procedures are presented. Per-
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formance plots are shown for the most promising combinationof precoding, feedback, and

scheduling strategies. Finally we briefly describe system issues pertaining to MU-MIMO.

II. PROMISES AND CHALLENGES OF MULTIUSERMIMO NETWORKS

MU

user 1

user k

user U

M1

Mk
base station (N antennas)

U users (user k has Mk antennas)

Fig. 1. Downlink of a multiuser MIMO network: A BS communicates simultaneously with several multiple antenna terminals.

A. Lessons learned from multiuser information theory

As often with important discoveries within the field of communications, the initial impulse

responsible for attracting today the attention of a wide research community toward multiple

antenna multiuser systems has not been of theoretical nature. Instead, current MU-MIMO ideas

can be seen as the heirs to a long series of engineering advances started back in 1970s and 1980s

in the area of antenna array-based communications. In fact it has been known for over three

decades that making use of antenna arrays could enable the simultaneous communications with

multiple users solely separated from their spatial signatures. This concept early on was labeled

as SDMA, and is very closely related to that of today’s MIMO spatial multiplexing, which can

be interpreted as multiplexing the data streams of "virtual" users.

Nonetheless, progress in the field of multiuser informationtheory has been instrumental in

understanding the fundamental nature and limits of the gains associated with exploiting multiple

antennas in wireless networks, often also suggesting ideasfor actual algorithms. We now review

some aspects of multiuser MIMO information theory, with an eye for the key lessons learned from
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this field towards practical system design. A complete studyof multiuser MIMO information

theoretic progress is beyond the scope of this paper. Good references on the topic include [8],

and [1], Chap. 18 and 19.

We focus on the communication between a BS or an access point equipped withN antennas,

and U active terminals, where each active userk is equipped withMk antennas. Among

all terminals, the set of active users is roughly defined by the set of users simultaneously

downloading or uploading packets during one given scheduling window. The length of the

window is arbitrary but should not exceed the maximum latency expected by the application

(likely as small as a few tens of ms to several hundred ms). By all means the active users over

one given window will be asmall subset of the connected users, themselves forming a small

subset of the subscribers. We consider both the uplink and downlink but will emphasize on the

challenges associated with the downlink for several reasons explained later.

In the uplink, the received signal at the BS can be written as

y =

U∑

k=1

HT
k xk + n (1)

wherexk is the Mk × 1 user signal vector, possibly encompassing power-controlled, linearly

combined, constellation symbols.Hk ∈ CMk×N represents the flat-fading channel matrix2 andn

is the i.i.d, unit-variance, additive Gaussian noise vector at the BS. We assume that the receiver

k has perfect and instantaneous knowledge of the channelHk.

In the downlink, illustrated in Fig.1, the received signal at the k-th receiver can be written as

yk = Hkx + nk for k = 1, . . . , U (2)

whereHk ∈ CMk×N represents the downlink channel andnk ∈ CMk×1 is the additive Gaussian

noise at receiverk. We assume that each receiver also has perfect and instantaneous knowledge

of its own channelHk. The transmitted signalx is a function of the multiple users’ information

data, an example of which takes the superposition form

x =
∑

k

xk (3)

2We focus on the flat-fading model here for the sake of exposition. Wideband models, using e.g. OFDM, can be accommodated

by using a dependency on a frequency index. The transpose operator is simply used by convention for consistence with the

downlink notation and does not presume a reciprocal link.
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wherexk is the signal carrying, possibly non-linearly encoded, user k’s message, with covariance

Qk = E(xkx
H
k ), with E(·) the expectation operator. The power allocated to userk is therefore

given byPk = Tr(Qk), where Tr is the trace operator. Under a sum power constraintat the BS,

the power allocation needs to maintain
∑

k Pk ≤ P .

In contrast to single user systems where the capacity is a single number, the capacity of a

multiuser system withU users is characterized by aU-dimensional rate region, where each point

is a vector of achievable rates by all theU users simultaneously. Although the characterization

of general broadcast capacity region is a long standing problem (unlike that in the MAC/uplink),

substantial progress has been made for Gaussian MIMO channels. Despite not being degraded,

the Gaussian MIMO BC channel offers significant structure that can be exploited to characterize

its capacity region. Considering full CSIT, the particularrole played by the dirty paper coding

(DPC) in achieving points in the region was revealed by the seminal work [4]. Assuming a

unit variance for the noise, it is now known that the capacityregion for a given matrix channel

realization can be written as [9]:

CBC =
⋃

P1,..PU s.t.
P

k Pk=P




(R1, ..RU ) ∈ ℜ+U , Ri ≤ log2

det
[
I + Hi(

∑
j≥i Qj)H

H
i

]

det
[
I + Hi(

∑
j>i Qj)HH

i

]




 (4)

where the above expression should in turn be optimized over each possible user ordering.

Although difficult to realize in practice, the computation of the region above is facilitated by

exploiting the so-calledduality results between the BC and the much simpler-to-obtain MAC

capacity region, which stipulate that the BC region can be calculated through the union of regions

of the dual MAC with all uplink power allocation vectors meeting the sum power constraintP

[10], [11].

The fundamental role played by the multiple antennas at either the BS or the users in expanding

the channel capacity is best apprehended by examining how the sum rate (the point yielded by

the maximum
∑

k Rk in the region) scales with the number of active users.

Assuming a block fading channel model and an homogeneous network where all users have

the same signal-to-noise ratio (SNR), the scaling law of thesum rate capacity of MIMO Gaussian

BC, denoted asRDPC , for Mk = M , fixed N andP , and largeU is given by [12]

lim
U→∞

E(RDPC)

N log log(UM)
= 1. (5)
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The result in (5) indicates that, with full CSIT, the system can enjoy a multiplexing gain of

N , obtained by the BS sending data toN carefully selected users out ofU . Since each user

exhibitsM independent fading coefficients, the total number of degrees of freedom for multiuser

diversity isUM , thus giving the extra gainlog log(UM).

In contrast with (5), the capacity obtained in a situation where the BS is deprived from the

users’ channel information is reduced to (in the high SNR regime)

E(RNoCSIT ) ≈ min(M, N) log SNR. (6)

1) Design lessons: Information theory highlights several fundamental aspects of multiuser

MIMO systems, which come in much contrast with the conventional single user MIMO setting.

First the results above advocate for serving multiple userssimultaneously in a SDMA fashion,

with a suitably chosen precoding scheme at the transmitter.Although the multiplexing gain is

limited by the number of transmit antennas, the number of simultaneously served users is in

principle arbitrary. How many and which users shouldeffectively be served with non zero power

at any given instant of time is the problem addressed by the resource allocation algorithm. Unlike

in the single user setting, the spatial multiplexing of different data streams can be done while

users are equipped with single antenna receivers, thus enabling the capacity gains of MIMO

while maintaining a low cost for user terminals. Having multiple antennas at the terminal can

thus be viewed as optional equipment allowing extra diversity gain for certain users or giving the

flexibility toward interference canceling and multiplexing of several data streams to such users

(but reducing the number of other users served simultaneously). In addition to yielding MIMO

multiplexing gains without the need for MIMO user terminals, the multiuser setup presents the

advantage of being immune with respect to the possible ill-behavior of the propagation channel

which often plagues single user MIMO communications, i.e. rank loss due to small spacing

and/or the presence of strong line of sight component. In themultiuser case, the full rank of

the global channel matrix is almost surely guaranteed thanks to the wide physical separation

between the users.

Finally, also in contrast with the conventional single userMIMO setting, the multiplexing

factorN in the downlink comes at the condition of channel knowledge at the transmitter. In the

uplink this multiplexing gain is more easily extracted because the BS can be safely assumed to
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have uplink channel knowledge and simply implements a classical multiuser receiver to separate

the contributions of the selected users in (1).

In the downlink, in the absence of CSIT, user multiplexing isgenerally not possible, as the BS

just does not know in which ‘direction’ to form spatial beams. Thus, the complete lack of channel

state information (CSI) knowledge reduces the multiplexing gain to unity. The exception lies in

scenarios with terminal devices having enough antennas to remove co-stream interference at the

receiver (Mk ≥ N). In the latter case, the base may decide to either multiplexseveral streams

to a single user or spread the streams over multiple users, achieving an equivalent multiplexing

gain in both cases. This is conditioned however on the individual user channels to be full rank.

Hence, the advantage of having CSIT in MU-MIMO lies in the possibility of not only serving

single antenna users but also relaxing the dependence on single-user channel full rank.

Providing CSIT at the base poses serious challenges in practical settings where the channel

information needs be conveyed via a limited feedback channel in the uplink. The often unrealistic

assumption of close to perfect CSIT, as well as the considerable capacity gap between full and

no CSIT, have motivated research work on schemes employing partial CSIT. Partial CSIT refers

to any possible form of incomplete information on the channel, obtained by any of several

means detailed later. Fortunately, work like [13] demonstrates that the optimal capacity scaling

of capacity for the MIMO Gaussian BC, i.e.N log(SNR log U) assumingU single antenna users,

can be achieved forU → ∞ even though the transmitter has only partial channel knowledge.

Finding the information theoretic optimum strategy for exploiting partial channel knowledge

at the transmitter is still an open and intriguing question,despite the many proposals in the

literature, some of them being presented later in this paper.

2) MU-MIMO and resource allocation: One of the fundamental lessons learned from informa-

tion theoretic studies is that resource allocation techniques help to exploit the gains of multiuser

MIMO systems. From a multiuser information theoretic perspective, the capacity region boundary

is achieved by serving allU active users simultaneously, whereU is possibly a large number,

the resource that should be allocated to each one, in the formof e.g. Pk, is surely dependent

on the instantaneous channel conditions and may vary greatly from user to user. The fact that

the multiplexing gain is limited toN also suggests that the number of userseffectively served

with non-zeroPk at any given instant of time is directly related to the numberof antennas at

the BS, which is considerably less than the number of active cell users. Studies show in fact
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that the optimal number of users with non zero allocated power for any given realization of

the channel is upper bounded byN2 [14]. In the remainder of the paper we shall refer to this

subset of users as the "selected" users. When restricting tolinear precoding techniques such as

ZF, the number of served users is directly limited by the number of degrees of freedom at the

BS, N . This motivates the need to pick a good set of users, which is the aim of the resource

allocation algorithm. In particular, the scheduler selects among all possible active users, for each

channel realization, an optimal subgroup of terminals and respective power levels within the

subgroup, so as to maximize a given performance metric. Sucha metric can be the sum rate or

the realization of per-user rate targets while minimizing transmit power. To maximize the sum

rate, the scheduler algorithm looks for users that exhibit acompromise between a high level of

instantaneous SNR (to maximize multiuser diversity [5])and a good separability of their spatial

signatures to facilitate user multiplexing. Practical andlow complexity algorithms to solve the

user scheduling problem are presented later in this paper.

III. MU-MIMO SCHEMES WITH PERFECT CHANNEL KNOWLEDGE AT THE TRANSMITTER

We now turn to signal processing approaches to the MU-MIMO transmission problem. We

choose to emphasize the downlink as it offers the most interesting challenges to a system designer.

In the uplink, the signal model in (1) is clearly reminiscentof a classical multiuser detection

problem [15] as far as receiver design is concerned and is notaddressed here further.

As mentioned earlier, the maximum sum rate in the broadcast channel can be achieved by

DPC at the BS [9]. The key idea of DPC is to pre-cancel interference at the transmitter using

perfect CSI and complete knowledge of the transmitted signals. DPC, while theoretically optimal,

is an information theoretic concept that has proven to be difficult to implement in practice. In

this section we expand our study to a wider range of schemes, also relying on full CSIT, yet

allowing a compromise between complexity and performance.We summarize several practical

transmission techniques using either linear or non-linearprecoding [16]–[19].

A. Linear precoding

Linear precoding is a generalization of traditional SDMA, where users are assigned different

precoding matrices at the transmitter. The precoders are designed jointly based on CSI of all the

users, based on any number of designs including ZF and MMSE.
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From a practical point of view, the relevant criteria are error probability and sum rate,

maximizing SINR etc. The difficulty of designing capacity-optimal downlink precoding, mainly

due to the coupling between power and beamforming and the user ordering, has lead to several

different approaches ranging from transmit power minimization while maintaining individual

SINR constraints to worst case SINR maximization under a power constraint. Duality and

iterative algorithms are often used in order to provide solutions [20].

To explain the concept of linear precoding, consider the scenario where this timesk and

nk denote thek-th transmit symbol vector (for beamforming scenario,sk is a scalar symbol),

and the additive white Gaussian noise vector. The actual transmitted signal vector for userk

is then given byWksk, whereWk denotes the precoding matrix for thek-th user. We assume

that service will be provided to a set ofK selected users (among all active ones). Scheduling

algorithms as discussed in the sequel can be applied to perform this selection across possible

subsets. The received signal vector at thek-th user is

yk = HkWksk + Hk

K∑

l=1,l 6=k

Wlsl + nk (7)

We assume that each user hasMk antennas and will decode theSk ≤ Mk streams that constitute

its data. The goal of linear precoding is to design{Wk}K
k=1 based on the channel matrix

knowledge, so a given performance metric is maximized for each stream.

One of the simplest approaches for finding the precoder is to premultiply the transmitted

signal by a suitably normalized ZF or MMSE inverse of the multiuser matrix channel [21], [22].

In this case, it can be assumed for simplification thatMk = Sk = 1. ThusHk = hk is a row

vector andWk (the precoding vector for thek-th user) is chosen as thek-th column of the right

pseudo-inverse (or MMSE inverse) of the composite channel
[
hT

1 ,hT
2 , . . . ,hT

K

]T
. In the case

when the selected users are not sufficiently separable, thisapproach may result in inefficient use

of transmit power, causing a large rate loss with respect to the optimum sum capacity solution.

This problem, however, is shown to be fixed by the scheduler when the number of active users to

choose from is large enough so near-orthogonal users with good SNR conditions can be found.

An additional disadvantage is that this approach does not readily extend to multiple receive

antennas or streams without further degradation.

A generalization of the ZF or MMSE beamforming is to combine linear beamforming with

a suitable power control policy set to maximize the sum rate or realize individual signal-to-
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interference-plus-noise ratio (SINR) requirements for each user. Several approaches have been

proposed including maximizing the jointly achievable SINRmargin under a total power constraint

and minimizing the total transmission power while satisfying a set of SINR constraints [20]. The

authors in [20] showed that the global optimum of beamforming can be obtained from solving a

dual uplink problem and proposed a rapidly converging iterative algorithm to reduce crosstalk.

Note that this approach does not maximize the achievable sumrate due to the SINR constraints,

but does allow inclusion of different users’ rate requirements in the problem formulation.

Another generalization of ZF beamforming is provided by block diagonalization (BD), which

assumesMk = Sk ≥ 1 and
∑K

k=1 Mk = N . The idea is to chooseWk such thatHlWk = 0,

∀l 6= k, thus precanceling the interference in (7) so thatyk = HkWksk + nk. If we defineH̃k

as

H̃k =
[

HT
1 · · · HT

k−1 HT
k+1 · · · HT

K

]T

(8)

then any suitableWk lies in the null space of̃Hk. Let the singular value decomposition (SVD)

of H̃k be

H̃k = ŨkD̃k

[
Ṽ

(1)
k Ṽ

(0)
k

]H

, (9)

whereŨk and D̃k are the left singular vector matrix and the matrix of singular values ofH̃k,

respectively, and̃V(1)
k and Ṽ

(0)
k denote the right singular matrices each corresponding to non-

zero singular values and zero singular values, respectively. Any precoderWk that is a linear

combination of the columns of̃V(0)
k will satisfy the null constraint. Assuming that̃Hk is full

rank, the transmitter requires that the number of transmit antennas is at least the sum of all

users’ receive antennas to satisfy the dimensionality constraint required to cancel interference

for each user [18]. Under the BD constraint,Wk can be further optimized based on waterfilling.

If excess antennas are available, eigenmode selection or antenna subset selection can be used to

further improve performance [23].

A disadvantage of BD is that it requiresMk = Sk. This can be solved by including the receive

processing in the problem formulation. For example, with a linear receive combining matrixVk

for userk, the received signal can be expressed as

yk = VH
k HkWksk + VH

k Hk

K∑

l=1,l 6=k

Wlsl + VH
k nk (10)

DRAFT



13

The design problem then becomes selecting{Wk,Vk}K
k=1 jointly such thatVH

k Hk

K∑

l=1,l 6=k

Wl =

0, ∀k. This cannot be solved in closed form, thus several iterative solutions have been proposed,

including e.g. [17], [19]. In such approaches, the transmitter generally computes a new effective

channel for each userk using the initial receive combining vector. Using this new effective

channel, the transmitter recomputes the transmit filterwk to enforce a zero interference condition,

and the receive filtervk for each user. The algorithm repeats this process until satisfying a

convergence criterion. To extend this algorithm to multiple data streams for each user, the matrix

of right singular vectors is used based on the number of data streams and is used to calculate

the effective channel matrix [16], [17], [19]. To avoid the use of extra feedback between the

users and the BS, the computation of all filters (transmit andreceive) normally takes place at

the BS. After this computation, either the users must acquire the effective combined channel or

information about the transmit filters must be sent.

B. Non-linear precoding

Linear precoding provides reasonable performance but may remain far from DPC-like pre-

coding strategies when the available set of active users to choose from is small. Non-linear

precoding involves additional transmit signal processingto improve error rate performance. In

this section, we discuss two representative methods, one based on perturbation [24], the other

based on a spatial extension of Tomlinson-Harashima precoding (THP) [25].

Vector perturbation uses a modulo operation at the transmitter to perturb the transmitted signal

vector to avoid the transmit power enhancement incurred by ZF methods [24]. Finding the optimal

perturbation involves solving a minimum distance type problem and thus can be implemented

using sphere encoding or full search based algorithms.

Let H denote aK ×N multiuser composite channel, assuming each user has a single receive

antenna. The idea of perturbation is to find aperturbing vector p from an extended constellation

to minimize the transmit power. The perturbationp is found by solving

p = arg min
p′∈ACZK

‖G(s + p′)‖2 (11)

whereG is a some transmit matrix such that Tr(GHG) ≤ P , s is a modulated transmitted signal

vector and the scalarA is chosen depending on the original constellation size (e.g., A = 2 for

QPSK), andCZK is the K-dimensional complex lattice. ZF or MMSE precoder can be used
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for the transmit matrixG. A set of points is used to represent symbols which are congruent

to the symbol in the fundamental region. After pre-distortion using ZF or MMSE precoder, the

resulting constellation region also becomes distorted andthus it takes more power to transmit

the original point than before distortion. Among the equivalent points, if the transmitter sends

the point that is the one closest to the origin to minimize transmit power, the receiver finds its

equivalent image inside the fundamental constellation region using a modulo operation. This

problem can be regarded asK-dimensional integer-lattice least squares problem and thus search

based algorithms can be implemented. There are other methods to simplify the search based

methods [26].

Several algorithms have also been proposed based on variations of Tomlinson-Harashima

precoding (THP) [25], [27]. THP was originally proposed foruse with anZ point one-dimension

pulse amplitude modulation (PAM) signal as a temporal equalization. For this constellation, THP

is the same as the inverse channel filter except that an offset-free modulo 2Z adder is used. If

the result of the summation is greater thanZ, 2Z is subtracted until the final result is smaller

thanZ. Similarly, if the result of the summation is less than−Z, 2Z is added until satisfying

the peak constraint. While in the original THP, a single channel is equalized with respect to

time, spatial equalization is required for MIMO channels.

So far, we reviewed linear and non-linear multiuser MIMO solutions to approximate the sum

capacity. In Fig. 2, we compare sum capacity and achievable sum rates for DPC, coordinated

beamforming [19], time sharing single user closed loop MIMO(choosing only one user having

the best channel quality and applying the SVD), and zero-forcing beamforming (ZFBF) with

the dimensionality constraint [28]. In this case, no scheduling algorithm is required for DPC,

coordinated beamforming and ZFBF. We will investigate scheduling issues in Section IV. Note

that for the(T, 1, T ) scenario (i.e. the user has only one receive antenna while the BS hasT

transmit antennas and there areT active users in the network), there is the big gap between DPC

and ZFBF but this gap is decreased when the receivers have multiple antennas. For additional

tradeoff analysis between linear and non-linear precodingstategies, the reader may also see [29].

IV. USER SCHEDULING INMU-MIMO NETWORKS

In this section, we consider the problem of choosing a subsetof users for transmission in the

MIMO BC. A brute-force complete search over all possible combinations of users guarantees
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Fig. 2. Ergodic sum capacity and achievable sum rate as a function of the number of users, the number of transmit/receive

antennas.(T1, T2, T3) denotes the number of transmit antennas at the BS, the numberof receive antennas at the user, and the

number of active users in the network, respectively. Coordinated BF refers to the method presented in [19].

to maximize the throughput but the computational complexity is prohibitive when the number

of users is large. Due to the complexity of the search process, both optimal and suboptimal

approaches are considered. A key idea for low complexity multiuser scheduling is that ofgreedy

search.

A. Optimal scheduling for the MU-MIMO downlink

The theoretical capacity results in Section II illustrate that in general the MIMO BC results

in transmission to more than one user at a time. The problem ofselecting a subset of users

for transmission is a user scheduling problem, and the gain is achieved in a form of multiuser

diversity. In this section we summarize some scheduling algorithms for different multiuser MIMO

solutions.

It is known that linear beamforming can achieve the sum capacity when the number of active

users in the system is large [12], [28], [30]. In [28], the users are equipped with only one

receive antenna and ZFBF is performed at the transmitter. Analogous to BD, this full search
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based user selection algorithm can be extended to the multiple stream scenario. For simplicity,

in this section, we assume that the number of receive antennas is equal to the number of data

streams, where the postcoderV is not needed in this case, and thus BD can be implemented.

SupposeU = {1, 2, · · · , U} is the set of all users, andAk one possible subset of selected users

in U . Let A be the set including all possibleAi, i.e.,A = {A1,A2, · · · }. Then total achievable

rate with BD is given by

RBD|Ak
(HAk

, P, σ2) = maxP
j∈Ak

Tr(Qj)≤P

∑

j∈Ak

log

∣∣∣∣∣I +
HjWjQjW

H
j HH

j

σ2

∣∣∣∣∣ (12)

whereQj = E(xjxj)
H is the input covariance matrix for the userj, Wj is the precoding matrix

earlier defined, and the same noise varianceσ2 is assumed at all users. Therefore the maximum

total sum rate with BD is given by

RBD(H1,··· ,U , P, σ2) = max
Ak∈A

RBD|Ak
(HAk

, P, σ2). (13)

DenoteS as the maximum number of users to be supported. For the case ofBD, S ≤ N . Thus

the cardinality ofA is
∑S

i=1 Ci
U , whereCb

a is the combination ofa choosingb. Hence, it is clear

that the exhaustive search over all possible combinations is computationally prohibitive when

the number of users in the system is increased and thus low complexity user selection algorithm

is desired.

B. Greedy and iterative methods for user grouping

The complexity of the optimal scheduling is high, thus therehas been several suboptimal

algorithms that were proposed to reduce the computational complexity for user group selection,

among which [28], [30]–[32].

In the capacity-based greedy user selection algorithm, thetransmitter chooses the single user

with the highest channel capacity. Then, it finds the next user that provides the maximum sum

rate from the remaining unselected users. The algorithm is repeated untilK users are selected.

Clearly, the complexity of the capacity-based greedy user selection is no more thanU ×K user

sets, which greatly reduces the complexity compared to the exhaustive search method explained

in the previous section. Note that the full search method needs to consider roughlyO(UK)

possible user sets. The sum rate can be obtained under a number of transmit schemes, including

among others optimal non-linear precoders. Scheduling forthe non-linear precoders mentioned
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in Section III-B is an ongoing topic of research, though a fewresults have appeared including

a greedy user selection for zero-forcing dirty paper coding(ZFDPC) in [4], which has been

proposed in [30].

Apart from the sum rate under optimal precoding, several other metrics may be considered

for maximization at each step of the greedy scheduling algorithms, e.g. the multiuser MMSE,

or for very low complexity the Frobenius norm of the multiuser channel [32]. The idea of the

Frobenius norm-based user selection algorithm is to greedily select the set of users such that

the sum of the effective channel energy of those selected users is as large as possible. In the

case when the network has rate requirements, the selection of user groups aims at minimizing

the power required to achieve the desired rate targets.
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Fig. 3. Sum rate as a function of the number of users, where thenumber of transmit antennas is 4, the number of receive

antennas is 2, and the maximum number of selected users is 2.

Fig. 3 shows the sum rate versus the number of users forN = 4 andM = 2. For simplicity,

we only considered BD. The iterative based suboptimal solutions achieve about 95% compared

to full search based method and show significant gain againstround robin scheduler. Although

DPC achieves higher sum capacity than BD approaches, BD still achieves significant part of the

sum capacity requiring though only linear processing both at the BS and the user.

DRAFT



18

V. L IVING WITH PARTIAL CHANNEL KNOWLEDGE AT THE TRANSMITTER

One of the fundamental paradigm shifts associated with multiuser MIMO is the push of

intelligence and much of the signal processing complexity load from the terminals to the BS.

This emphasis on the processing at the BS is accompanied, however, with the requirement that

the BS be informed of the channel coefficients of all active users in the cell, prior to user group

selection.

In frequency-division duplex (FDD) systems and time-division duplex (TDD) systems without

calibration, often the only way for the BS to acquire channelstate information from each user is

through a feedback control channel. For example, control channels are used for power control or

adaptive modulation. Since the bandwidth required by the feedback control channel is overhead

that counts against the overall spectral efficiency of the system, and it grows in proportion to

the number of active users, there is a substantial interest in compressing the CSI and using it in

both the scheduling and the beam design algorithms.

Interestingly, although it was shown that the multiplexinggain disappears in the absence of

any CSIT [33], recent findings suggest that the BS can live with limited channel information at

the transmitter and still achieve a significant fraction of the capacity promised by the full CSIT

case, although the issues ofoptimally designed limited feedback for MU-MIMO transmission

techniques is still much open. MU-MIMO transmission designwith limited CSIT has in fact

evolved in a topic of research in its own right and many possible strategies can be pointed

out. The reader is pointed to [34] for a complete state-of-the-art in this area. A few selected

approaches are briefly exposed here.

One first key idea is based on splitting the feedback between the scheduling and the final

beam design (or "user serving") stages, thus taking profit from the fact the numbers users to be

served at each scheduling slot is much less than the number ofcell users.

In [35] it is proposed to reduce feedback during the scheduling phase, which can be performed

using rough channel estimates, while the stage of serving the scheduled group ofK users is

accomplished with near-perfect feedback as this concerns only a very small number of users

compared with the number of cell users. Feedback reduction during the scheduling stage can

be obtained via use of threshold-based pre-selection [36] combined with any of the approaches

described below. Thresholding can be practically implemented using opportunistic feedback [37],
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where users who exceed the threshold compete on a random access feedback channel. The

optimal way of splitting the feedback load across the scheduling stage and the beam design

stage is an interesting open problem, although design rulesexploiting known rate scaling laws

and bounds give promising results [38].

A. Quantization-based techniques

Quantization is the first idea that comes to mind when dealingwith source compression, in

this case the random channel matrix or the corresponding precoders being the possible sources.

The amount of feedback depends on the frequency of feedback (generally a fraction of the

coherence time), the number of parameters being quantized,and the resolution of the quantizer.

Most research focuses on reducing the number of parameters and the required resolution. The

feedback problem has been solved in single user MIMO communication systems using a concept

known as limited feedback precoding [39]. The key idea of this line of research has been to

quantize the precoder for a MIMO channel and not simply the channel coefficients. The challenge

of extending this work to the multiuser channel is that the transmit precoder depends on the

channels of the other users in the system.

Other methods for reducing feedback in MU-MIMO channels assume a single receive antenna

at the mobile - extensions to multiple receive antennas is anongoing research topic. Some

of the main results on this subject are due to [40], [41], where the random codebook and

Grassmannian quantization ideas are used to quantize the direction of each user’s channelhk.

The main observation in [40] is that the feedback requirements scale linearly both as the number

of transmit antennas grows and as a function of the SNR (in dB), unlike the single user case.

The reason is that quantization error introduces an SINR floor since it prohibits perfect inter-user

cancellation. Thus this error must diminish for higher SNRsin order to allow for a balancing

between the noise and the residual interference due to channel quantizing. An improvement

can be obtained by quantizing the channel vector and a certain received SINR upper bound

that is a function of the error between the true and quantizedchannel [42]. This increases the

performance of the system and helps in user selection. Thresholds based on sum rate constraints

on the feedback channel can also be used to reduce required feedback, yet maintain capacity

scaling [43].
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B. Dimension reduction and projection techniques

In addition to quantization-based approaches where the channel metric is discretized, dimen-

sion reduction techniques can be used that involve projecting the matrix channel onto one or

more basis vectors known to the transmitter and receiver. Inthat way, the CSI matrix of size

M × N is mapped into anp-dimensional vector with1 ≤ p ≤ M × N , thus reducing the

dimensionality of the CSI top complex scalars (which in turn may be quantized). Once the

projection is carried out, the receiver feeds back a metricϕk = f(Hk) which is typically related

to the square magnitude of the projected signal. Antenna selection methods fall into this category.

In this case, the projection is carried out by the terminal itself. Alternatively, the projection can

be the result of using a particular precoder at the BS. A good example of this approach is given

by a class of algorithms using unitary precoders. We now review this approach whenMk = 1

and the BS servesN users. In this case, thek-th user channel is a1 × N row vector denoted

by hk. The BS designs an arbitrary unitary precoderQ of sizeN ×N , further scaled for power

constraint. Each terminal identifies the projection of its vector channel onto the precoder by

hkQ, and reports an index and a scalar metric expressing the SINRmeasured under an optimal

beamforming vector selection:

ϕk = max
1≤i≤N

|hkqi|2

σ2 +
∑

j 6=i |hkqj |2
(14)

whereqi denotes thei-th column ofQ. The scheduling algorithm then consists in opportunisti-

cally assigning to each beamformerqi the user which has selected it and has reported the highest

SINR.

When the unitary precoder must be designed without any form of CSIT a priori, a scaled

identity matrix can be used. In this case, the algorithm falls back to assigning a different selected

user to each base antenna. In the small number of user case, the performance of such scheme is

plagued by inter-user interference. Fortunately interference tends to decrease as the number of

users to choose in the cell becomes high.

When the dynamics of the system are limited (low mobility), the use of a fixed set of

precoders may result in severe unfairness between the users. This problem can be alleviated by the

randomization of the beamforming vectors. The so-called Opportunistic Random Beamforming

(ORBF) was initially proposed for single user setting [44] and later generalized in [13]. The
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performance of these methods is illustrated below. The ideaof [13] can be recast in the context

above, assuming this time thatQ is randomly generated at each scheduling period, according

to an isotropic distribution, while preserving the unitaryconstraint. The intuition behind that

scheme is that the columnsqi, i = 1, . . . , N , are like orthogonal beams, and if there are enough

users in the cell, each beam will be aligned with a given user’s channel while simultaneously

being nearly orthogonal to the other selected users’ channels. With this scheme it is possible to

spatially multiplexN users with a level of feedback given by one scalar and one index. In the

case of a large number of active users, opportunistic multi-beam schemes are shown to yield

an optimal capacity growth ofN log log U for fixed N , which is precisely the scaling obtained

with full CSIT, as shown in (5).

C. Living with sparse networks

A limitation of fixed or random opportunistic beamforming approaches is that the optimal

capacity scaling emerges for large, sometimes impractical, number of simultaneously active

users in the cell. The performance degrades with decreasingnumber of users (sparse networks),

and this degradation is amplified when the number of transmitantennas increases, as intuition

also reveals. The lack of robustness of these approaches in cases with small to moderate number

of users is a serious problem that can be resolved by modifying the random beams for a better

matching with the actual users’ channels. This can be done atlittle or no extra feedback cost

by one of several means. In one approach, the unitary constraint is relaxed by introducing a

power control across the beams. The SINR feedback is used to adjust the power allocated to

each beam [35] or simply to turn off certain beams [45], thus reducing inter-user interference

when the random beams are not well aligned with users’ channels. In Fig. 4, we compare the

robustness of the single-beam ORBF [44] and multi-beam ORBF[13], both with SINR feedback,

with respect to the number of active users in the cell. With four antennas at the BS, at 10dB SNR,

simulations suggest that at least 12 simultaneously activeusers are required for the multi-beam

gains to kick in. Whether this condition is met in practice ornot is an interesting open research

problem whose solution is likely to depend on the consideredtraffic, operational scenario, and

delay constraint. With less users, the lack of CSIT destroysthe benefits of user multiplexing.

Interestingly, a strategy allowing for beam power control in multi-beam ORBF [35] allows for

a smooth transition between TDMA and SDMA regions, as shown in the figure.
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Fig. 4. The sum rate is compared for random beamforming schemes with SINR feedback. Multi-beam (SDMA) random

beamforming outperforms the single beam (TDMA) when the number of active users is sufficient. Power control over the

random beams allows for a smooth transition between TDMA andSDMA. TDMA with full CSIT outperforms partial feedback

schemes for small number of users but fails to provide multiplexing gain when this number increases.

Yet another approach is to exploit the second order statistics of the channel, either in the

temporal or in the spatial domain. The time domain approach consists in exploiting the natural

temporal correlation of the channel to help refine the beams over time [46], [47]. In the spatial

domain, statistics give information about spatial separability, which is instrumental to a proper

beamforming design. Such aspect is described below.

D. Use of spatial statistical feedback

In practical, especially outdoor, networks, the i.i.d. channel model used so far does not hold

and each user tends to exhibit different channel statistics. The advantage of statistical CSI is

its long coherence time compared with that of the fading channel. Several forms of statistical

CSI are even reciprocal (i.e. holds for both uplink and downlink frequency) such as second

order correlation matrix, power of Ricean component, etc.,and do not necessitate any feedback.

Overall, spatial channel statistics reveal a great deal of information on themacroscopic nature of
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the underlying channel, including the multipath’s mean angle of arrival/departure and its angular

spread. More generally a substantial amount of channel distribution information (CDI) is revealed

by channel statistics which can be used to infer knowledge onmean user separability. Clearly

however, in fading channels, the CDI ought to be complemented with some form of instantaneous

channel quality information (CQI) in order to extract multiuser diversity gain. Combining CDI

and CQI can yield partial CSIT which is very well suited to solving the scheduling stage of the

MU-MIMO problem. It is an open topic for research but some leads are presented below.

Consider the downlink of a network with single antenna mobiles, where the BS exhibits

correlated transmit antennas. The channel is modeled as correlated Ricean fading, i.e. the channel

vector ofk-th user satisfieshk ∼ CN (h̄k,Rk), whereh̄k ∈ C1×N andRk ∈ CN×N are the mean

value and transmit covariance matrix, respectively, knownto the BS. A general form of CQI is

γk = ‖hkQk‖
2 (15)

whereQk ∈ CN×L is a training matrix containingL orthonormal vectors{qki}L
i=1. Conditioned

on the CQI feedback, a coarse estimate of the instantaneous channel realization and channel

correlation at the transmitter can be calculated as the conditional expectations

ĥk = E(hk|γk) R̂k = E(hH
k hk|γk) (16)

which can be used to provide an MMSE estimate of the instantaneous SINR [48]. Note that

with Qk = I, equation (15) falls back to a channel norm feedback.

Similarly, a maximum-likelihood (ML) estimation framework maximizing the log-likelihood

function of the probability density function (pdf) ofhk under the scalar constraint (15) can be

formulated [49]. LetL = 1 andhk ∼ CN (0,Rk) and CQI feedbackγk = |hkqk|2. The solution

to the ML problem

max
hk

hkRkh
H
k

s.t. |hkqk|2 = γk

(17)

is given by

ĥk = arg max
hk

hkRkh
H
k

hk(qkq
H
k )hH

k

(18)

which corresponds to the (dominant) generalized eigenvector associated with the largest positive

generalized eigenvalue of the Hermitian matrix pair (Rk,qkq
H
k ). Once the coarse channel esti-

mation is performed by the BS, it can be used to select up toN users according to any number
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of previously described performance metric based on CSIT. As a second stage, more complete

CSIT may be requested by the BS only to the small set of selected users for a more accurate

precoding design. The performance exceeds that of random beamforming but depends on the

level of antenna correlation, i.e. angle spreadσθ, as is shown in Fig.5.
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Fig. 5. Sum rate as a function of the angle spreadσθ at the BS, where the number of transmit antennas is 2, the average SNR

= 10dB, and the number of active users in the cell is 50.

Clearly the different approaches presented here for feedback reduction represent independent

strategies, which could be combined together for more effectiveness. Certain techniques will

be suited to specific deployments scenarios. For instance opportunistic schemes are suited to

densely populated networks. Schemes using temporal statistics are better suited to low mobility

(indoor) setting, while the exploitation of spatial statistics would be more effective in outdoor

cases where the elevation of the BS above the clutter decreases the angle spread of multipath

and gives rise to Ricean models.

VI. SYSTEM ISSUES

Although it is now widely recognized that MIMO techniques, in their generality, will be a key

element in the evolution of broadband wireless access systems, applications of multiuser MIMO
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solutions have yet to emerge. While spatial diversity and basic single user MIMO techniques

are available in several products and standards, adaptive antenna solutions including MU-MIMO

are mostly considered for TDD systems in low and moderate mobility where channel state

information can be obtained from estimation in the uplink.

Note also that codebook based precoding schemes for SU- and MU-MIMO are emerging in

existing and future standards [6]. MU-MIMO systems may havethe potential to achieve the

spectrum efficiency requirements set by operators for the next generation of mobile communi-

cation systems [50]. Practical MU-MIMO applications are still challenging however and further

studies seem needed in order to get a deeper understanding ofthe related tradeoffs and system

gains (number of antennas, choice of algorithm, etc.).

When it comes to the crucial CSIT issue, one problem with designing feedback metrics is

that the SINR measurement depends, among others, on the number of other terminals being

simultaneously scheduled along with the user making the measurement. Certain metrics (such as

those in e.g [13], [42] ) assume a fixed number of scheduled SDMA users. However, in practice,

methods allowing fast transitions between TDMA and SDMA modes will be required. In such

cases, the number of simultaneous users and the available power for each of them will generally

be unknown at the terminal. Channel quality metric design inthis scenario is one of the largely

open challenges in multiuser MIMO.

Also, opportunistic scheduling in multiuser MIMO not only requires feedback for CSIT but

also signaling of scheduling decisions to the terminal. Thefeedback and control loop in MU-

MIMO introduces a non-negligible overhead and latency in the system, which must carefully

be weighed against the capacity gains expected from such techniques. Certain scenarios look

promising (e.g. broadband best-effort internet access), others are more questionable, such as

Voice over Internet Protocol (VoIP), where small packets are to be delivered with tight delay

constraints. In addition a poorly designed feedback channel can suffer from delays and cause the

reported channel quality metrics to the transmitter to be outdated, bringing further degradations

[51].

Another fundamental aspect is the impact of realistic traffic models and system loads, es-

pecially on schemes relying on high user loads (e.g. random beamforming). In recent wireless

systems based on MIMO-OFDMA [7], opportunistic schedulingcan be performed in up to

three dimensions namely time, frequency, and space. Different types of traffic are likely to have
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different constraints with respect to the available degrees of freedom for the scheduler. For

example, real-time services typically have tight delay constraints and limit the flexibility of the

scheduler in the time domain. One may then wonder how manyeffective users are available

for selection by the scheduler in each of these dimensions, and how to take advantage of the

different degrees of freedom to satisfy the QoS constraintsfor different types of traffic?

VII. D ISCUSSION

MU-MIMO networks reveal the unique opportunities arising from a joint optimization of

antenna combining techniques with resource allocation protocols (power control, user schedul-

ing). MU-MIMO approaches are expected to provide significant multiplexing (on the order of

the number of antennas used at the transmitter) and diversity gains while resolving some of the

issues associated with conventional single user MIMO. Namely, it brings robustness with respect

to multipath richness, allowing for compact antenna spacing at the BS, and crucially, yielding the

diversity and multiplexing gains without the need for multiple antenna user terminals. To realize

these gains, however, the BS should be informed with the user’s channel coefficients which may

limit practical application to TDD or low-mobility settings. To circumvent this problem and

reduce feedback load, combining MU-MIMO with opportunistic scheduling seems a promising

direction. The success for this type of scheduler is strongly traffic and QoS-dependent however.

A number of complementary approaches geared toward feedback reduction were proposed which

may to restore the robustness of MU-MIMO techniques with respect to a wider range of

application and environments. These results and other performance studies with low feedback

schemes suggest that MU-MIMO transmitters can cope with very coarse channel information.

From a theoretical point of view, the impact and design of an optimal form of CSIT under finite

rate feedback is still an open and exciting problem.
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